По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Public Key Infrastructure (PKI) - это набор различных технологий, которые используются для обеспечения аутентификации источника, целостности данных и конфиденциальности для пользователя в сети. PKI использует преимущества асимметричного шифрования и использует пары открытого и закрытого ключей для шифрования данных. В PKI открытый ключ обычно связан с цифровой подписью, чтобы добавить доверие и проверить сведения о владельце сертификата. Ниже приведен ключевой жизненный цикл в PKI: Генерация ключа: Этот процесс определяет шифр и размер ключа. Генерация сертификата: Этот процесс создает цифровой сертификат и назначает его человеку или устройству. Распространение: Процесс распространения отвечает за безопасное распространение ключа пользователю или устройству. Хранение: Этот процесс отвечает за безопасное хранение ключа, чтобы предотвратить любой несанкционированный доступ к нему. Отзыв: Сертификат или ключ могут быть отозваны, если они скомпрометированы субъектом угрозы. Срок действия: Каждый сертификат имеет срок службы. Каждый день мы посещаем различные веб-сайты, такие как социальные сети, стрим, новости, спорт, блоги и другие платформы. Однако задумывались ли вы когда-нибудь о проверке подлинности веб-сайтов, которые вы посещаете? Вы, наверное, думаете, что всему, что находится в Интернете, нельзя доверять. Хотя это отчасти правда, мы можем доверять только ограниченному числу веб-сайтов, например, доверять веб-сайту вашего банка. Главный вопрос заключается в том, как мы можем проверить подлинность веб-сайтов, которые мы посещаем? Именно здесь как PKI, так и цифровые сертификаты помогают установить доверие между хостом в Интернете и нашим компьютером. Центр сертификации PKI играет жизненно важную роль в Интернете, поскольку многим пользователям и устройствам требуется метод установления доверия в самой ненадежной сети в мире – Интернете. Понимание компонентов, которые помогают PKI обеспечить доверие, необходимую как пользователям, так и устройствам, имеет важное значение для любого специалиста по кибербезопасности. Вы можете рассматривать PKI как набор процедур, правил, аппаратного и программного обеспечения, а также людей, которые работают вместе для управления цифровыми сертификатами. Цифровой сертификат-это официальная форма идентификации объекта, которая проверяется доверенной стороной. Эти цифровые сертификаты выдаются доверенной стороной в сети или Интернете. Они известны как Центр сертификации (Certificate Authority - CA). В каждой стране существует государственное учреждение, которое обычно отвечает за проверку личности своих граждан и выдачу удостоверений личности, такой как паспорт. Этот паспорт будет содержать важную информацию о владельце и сроке действия, например, дату окончания срока действия. В сети и в Интернете центр сертификации выполняет похожую роль и функции. В Интернете есть множество поставщиков, которые являются доверенными центрами сертификации, которые позволяют вам приобретать цифровой сертификат для личного использования. Примеры доверенных центров сертификации включают GoDaddy, DigiCert, Let's Encrypt, Comodo, Cloudflare и многие другие. Важное примечание! Цифровой сертификат создается при объединении ключа и цифровой подписи. Сертификат будет содержать сведения о владельце сертификата, например, об организации. ЦС выдаст объекту цифровой сертификат только после того, как его личность будет проверена. После того, как ЦС создает цифровой сертификат, он сохраняется в базе данных сертификатов, которая используется для безопасного хранения всех утвержденных ЦС цифровых сертификатов. Важное примечание! По истечении срока действия цифрового сертификата он возвращается в ЦС, который затем помещается в список отзыва сертификатов (Certificate Revocation List - CRL), который поддерживается ЦС. Цифровой сертификат форматируется с использованием стандарта X.509, который содержит следующие сведения: Номер версии Серийный