По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Перед тем как начать: почитайте про перераспределение между плоскостями управления в сетях. Сетевые инженеры обычно думают, что плоскость управления выполняет самые разные задачи, от вычисления кратчайшего пути через сеть до распределения политики, используемой для пересылки пакетов. Однако идея кратчайшего пути проникает в концепцию оптимального пути. Точно так же идея политики также проникает в концепцию оптимизации сетевых ресурсов. Хотя важны и политика, и кратчайший путь, ни один из них не лежит в основе того, что делает плоскость управления. Задача плоскости управления - сначала найти набор путей без петель через сеть. Оптимизация - хорошее дополнение, но оптимизация может быть "сделана" только в контексте поиска набора путей без петель. Таким образом, в этом разделе будет дан ответ на вопрос: как плоскость управления вычисляет пути без петель через сеть? Этот цикл статей начнется с изучения взаимосвязи между кратчайшим или наименьшим метрическим путем и безцикловыми путями. Следующая рассматриваемая тема - свободные от циклов альтернативные пути (LFA), которые не являются лучшими путями, но все же свободны от циклов. Такие пути полезны при проектировании плоскостей управления, которые быстро переключаются с наилучшего пути на альтернативный путь без петель в случае сбоев или изменений в топологии сети. Затем обсуждаются два конкретных механизма, используемых для поиска набора безцикловых путей. Какой путь свободен от петель? Связь между кратчайшим путем, обычно в терминах метрик, и свободными от циклов путями довольно проста: кратчайший путь всегда свободен от циклов. Причина этой связи может быть выражена наиболее просто в терминах геометрии (или, более конкретно, теории графов, которая является специализированной областью изучения в рамках дискретной математики). Рисунок 1 используется для объяснения этого. Какие есть пути из A, B, C и D к месту назначения? Из A: [B, H]; [C, E, H]; [D, F, G, H] Из B: [H]; [A, C, E, H]; [A, D, F, G, H] Из D: [F, G, H]; [A, C, E, H]; [A, B, H] Если каждое устройство в сети должно выбирать путь, который оно будет использовать к месту назначения независимо (без привязки на путь, выбранный любым другим устройством), можно сформировать постоянные петли. Например, A может выбрать путь [D, F, G, H], а D может выбрать путь [A, C, E, H]. Затем устройство A будет перенаправлять трафик к пункту назначения в D, а D затем перенаправит трафик к пункту назначения в A. Должно быть какое-то правило, отличное от выбора пути, реализованного алгоритмом, используемым для вычисления пути на каждом устройстве, например, выбрать самый короткий (или самый дешевый) путь. Но почему выбор кратчайшего (или самого дешевого) пути предотвращает возникновение петли? Рисунок 2 иллюстрирует это. На рисунке 2 предполагается, что A выбирает путь [D, F, G, H] к месту назначения, а D выбирает путь через A к месту назначения. Чего D не может знать, поскольку он вычисляет путь к месту назначения, не зная, что вычислил A, так это того, что A использует путь через D сам для достижения места назначения. Как может плоскость управления избежать такого цикла? Обратите внимание на то, что стоимость пути вдоль цикла всегда должна включать стоимость цикла, а также элемент пути без петель. В этом случае путь через A с точки зрения D должен включать стоимость от D до места назначения. Следовательно, стоимость через A, с точки зрения D, всегда будет больше, чем наименьшая доступная стоимость из D. Это приводит к следующему наблюдению: Путь с наименьшей стоимостью (или кратчайший) не может содержать путь, который проходит через вычислительный узел или, скорее, кратчайший путь всегда свободен от петель. В этом наблюдении есть два важных момента. Во-первых, это наблюдение не говорит о том, что пути с более высокой стоимостью являются определенно петлями, а только о том, что путь с наименьшей стоимостью не должен быть петлей. Можно расширить правило, чтобы обнаружить более широкий набор путей без петель, помимо пути с наименьшей стоимостью- они называются альтернативами без петель (Loop-Free Alternates). Во-вторых, это наблюдение справедливо, только если каждый узел в сети имеет одинаковое представление о топологии сети. Узлы могут иметь разные представления о топологии сети по ряду причин, например: Топология сети изменилась, и все узлы еще не были уведомлены об изменении; отсюда и микропетли. Некоторая информация о топологии сети была удалена из базы данных топологии путем суммирования или агрегирования. Метрики настроены так, что путь с наименьшей стоимостью несовместим с разных точек зрения. Плоскости управления, используемые в реальных сетях, тщательно продуманы, чтобы либо обойти, либо минимизировать влияние различных устройств, имеющих разные представления о топологии сети, что потенциально может привести к зацикливанию пути. Например: Плоскости управления тщательно настраиваются, чтобы минимизировать разницу во времени между изучением изменения топологии и изменением пересылки (или отбрасывать трафик во время изменений топологии, а не пересылать его). При обобщении топологии или агрегировании достижимости необходимо позаботиться о сохранении информации о затратах. "Лучшие общепринятые