По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня мы подробно поговорим и модификациях протокола SIP, разработанных специально для взаимодействия телефонных сетей VoIP с сетями PSTN – Public Switched Telephone Network (ТфОП), использующих сигнализацию ОКС-7. С развитием IP - сетей , преимущества VoIP телефонии становились всё более очевидными, однако подавляющая часть АТС всё ещё имеет дело с сигнализацией ОКС-7, которая используется в таких сетях как ISDN - Integrated Services Digital Network (Цифровая Сеть с Интеграцией Служб), ТфОП – Телефонная Сеть Общего Пользования, а также в Сетях Подвижной Сотовой Связи (СПСС). В качестве подсистемы, обеспечивающей межстанционную сигнализацию, в данных сетях применяется подсистема ISUP – ISDN User Part. ISUP решает задачи транспортировки сигнальной информации от офисной телефонной станции до станции назначения без обработки данной информации в промежуточных пунктах сигнализации. Прежде всего ISUP необходим для управления установлением соединения. Протокол ISUP имеет множество типов сообщений, каждое из которых применяется на определенном этапе установления соединения. Запомнить назначение всех этих сообщений не представляется возможным. Мы не будем описывать каждое сообщение в отдельности, а лишь приведём примеры основных, встречающихся в трассировках любого вызова по протоколу ISUP. IAM (Initial Address Message) - Самое первое сообщение. Служит для информирования АТС об установлении соединения. Содержит такие параметры как: номер вызывающего и вызываемого абонента, тип данных (данные, голос и другие). ACM (Address Complete Message) - Сообщение о приеме полного номера. Отправляется вызываемой АТС, когда был найден необходимый для установления соединения абонент. В этот момент телефонный аппарат вызываемого абонента начинает звонить, а вызывающий абонент слышит КПВ (Контроль Посылки Вызова) ANM (Answer Message) - Отправляется вызываемой АТС, когда вызывающий абонент снимает трубку. Занимаются двухсторонние разговорные каналы. REL (Release) - Отправляется одной из АТС, когда абонент инициирует завершение соединения (кладёт трубку). RLC (Release complete) - Подтверждение разрыва соединения. Отправляя данное сообщение, АТС уведомляет о том, что разговорный канал свободен и может вновь быть использован. Очевидно, что для сопряжения сетей VoIP с сетями, работающими по сигнализации ОКС-7, необходимо реализовать механизмы прозрачной передачи сообщений ISUP по IP. Для решения данной задачи ITU-T и IETF независимо разработали модификации к протоколу SIP - SIP- I (Internetworking) и SIP – T (Telephony)( RFC 3372) соответственно. При разработке данных модификаций, были учтены следующие требования: Возможность прозрачной передачи сообщений протокола ISUP Возможность маршрутизации сообщения протокола SIP на основе параметров ISUP Возможность передачи транспортной информации при установлении соединения. Выполнение данных условий осуществляется путем инкапсуляции сигнальных сообщений ISUP в SIP, а также трансляцией параметров ISUP в заголовках SIP. Итак, от теории к практике. Рассмотрим простейший пример установления соединения в сети с разнотипной сигнализацией. Допустим, что а Абонент A - пользователь ТфОП, его телефонный аппарат находится за неким узлом связи, Абонент B использует IP Phone, работающий по протоколу SIP. За трансляцию сообщений ISUP в SIP будет отвечать некий многофункциональный шлюз IMG (Integrated Media Gateway) Задержки в сети Как видно из рисунка инициатором вызова выступает Абонент A, на шлюз отправляется сообщение IAM, содержащее номера телефонов, а также дополнительные параметры соединения, IMG в свою очередь инкапсулирует сообщение IAM протокола ISUP, в уже известное нам INVITE протокола SIP. Далее легко проследить каким ещё сообщениям протокола SIP соответствуют некоторые запросы ISUP. Стоит также заметить, что протокол ISUP на этапе разговора открывает некий двухсторонний разговорный канал, идентификатор которого находится в сообщении IAM и называется CIC (Circuit Identification Code). Таким образом, благодаря модификациям протокола SIP на сегодняшний день имеется возможность связать абонентов сетей разных типов, использующих разную сигнализацию для управления установлением соединения.