номер Идентификатор алгоритма подписи Название эмитента Срок годности Не раньше, чем Не после Имя субъекта Информация об открытом ключе субъекта Алгоритм открытого ключа Открытый ключ субъекта Уникальный идентификатор эмитента (необязательно) Уникальный идентификатор субъекта (необязательно) Расширения (необязательно) Алгоритм подписи сертификата Подпись сертификата Регистрирующий орган (RA) Следующий рисунок - это цифровой сертификат, который используется для проверки веб-сайта Cisco: Как показано на предыдущем рисунке, видно, что CA - это HydrantID SSH ICA G2, который выдает сертификат на www.cisco.com на срок действия с 20 сентября 2019 года по 20 сентября 2021 года. Как показано на следующем рисунке, цифровой сертификат содержит дополнительную информацию, которая хранится с использованием стандарта X.509: Далее давайте рассмотрим, как создается цифровая подпись и ее роль в PKI. Цифровая подпись При совершении деловых операций на документах требуется подпись, чтобы гарантировать, что сделка санкционирована соответствующим лицом. Такая же концепция требуется в сети, так что цифровая подпись отправляется вместе с сообщением на конечный хост. Затем узел назначения может использовать цифровую подпись для проверки подлинности сообщения. При использовании PKI используются следующие алгоритмы для создания и проверки цифровых подписей: DSA RSA Elliptic Curve Digital Signature Algorithm (ECDSA) Чтобы создать цифровую подпись, между Алисой (отправителем) и Сергеем Алексеевичем (получателем) происходит следующий процесс: 1) Алиса будет использовать алгоритм хеширования для создания хэша (дайджеста) сообщения: 2) Затем Алиса будет использовать свой закрытый ключ для шифрования хэша (дайджеста) сообщения: Цифровая подпись используется в качестве доказательства того, что Алиса подписала сообщение. Чтобы лучше понять, как используются цифровые подписи в реальной жизни, давайте представим, что в сети есть два пользователя. Алиса хочет отправить Сергею Алексеевичу сообщение. Алиса может использовать цифровую подпись с сообщением, чтобы заверить Сергея Алексеевича в том, что сообщение исходило именно от нее. Это шаги, которые Алиса будет использовать для обеспечения подлинности, целостности и неотрицания: Алиса создаст пару открытых и закрытых ключей для шифрования данных. Алиса даст Сергею Алексеевичу только открытый ключ. Таким образом, закрытый ключ хранится у Алисы. Алиса создаст сообщение для Сергея Алексеевича и создаст хэш (дайджест) сообщения. Затем Алиса будет использовать закрытый ключ для шифрования хэша (дайджеста) сообщения для создания цифровой подписи. Алиса отправит сообщение и цифровую подпись Сергею Алексеевичу. Сергей Алексеевич будет использовать открытый ключ Алисы для расшифровки цифровой подписи, чтобы получить хэш сообщения. Сергей Алексеевич также сгенерирует хэш сообщения и сравнит его с хэшем, полученным из цифровой подписи Алисы. Как только два значения хэша (дайджеста) совпадают, это просто означает, что сообщение подписано и отправлено Алисой. Цифровые подписи используются не только для проверки подлинности сообщений. Они также используются в следующих случаях: Цифровые подписи для цифровых сертификатов: это позволяет отправителю вставить цифровую подпись в цифровой сертификат. Цифровые подписи для подписи кода: это позволяет разработчику приложения вставить свою цифровую подпись в исходник приложения, чтобы помочь пользователям проверить подлинность программного обеспечения или приложения. На следующем рисунке показан пример приложения, содержащего цифровой сертификат: На следующем рисунке показана дополнительная проверка цифровой подписи подписавшего: Система доверия PKI Ранее мы узнали, что организация может получить цифровой сертификат от доверенного центра сертификации в Интернете. Однако во многих крупных организациях вы обычно найдете корневой ЦС и множество промежуточных ЦС. Корневой ЦС отвечает за создание первичного цифрового сертификата, который затем делегируется каждому