практики" проектирования сети поощряют использование симметричных метрик, а многие реализации затрудняют или делают невозможным настройку каналов с действительно опасными показателями, такими как нулевая стоимость канала. Часто требуется много работы, чтобы найти, обойти или предотвратить непреднамеренное нарушение правила кратчайшего пути в реальных протоколах плоскости управления. Почему бы не использовать список узлов? На этом этапе должен возникнуть очевидный вопрос: почему бы просто не использовать список узлов для поиска маршрутов без петель? Например, на рисунке 1, если A вычисляет путь через D, может ли D каким-то образом получить путь, вычисленный A, обнаружить, что сам D находится на пути, и, следовательно, не использовать путь через A? Первая проблема с этим механизмом заключается в процессе обнаружения. Как D должен узнать о пути, выбранном A, и A узнать о пути, выбранном D, не вызывая состояния гонки? Два устройства могут выбрать друг друга в качестве следующего перехода к пункту назначения в один и тот же момент, а затем информировать друг друга в один и тот же момент, в результате чего оба одновременно выбирают другой путь. Результатом может быть либо стабильный набор путей без петель, когда два устройства циклически выбирают друг друга и не имеют пути к месту назначения, либо состояние насыщения, при котором нет пути к месту назначения. Вторая проблема с этим механизмом - резюмирование - преднамеренное удаление информации о топологии сети для уменьшения количества состояний, переносимых на уровне управления. Плоскость управления будет иметь только метрики, с которыми можно работать, везде, где обобщается топология. Следовательно, лучше использовать правило, основанное на метриках или стоимости, а не на наборе узлов, через которые проходит путь. Обратите внимание, что обе эти проблемы решаемы. На самом деле существуют алгоритмы вектора пути, которые полагаются на список узлов для вычисления путей без петель через сеть. Хотя эти системы широко распространены, они часто считаются слишком сложными для развертывания во многих ситуациях, связанных с проектированием сетей. Следовательно, широко используются системы на основе метрик или стоимости. Теперь почитайте материал про построение деревьев в сетях
img
Благодаря Linux, у нас есть очень много инструментов облегчающих администрирование и диагностику сети. В этом плане команда PING является одним из самых полезных инструментов для системных и сетевых администраторов. Сама базовая возможность этой утилиты – определить доступен ли тот или иной хост. Тем не менее в этом материале мы приведем примеры расширенных возможностей этой команды в системе Linux. Про Linux за 5 минут | Что это или как финский студент перевернул мир?
img
Порой появляется необходимость делиться своими файлами с друзьями, которые живут в соседней квартире и делят с вами вашу локальную сеть. Или же у вас есть NAS сервер и вы решили организовать свое файловое хранилище, куда могли бы получить доступ с любой точки мира. Правда, закачать файлы в облако и пользоваться оттуда никто не отменял, но туда вы не поместите терабайты информации, которая хранится у вас на домашнем сетевом хранилище. Вот тут на помощь приходит локальный FTP сервер. Сетевые файловые накопители имеют встроенную возможность и соответствующие средства для организации данного сервиса. О возможностях конкретных моделей можно узнать на сайте производителя. Но мы решили создать свой сервер на обычном домашнем ноутбуке. Для претворения в жизнь нашей затеи выбрали бесплатную и достаточно известную программу FileZilla. С клиентской частью наверное вам приходилось работать чаще, но есть еще и серверная часть, которая позволяет создавать свой FTP сервер. Качаем программу с официально сайта и устанавливаем. Установка стандартная поэтому покажу ту часть, которая может вызвать вопросы. На этом месте установки выбираем Установить как службу, чтобы при загрузке компьютера сервер запускался автоматически. Порт можно поменять, но особого смысла нет, так как он используется только для локального подключения к серверу. Далее переходим к настройке самой программы. Тут тоже буду останавливаться только на основных моментах, которые критичны для работы системы. Итак, первым делом в меню Edit выбираем Settings. В пункте General Settings выставляем значение как на рисунке: Listen on these ports указывает на то, какие порты программа должна прослушивать для входящих соединений. Для большей безопасности их можно изменить и поставить любой порт выше 1023. В принципе можно и выше 1, но хорошим тоном считается выбор не общеизвестных портов, дабы избежать конфликтов. Number of threads указывает на число потоков. Рекомендуется устанавливать равным числу установленных процессоров умноженных на 2. Connection timeout устанавливает время в сессии для поключенного пользователя. No Transfer timeout здесь указывается время после последнего трансфера файлов, по истечении которого соединение с сервером будет прервано. Login timeout задает время ожидания ввода пользователем учётных данных. В принципе в локальной сети этих настроек вполне достаточно. Следующий пункт Passive mode settings, который настраивается если вы подключаетесь к вашему серверу извне, а сервер стоит за