img
Когда узел в кластере vSAN, запущенный в vSphere 6.0 Update 1b, отключен для обслуживания, узлы ESXi в кластере сообщают об ошибке: Host cannot communicate with all other nodes in virtual SAN enabled cluster (Узел не может взаимодействовать со всеми другими узлами кластера с поддержкой виртуальной SAN) После перезагрузки узла (узлов) и повторного присоединения к кластеру сообщение автоматически не очищается. Это сообщение появляется на вкладке Summary веб-клиента vSphere, и хост ESXi отображает треугольник уведомления, хотя аварийные сигналы не инициируются. Это сообщение появляется на всех узлах в кластере vSAN, когда один или несколько узлов отключены для обслуживания и, следовательно, не взаимодействуют с остальной частью кластера, или когда существует допустимая проблема с связью кластера vSAN. В обычных условиях это сообщение автоматически сбрасывается после возобновления связи с хостами. Если это сообщение появляется на вкладке Сводка, в то время как все другие индикаторы сообщают, что сеть vSAN исправна, эта проблема может быть косметической. Решение Эта косметическая проблема устранена в VMware ESXi 6,0 Update 2, доступном на странице загрузки VMware Чтобы устранить эту проблему, если обновление не требуется, используйте один из следующих вариантов: Перезапустите агент управления VPXA на узлах vSAN. Это приводит к обновлению информации в vCenter Server и удалению сообщения. Примечание. Перезапуск агента управления vCenter на хосте ESXi может привести к короткому прерыванию управления хостом. В крайних случаях хост может сразу же перейти в состояние "не отвечает" на сервере vCenter Server, или к ожидающим операциям, которые завершаются неуспешно, и их необходимо повторить. Чтобы перезапустить агент управления VPXA (vCenter Server) на узлах узла ESXi кластера vSAN: Включите SSH или ESXi Shell на каждом узле кластера vSAN. Войдите на узел кластера vSAN с помощью SSH или ESXi Shell. Перезапустите агент управления VPXA, выполнив эту команду # /etc/init.d/vpxa restart Примечание. Подождите приблизительно одну минуту, прежде чем перейти к следующему хосту. Это позволяет одновременно обновлять информацию от каждого узла в vCenter Server. Удалите узел из кластера vSAN и добавьте его повторно. Это вынуждает все узлы обновлять информацию о членстве в кластере и очищать сообщение. Примечание. При попытке удаления и повторного добавления узла синхронизация данных не выполняется, когда узел находится в режиме обслуживания и находится вне кластера vSAN. При выборе опции «Гарантировать режим обслуживания специальных возможностей» некоторые объекты могут быть не защищены при выполнении обходного решения. Для удаления узла из кластера vSAN и повторного добавления: Выберите хост ESXi в кластере vSAN, который можно временно перевести в режим обслуживания Примечание. VMware рекомендует выбрать наименее занятый/используемый хост. В веб-клиенте vSphere щелкните правой кнопкой мыши узел ESXi и выберите "Перейти в режим обслуживания". Примечания: Выберите параметры "Обеспечить доступность" или "Полное перемещение данных" для режима обслуживания vSAN. Если применимо, разрешите перенос отключенных виртуальных машин на остальные хосты ESXi. 3Удаление узла из кластера vSAN Выберите хост. Перетащите узел из кластера. Поместите хост в объект центра обработки данных в хранилище сервера vCenter. Примечание. После перемещения хоста в центр обработки данных подождите около двух минут. Перетащите узел обратно в кластер vSAN. После добавления узла обратно в кластер vSAN щелкните на него правой кнопкой мыши и выберите «Выход из режима обслуживания». Примечание. Сообщение на остальных хостах должно быть понятным. Примечание. Эти обходные пути успешно очищают сообщение. Однако при повторном появлении сообщения может потребоваться повторное применение обходного решения. Это сообщение может вновь появиться в таких случаях, как проблема с сетью, отказ/перезагрузка хоста или обслуживание хоста.