подчиненному ЦС или промежуточному ЦС. Промежуточный ЦС будет использовать цифровой сертификат корневого сервера для создания новых цифровых сертификатов для конечных устройств, таких как внутренние серверы. На следующем рисунке показана иерархия корневого и промежуточного ЦС: Использование этого типа иерархической структуры снимает нагрузку с корневого центра сертификации по управлению всеми цифровыми сертификатами в организации. Некоторые из этих обязанностей делегированы промежуточным серверам ЦС в сети. Представьте, что в вашем головном офисе вы развернули корневой ЦС, а в каждом удаленном филиале развернули промежуточные ЦС. Следовательно, каждый промежуточный ЦС отвечает за управление сертификатами своего собственного домена или филиала. Это также снижает риски взлома корневого ЦС злоумышленником, так что в случае взлома промежуточного ЦС корневой ЦС может быть отключен от сети, не затрагивая другие конечные устройства или промежуточные ЦС. В небольших сетях можно развернуть один корневой ЦС для предоставления цифровых сертификатов каждому конечному устройству, как показано на следующем рисунке: Как показано на предыдущем рисунке, одним ЦС легко управлять. Однако по мере роста сети наличие единственного центра сертификации в сети не позволит легко масштабироваться, поэтому необходимо использовать иерархическую структуру с корневым центром сертификации и промежуточными (подчиненными) центрами сертификации.
img
Работая долгое время на компьютере, чувствуется необходимость быстро переходить к каким-то настройкам системы. Порой настолько привыкаешь к быстрому запуску, что забываешь полный путь к нужной настройке. Зато это сохраняет время и повышает (крутость в глазах непосвященных) эффективность работы. Итак, чтобы запустить окно быстрого запуска достаточно нажать комбинацию клавиш Windows + R. А затем в зависимости от потребностей вводим одну из перечисленных ниже команд. 1. msconfig Если нужно перезагрузить систему в безопасном режиме или просмотреть список доступных ОС, то команда msconfig вам в помощь. Там можно отредактировать параметры загрузки системы. Кстати, присмотритесь к вкладке Tools, там немало полезных сокращений. 2. resmon Мощная утилита, которая помогает разобраться, что грузит ресурсы компьютера в данный момент. Там можно найти информацию по работе ЦП, жесткого диска, оперативной памяти, сетевой карты. 3. msinfo Приложение System Information предоставляет обширную информацию об оборудовании и программном обеспечении вашего ПК. Это обязательная команда для просмотра спецификаций любого ПК. Информация разделена на категории, что облегчает поиск нужной информации. Здесь можно экспортировать информацию в файл, что идеально подходит для получения технической помощи в Интернете. 4. sdclt Данная команда открывает окно "Резервного копирования и восстановления системы". 5. Настройки мыши - main.cpl Все настройки относительно мыши можно сделать в этом окне: поменять роли кнопок, скорость реакции т.п. Кстати, идея чтобы пошутить с другом: поменяйте роли кнопок мыши. Это прикольно. 6. regedit Пожалуй, одна из самых известных утилит, которой пользуются сисадмины - это regedit. Все настройки Windows - порт RDP по умолчанию, разны пути, настройки программ - хранятся в реестре. Чтобы запустить его с окна быстрого запуска введите regedit.exe. Внимание! Все изменения в реестре влияют на работоспособность системы, потому крайне не рекомендуется редактировать его, если не знаете чего хотите. 7. sysadm.cpl Нет - это не команда быстрого вызова сисадмина. Она запускает параметры системы, где можно настроить производительность, переменные среды и т.п. 8. powercfg.cpl Быстрый доступ к настройкам питания. Именно здесь настраивается поведение компьютера в зависимости от режима питания, таймоут до спящего режима и т.п. 9. optionalfeatures Часто при поиске проблем на новом компьютере обнаруживается, что не установлены нужные утилиты вроде telnet. Так вот эти все фичи можно установить через меню дополнительных компонентов Windows, которое можно вызвать командой optionalfeatures. 