маршрутизатором, который в свою очередь преобразует ваш серый IP, который начинается с 192.168. в белый, то бишь публичный, который виден всему Интернету. Use custom ranges указываете порты, которые система выборочно откроет при инициализации подключения извне. Use following IP указываете ваш внешний IP адрес, который можете посмотреть в Интернете вбив в поисковик ключевое слово my ip. Retrieve external IP address from тут остановлюсь поподробней. Дело в том, что внешний IP у обычных поользователей меняется. И если вы укажете текущий адрес, то через некоторое время он будет недоступен. Тут на помощь приходит Dynamic DNS. Это такой вид услуги, которая позволяет обращаться к вашему внешнему IP адресу по доменному имени, например mycomp.com. Для этого нужно зарегистрироваться на одном из многочисленных сервисов, предоставляющих данную услугу, выбрать себе доменное имя и настроить соответствующим образом маршрутизатор. Но обо всем по порядку. Хотя на рынке много поставщиков услуги указанного вида, я остановил свой выбор на noip.com. Во-первых, потому что этот сервис поддерживается моим роутером. А во-вторых, здесь бесплатно предоставляется доменное имя на месяц, а по истечении вы просто заходите и заново регистрируете ваш домен. Для регистрации переходим на сайт noip.com. В главном окне в разделе Quick Add вписываем любое название и выбираем домен третьего уровня. Нажимаем Add hostname и наш домен готов. Затем открываем панель управления маршрутизатором, переходим на вкладку Динамический DNS, выбираем поставщика услуг, вводим имя пользователя указанный при регистрации на сайте сервиса, пароль и доменное имя. Включаем DNS и нажимаем Войти. Если всё указано правильно состояние подключения будет "Успешно!" После всего этого в настройка FileZilla в строке Retrieve external IP address from указываем наш DNS адрес. Дело остается за малым создать пользователя и протестировать подключение. Для этого в меню Edit выбираем Users. В открывшемся окне нажимаем на Add, задаём ему имя, ставим галочки перед Enable account и Password и вводим пароль. Все остальные настройки можно не менять: Затем создаем папку для пользователя, даем ему нужные права и указываем как домашнюю директорию Set as home dir, чтобы при подключении пользователя перебросило сразу в нужное место. Можно для каждого пользователя создать отдельную папку, а также назначать разные уровни доступа на одну и ту же директорию. Но что если вы всё это сделали, но друзья из Канады всё же не могут подключиться? Проблем могут быть две. Первая, не настроен переброс портов на роутере, вторая не прописано нужное правило на сетевом экране. Так настроим! Для переброса портов на маршрутизаторе TP-Link переходим на вкладку Переадресация -> Виртуальные сервера. По умолчанию здесь никаких записей нет. Нажимаем на Добавить и вводим нужные значения. Порт сервиса указываем внешний порт, на который будут идти обращения на наш IP. Здесь можно прописать и свои значения, но при подключении извне нужно будет прописать их в настройках клиента. Стандартный порт FTP 21. Внутренний порт порт, который слушается на нашем сервере. В нашем случае это тоже 21. IP-адрес адрес компьютера, где установлена серверная часть программы FileZilla. Протоколы тут выбор не велик либо TCP, либо UDP. О протоколах можно говорить долго, но вкратце TCP гарантирует доставку отправленного пакета, но работает медленней, так как приходится ждать подтверждения получения каждой порции данных. UDP же шустрее TCP, но его не заботит получит ли адресат пакет или нет. FTP работает поверх TCP. Есть еще набор предопределённых портов, который можно выбрать из выпадающего списка. Если всё стандартно, то выбираем FTP и нам не придётся вручную вводить все значения. Затем нажимаем на Сохранить. Далее переходим к настройке межсетевого экрана. Для начала, чтобы убедиться, что именно он блокирует попытки подключения, лучше его вовсе отключить. Если всё заработало, то переходим к соответствующим настройкам. На Панели управления выбираем Windows Defender Firewall -> Advanced Settings. Нажимаем на Inbound Rules (Правила для входящих соединений) и в правой панели выбираем New Rule. В открывшемся окне значения ставим как на рисунке: Затем указываем порты и протоколы, для которых хотим разрешить соединение. Для FTP указываем TCP/21: Нажимаем Next, указываем действие Разрешить (Allow the connection): Профиль указывает для каких сетей будет действовать данное правило. Выбираем все: В конце вводим название правила и нажимаем Finish. Для Passive Mode делаем все тоже самое, только значение портов указываем те, что были прописаны в настройках программы в пункте Passive mode settings. Тут мы настроили правило для входящих подключений. Также нужно настроить правило для исходящих соединений. Все то же самое, просто настраивается в Outbound Rules (Правила для исходящих подключений). После этого все должно начать работать. Если что-то не работает, попробуйте отключить межсетевой экран антивируса, если там таковой есть. В любом случае программа вам даст подсказки: код и описание ошибки, по причине которой не смог подключиться пользователь. (В данном случае ошибок нет, цель рисунка наглядно показать как выглядит сообщение программы)
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59