img
Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету. p> Видео про IP - адрес На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес. IPv4 представляет собой 32-битное двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. Но так как компьютеры понимают только двоичную систему исчисления, то указанный адрес преобразуют в двоичную форму - 11000000 10101000 00000000 00000000. Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении. IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или "белый" IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета. Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig. В начале зарождения Интернета IP адреса было принято делить на классы: Класс Начальный IP Конечный IP Число сетей Число хостов Класс A 0.0.0.0 127.255.255.255 126 16777214 Класс B 128.0.0.0 191.255.255.255 16382 65536 Класс C 192.0.0.0 223.255.255.255 2097150 254 Класс D 224.0.0.0 239.255.255.255 Класс E 240.0.0.0 254.255.255.255 При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации. Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований). IP адрес хоста имеет две части адрес сети и адрес узла. Где адрес сети, а где адрес узла - определяется маской сети. Маска сети это 32-битное число, где подряд идущие биты всегда равны 1. На самом деле каждое десятичное число IP адреса - это не что иное, как сумма степеней числа 2. Например, 192 это 1100000. Чтобы получить это значение переводим десятичное число в двоичное. Хотя это азы информатики, но подойдет любой калькулятор, даже встроенный в Windows: А теперь посмотрим как мы получаем 192 из суммы степеней двойки: 1 * 27+1*26+0*25+0*24+0*23+0*27+0*21+0*20 = 1*27+1*26 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа: 128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1. Первый октет Второй октет Третий октет Четвёртый октет 255 255 255 0 11111111 11111111 11111111 00000000 Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110. При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0. Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C. Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми. На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом: H=2n 2 Где H число хостов, n число бит отведенных под номер хоста. Например, 192.168.1.0 маска 255.255.255.0. Здесь первый 24 бит определяют номер сети, а оставшиеся 8 бит номер хоста. Исходя из этого, H=28-2 = 254. Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети. С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик. В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу. Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами. Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0. Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске. Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула: N = 2n Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 20 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 22 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей: Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 50 255.255.255.192 192.168.25.1 192.168.25.62 192.168.25.0 192.168.25.63 Сеть 2 50 255.255.255.192 192.168.25.65 192.168.25.126 192.168.25.64 192.168.25.127 Сеть 3 50 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 4 50 255.255.255.192 192.168.25.193 192.168.25.254 192.168.25.192 192.168.25.255 Тестировать будем в виртуальной среде Cisco Packet Tracer. Как видно из рисунка, здесь три разных хоста маски у всех одинаковые, но маршруты по умолчанию разные. По умолчанию, трафик между всеми этими подсетями идет, так как у нас в сети существует маршрутизатор, который занимается передачей трафика из одной подсети в другую. Чтобы ограничить трафик нужно прописать соответствующие списки доступа Access Lists. Но мы не будем заниматься этим сейчас, так как тема статьи совсем другая. Чтобы определить к какой подсети относится хост, устройство выполняет операцию побитового "И" между адресом узла и маской подсети. Побитовое "И" это бинарная операция, действие которой эквивалентно применению логического "И" к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 1, результирующий двоичный разряд равен 1; если же хотя бы один бит из пары равен 0, результирующий двоичный разряд равен 0.Покажем на примере: 192 168 1 125 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 255 255 255 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 192 168 1 0 На рисунке выше маска подсети для всех сетей одинаковая 255.255.255.192. Но давайте представим ситуацию, когда у нас подсетей так же 4, но количество хостов разное: Сеть 1 120 Сеть 2 60 Сеть 3 25 Сеть 4 12 В принципе, можно оставить и предыдущую маску, но мы провайдер, у нас много клиентов и мы не можем позволить себе тратить IP адреса впустую. Итак, в первой сети на нужно 120 IP адресов, значит маска сети должна быть где-то в районе 120. Мы могли бы выбрать маской 120, но это невозможно, так как 120 не является степенью двойки, поэтому выбираем 128. Для второй подсети первая доступная маска 64. Но так как первые 128 адресов выделены под Сеть 1, то выбираем следующие 64 адреса, а маска будет 192, потому что именно эта маска даст нам нужное количество адресов. Третья сеть у нас состоит из 25 хостов. Ближайший возможный блок адресов это 32. А маска 224 как раз даст эти 32 адреса. В четвёртой же сети нам нужно 16 адресов. Маска будет равна 240. Лайфхак: Чтобы быстро вычислить маску подсети из количества доступных адресов вычитываем необходимое. Например, в этой подсети 256 адресов, нам нужно 32 адреса. Производим простое вычисление: 256 32 = 224. Это число и будет в последнем октете. Сеть № Число хостов Маска подсети Первый IP Последний IP Номер подсети Широковещательный адрес Сеть 1 120 255.255.255.128 192.168.25.1 192.168.25.126 192.168.25.0 192.168.25.127 Сеть 2 60 255.255.255.192 192.168.25.129 192.168.25.190 192.168.25.128 192.168.25.191 Сеть 3 25 255.255.255.224 192.168.25.193 192.168.25.222 192.168.25.192 192.168.25.223 Сеть 4 12 255.255.255.240 192.168.25.225 192.168.25.238 192.168.25.224 192.168.25.239 А сейчас каждому интерфейсу маршрутизатора присвоен IP подсетей с масками разной длины. При этом в каждой подсети у нас остались как минимум 2 свободных адреса на случай добавления новых хостов. На самом деле в сети уже есть готовые таблицы, где уже произведены все подсчеты и прописаны маски для разных сетей. Но умение самому вычислять не помешает, так как на экзаменах по сетевой сертификации попадаются такие задания.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59