10. magnify Лупа или увеличительное стекло, которое предусмотрено для людей с ограниченными возможностями запускается с помощью команды magnify. 11. charmap Таблица шрифтов Windows отображает все доступные для выбранного шрифта символы. Тут можно копировать символ и вставлять в нужное место или запомнить Alt код конкретного шрифта. Если выбрать Advanced View, то можно получить доступ к строке поиска. 12. ncpa.cpl Моя самая любимая команда. Позволяет открыть окно с текущими сетевыми соединениями. Особенно полезна, если у пользователя нет администраторских прав. В этом случае командная строка cmd, запускается от имени привилегированного пользователя, затем уже в командной строке выполняется команда ncpa.cpl. 13. mrt Нет - эта команда не активирует функцию МРТ на компьютере. Вы, наверное, не знали, что в Windows есть встроенная утилита для удаления вредоносных программ. Правда, эффективность под вопросом, - она все же есть. Но в любом случае, лучше установить антивирус. 14. devmgmt.msc Пожалуй, второй мой фаворит. Команда devmgmt.msc позволяет запускать окно с устройствами, где можно установить, обновить или удалить драйвера. Так же полезна в случае, если у пользователя нет администраторских прав. В этом случае схема работы такая же, как и с ncpa.cpl. Так же есть команды diskmgmt.msc и compmgmt.msc, которые запускают консоль управления жесткими дисками и компьютером соответственно. 15. netplwiz Эта команда чаще всего используется в скриптах для автоматического создания пользователя. Правда, в плане безопасности это не очень хорошо, потому что этим методом пользуются злоумышленники, но тем не менее данная команда позволяет назначать пароль пользователям и управлять другими настройками безопасности. 16. services.msc Одна из часто используемых команд в мире ИТ. Отображает все существующие в системе сервисы и их состояние. Выбрав конкретный сервис, в левом окошке можно просмотреть за что он отвечает. И тут тоже не рекомендуется отключать или проводить другие манипуляции, если не знаете что делаете. 17. appwiz.cpl Давно пользовались приложением Установка и удаление программ? Обычно пользователи устанавливают программы и забывают, что они у них есть. Хотя для улучшения производительности компьютера лучше регулярно проверять и удалять ненужные программы. Для быстрого доступа используется команда appwiz.cpl. Тут также можно посмотреть установленные обновления и установить дополнительные фичи. 18. control В старых версиях Windows данная команда не пользовалась популярностью, так как чуть ли не каждая ссылка вела именно на Панель управления. Но в Windows 10 Microsoft активно продвигает новое приложение Настройки, поэтому попасть на Панель управления не легко, но возможно благодаря команде control. 19. "." (точка) Как обычно поступают пользователи, если нужно попасть в папку текущего пользователя? Открывают проводник и оттуда попадают куда нужно. Но есть вариант попроще: просто в окне быстрого запуска набираете точку и нажимаете Ввод (Enter)"." - заветная папка открыта. 20. Экранная клавиатура Иногда по какой то причине приходится пользоваться экранной клавиатурой. Вызвать его можно командой osk. 21. snippingtool Приложение Ножницы, которое делает скриншот экрана можно вызвать командой snippingtool. Для запуска же новой версии на Windows 10, можно использовать комбинацию клавиш Win+Shift+S. А для запуска Paint используйте команду - mspaint. 22. mdsched В Windows также есть встроенная утилита диагностики оперативной памяти. Она не только выявляет проблему, но в большинстве случаев и исправляет их. А если не справляется, то выдают отчет о проблеме. Запустить данную утилиту можно командой mdsched. P.S. Для проверки компьютер автоматически перезагрузиться, так что имеет смысл сохранить открытые документы. 23. Открытие веб-сайтов Да-да, все верно. Через командную строку можно открывать и веб-сайты. Сайт откроется в браузере по умолчанию. Но сегодня мало, кто помнит название сайтов. Все пользуются поиском. 24. mstsc Для быстрого запуска приложения удаленного доступа используйте команду mstsc. Но для начала на компьютерах нужно разрешить удаленный доступ. 25. cmd Найдется очень мало людей, которым незнакома эта команда. cmd - запускает командную строку, которая дает вам неограниченную власть над системой. Хотя я погорячился, Windows - это не касается. Заключение Run еще удобен тем, что он запоминает все введенные команды, так что во второй раз достаточно набрать первую букву и вы получите список введенных ранее команд на эту букву.
img
Современные IP сети должны обеспечивать надежную передачу пакетов сети VoIP и других важных служб. Эти сервисы должны обеспечивать безопасную передачу, определенную долю предсказуемости поведения трафика на ключевых узлах и конечно гарантированный уровень доставки пакетов. Сетевые администраторы и инженеры обеспечивают гарантированную доставку пакетов путем изменения параметров задержки, джиттера, резервирования полосы пропускания и контроля за потерей пакетов с помощью Quality Of Service (QoS). Современные сети конвергентны. Это означает, что приходящей трафик в корпоративный сегмент сети, будь то VoIP, пакеты видеоконференцсвязи или обычный e-mail приходят по одному каналу передачу от Wide Area Network (WAN) . Каждый из указанных типов имеет свои собственные требования к передаче, например, для электронной почты задержка 700 мс некритична, но задержка 700 мс при обмене RTP пакетами телефонного разговора уже недопустима. Для этого и создаются механизмы QoS [описаны в рекомендации Y.1541]. Рассмотрим главные проблемы в корпоративных сетях: Размер полосы пропускания: Большие графические файлы, мультимедиа, растущее количество голосового и видео трафика создает определенные проблемы для сети передачи; Задержка пакетов (фиксированная и джиттер): Задержка – это время, которое проходит от момента передачи пакета до момента получения. Зачастую, такая задержка называется «end-to-end», что означает точка – точка. Она бывает двух типов: Фиксированная задержка: Данные вид задержки имеет так же два подтипа: задержка сериализации и распространения. Сериализация - это время затрачиваемое оборудованием на перемещение бит информации в канал передачи. Чем шире пропускная способность канала передачи, тем меньше время тратится на сериализацию. Задержка распространения это время, требуемое для передачи одного бита информации на другой конец канала передачи; Переменная сетевая задержка: Задержка пакета в очереди относится к категории переменной задержки. В частности, время, которое пакет проводит в буфере интерфейса, зависит от загрузки сети и относится так же к переменной сетевой задержке; Изменение задержки (джиттер): Джиттер это дельта, а именно, разница между задержками двух пакетов; Потеря пакетов: Потеря пакетов, как правило, вызывается превышением лимита пропускной способности, в результате чего теряются пакеты и происходят неудобства в процессе телефонного разговора. Размер полосы пропускания Рисунок иллюстрирует сети с четырьмя «хопами» - промежуточными узлами на пути следования пакета между сервером и клиентом. Каждый «хоп» соединен между собой своим типом среды передачи в разной пропускной способностью. В данном случае, максимальная доступная полоса для передачи равна полосе пропускания самого «узкого» места, то есть с самой низкой пропускной способностью. Расчет доступной пропускной способности - это неотъемлемая часть настройки QoS, которая является процессом, осложненным наличием множества потоков трафика проходящего через сеть передачи данных и их необходимо учесть. Расчет доступной полосы пропускания происходит приблизительно по следующей формуле: A=Bmax/F где A – доступная полоса пропускания, Bmax – максимальная полоса пропускания, а F – количество потоков. Наиболее правильным методом при расчете пропускной способности является расчет с запасом в 10-20% от расчетной величины. Однако, увеличение пропускной способности вызывает удорожание всей сети и занимает много времени на осуществление. Но современные механизмы QoS могут быть использованы для эффективного и оптимального увеличения доступной пропускной способности для приоритетных приложений. С помощью метода классификации трафика, алгоритм QoS может отдавать приоритет вызову в зависимости от важности, будь то голос или критически важные для бизнеса приложения. Алгоритмы QoS подразумевают предоставление эффективной полосы пропускания согласно требованиям подобных приложений; голосовой трафик должен получать приоритет отправки. Перечислим механизмы Cisco IOS для обеспечения необходимой полосы пропускания: Priority queuing (приоритетная очередь или - PQ) или Custom queuing (пользовательская или настраиваемая очередь - CQ); Modified deficit round robin - MDRR - Модифицированный циклический алгоритм с дополнительной очередью (маршрутизаторы Cisco 1200 серии); Распределенный тип обслуживания, или Type Of Service (ToS) и алгоритм взвешенных очередей (WFQ) (маршрутизаторы Cisco 7x00 серии); Class-Based Weighted Fair Queuing (CBWFQ) или алгоритм очередей, базирующийся на классах; Low latency queuing (LLQ) или очередь с малой задержкой. Оптимизация использования канала путем компрессии поля полезной нагрузки «фреймов» увеличивает пропускную способность канала. С другой стороны, компрессия может увеличить задержку по причине сложности алгоритмов сжатия. Методы Stacker (укладчик) и Predictor (предсказатель) - это два алгоритма сжатия, которые используются в Cisco IOS. Другой алгоритм эффективного использования канала передачи это компрессия заголовков. Сжатие заголовков особенно эффективно в тех сетях, где большинство пакетов имеют маленькое количество информационной нагрузки. Другими словами, если отношение вида (Полезная нагрузка)/(Размер заголовка) мало, то сжатие заголовков будет очень эффективно. Типичным примером компрессии заголовков может стать сжатие TCP и Real-time Transport Protocol (RTP) заголовков. Задержка пакетов из конца в конец и джиттер Рисунок ниже иллюстрирует воздействие сети передачи на такие параметры как задержка пакетов проходящих из одной части сетевого сегмента в другой. Кроме того, если задержка между пакетом с номером i и i + 1 есть величина, не равная нулю, то в добавок к задержке "end-to-end" возникает джиттер. Потеря пакетов в сети при передаче трафика происходит не по причине наличия джиттера, но важно понимать, что его высокое значение может привести к пробелам в телефонном разговоре. Каждый из узлов в сети вносит свою роль в общую задержку: Задержка распространения (propagation delay) появляется в результате ограничения скорости распространения фотонов или электронов в среде передачи (волоконно-оптический кабель или медная витая пара); Задержка сериализации (serialization delay) это время, которое необходимо интерфейсу чтобы переместить биты информации в канал передачи. Это фиксированное значение, которое является функцией от скорости интерфейса; Задержка обработки и очереди в рамках маршрутизатора. Рассмотрим пример, в котором маршрутизаторы корпоративной сети находятся в Иркутске и Москве, и каждый подключен через WAN каналом передачи 128 кбит/с. Расстояние между городами около 5000 км, что означает, что задержка распространения сигнала по оптическому волокну составит примерно 40 мс. Заказчик отправляет голосовой фрейм размером 66 байт (528 бит). Отправка данного фрейма займет фиксированное время на сериализацию, равное: tзс = 528/128000=0,004125с=4.125 мс. Также, необходимо прибавить 40 мс на распространение сигнала. Тогда суммарное время задержки составит 44.125 мс. Исходя из рисунка расчет задержки будет происходить следующим способом: D1+Q1+D2+Q2+D3+Q3+D4 Если канал передачи будет заменен на поток Е1, в таком случае, мы получим задержку серилизации, равную: tзс=528/2048000=0,00025781с=0,258 мс В этом случае, общая задержка передачи будет равнять 40,258 мс.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59