По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Пользователи очень часто встречаются с ошибкой 32788 в среде виртуализации Hyper-V. Если быть точным, то полная формулировка ошибки следующая: The application encountered an error while attempting to change the state of %имя_виртуальной_машины%.%имя_виртуальной_машины% failed to change state. The operation cannot be performed while the object is in use with error code 32788 Выглядит это «неприятное» popup окно примерно вот так: Ошибка появляется, когда пользователь пытается запустить виртуальную машину. Итак, погнали разбираться. Данный гайд подойдет для Hyper-V версий 2012 R2 и 2016. Краткая матчасть Ошибка возникает, из за того, что виртуализация это несколько более сложная штука, чем просто создание виртуальных вычислительных машин поверх физического устройства. Внутри каждой есть операционные системы, сетевые адаптеры, виртуальные коммутаторы, устройства для хранения, интерфейсы взаимодействия и другие. Сам интерфейс Hyper-V – это лишь консоль управления. Устаревшая и неактуальная конфигурация виртуальных машин приводит к возникновению ошибок. В том числе, и ошибке 32788. Основные причины ошибки 32788 Самые главные причины ошибки 32788, которые мы воспроизводили на опыте: Конфликт (неточность/неактуальность) конфигурации виртуальной машины; Изменения виртуального коммутатора (VM switch) на машине; Исправляем ошибку 32788 Итак, чтобы исправить ошибку, нужно: Открыть Settings (настройки) виртуальной машины. В списке виртуальных машин, нажмите правой кнопкой мыши на нужную виртуальную машину и выберите Settings; Откройте настройки сетевого адаптера (Network Adapter Settings). А так же пробегитесь по всем пунктам меню слева (Memory, Processor, IDE Controller и так далее), на предмет обнаружения уведомления с надписью Configuration Error. В нашем примере, виртуальная машина столкнулась с проблемой того, что виртуальный коммутатор (Vswitch), к которому она подключена, более не существует (The network adapter is configured to a switch which no longer exists…) Вот она, причина ошибки 32788 в нашей случае – устаревшие настройки виртуального коммутатора. Возможно, его кто то удалил, или изменил его имя. В любом случае, нам нужно исправить это. Создаем новый виртуальный коммутатор (Virtual Switch) типа Internal, для внутреннего использования: После внесение всех изменений перезагрузите (выполните рестарт) виртуальную машину.
img
Выходим на новый уровень. Для изучения следующей темы вы уже должны хорошо понимать связующее дерево. Связующее дерево (Spanning Tree Protocol STP) — это важная тема. Есть много вещей, которые могут пойти не так, и в этой статье мы рассмотрим ряд инструментов, которые мы можем использовать для защиты нашей топологии связующего дерева. Для профессионалов PortFast: мы видели это в статье о spanning tree и rapid spanning tree. Он настроит порт доступа как пограничный порт, поэтому он переходит в режим forwarding немедленно. BPDU Guard: это отключит (err-disable) интерфейс, который имеет настроенный PortFast, если он получает BPDU. BPDUFilter: это будет подавлять BPDU на интерфейсах. Root Guard: это предотвратит превращение соседнего коммутатора в корневой мост, даже если он имеет лучший идентификатор моста. UplinkFast: мы видели это в статье о связующем дереве. Он улучшает время конвергенции. BackboneFast: мы также видели это в статье о связующем дереве. Оно улучшает время конвергенции, если у вас есть сбой косвенной связи. UplinkFast и BackboneFast не требуются для rapid spanning tree, поскольку оно уже реализовано по умолчанию. Мы начнем с BPDUguard: В топологии выше мы имеем идеально работающую топологию остовного дерева. По умолчанию связующее дерево будет отправлять и получать BPDU на всех интерфейсах. В нашем примере у нас есть компьютер, подключенный на интерфейсе fa0/2 коммутатора B. Есть кто-то, кто с враждебными намерениями мог бы запустить инструмент, который сгенерирует BPDU с превосходящим ID моста. Что же произойдет- так это то, что наши коммутаторы будут считать, что корневой мост теперь может быть достигнут через коммутатор B, и у нас будет повторный расчет связующего дерева. Звучит не очень хорошо, правда? Можно поставить человека (хакера) в середине топологии для атаки так, чтобы никто не знал. Представьте себе, что хакер подключает свой компьютер к двум коммутаторам. Если хакер станет корневым мостом, то весь трафик от коммутатора А или коммутатора C к коммутатору В будет проходить через него. Он запустит Wireshark и подождет, пока произойдет чудо. BPDUguard гарантирует, что, когда мы получаем BPDU на интерфейс, интерфейс перейдет в режим err-disable. Чтобы продемонстрировать работу BPDUguard будем использовать два коммутатора. Настроем интерфейс fa0/16 коммутатора B так, что он перейдет в режим err-disable, если он получит BPDU от коммутатора C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree bpduguard enable Вот как вы включаете его в интерфейсе. Имейте в виду, что обычно вы никогда не будете делать это между коммутаторами. Вы должны настроить это на интерфейсах в режиме доступа, которые подключаются к компьютерам. А-а... вот и наш интерфейс. SwitchB(config-if)#no spanning-tree bpduguard SwitchB(config-if)#shutdown SwitchB(config-if)#no shutdown Избавиться от BPDUguard можно используя команды shut/no shut, чтобы сделать интерфейс снова рабочим. SwitchB(config)#spanning-tree portfast bpduguard Вы также можете использовать команду spanning-tree portfast bpduguard. Это позволит глобально активировать BPDUguard на всех интерфейсах, которые имеют включенный portfast. SwitchB(config)#spanning-tree portfast default Portfast также может быть включен глобально для всех интерфейсов, работающих в режиме доступа. Это полезная команда, позволяющая проверить свою конфигурацию. Вы видите, что portfast и BPDUGuard были включены глобально. BPDUGuard переведет интерфейс в режим err-disable. Кроме того, можно фильтровать сообщения BPDU с помощью BPDUfilter. BPDUfilter может быть настроен глобально или на уровне интерфейса и есть разница: Глобальный: если вы включите bpdufilter глобально, любой интерфейс с включенным portfast станет стандартным портом. Интерфейс: если вы включите BPDUfilter на интерфейсе, он будет игнорировать входящие BPDU и не будет отправлять никаких BPDU. Вы должны быть осторожны, когда включаете BPDUfilter на интерфейсах. Вы можете использовать его на интерфейсах в режиме доступа, которые подключаются к компьютерам, но убедитесь, что вы никогда не настраиваете его на интерфейсах, подключенных к другим коммутаторам. Если вы это сделаете, вы можете получить цикл. Для демонстрации работы BPDUfilter мы будем снова использовать коммутатор B и коммутатор C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable Он перестанет посылать BPDU и будет игнорировать все, что будет получено. SwitchB#debug spanning-tree bpdu Вы не увидите никаких интересных сообщений, но если вы включите отладку BPDU, то заметите, что он больше не отправляет никаких BPDU. Если вы хотите, вы также можете включить отладку BPDU на коммутаторе C, и вы увидите, что нет ничего от коммутатора B. SwitchB(config)#interface fa0/16 SwitchB(config-if)#no spanning-tree bpdufilter enable Давайте избавимся от команды BPDUfilter на уровне интерфейса. SwitchB(config)#spanning-tree portfast bpdufilter default Вы также можете использовать глобальную команду для BPDUfilter. Это позволит включить BPDUfilter на всех интерфейсах, которые имеют portfast. Еще один вариант, с помощью которого мы можем защитить наше связующее дерево, - это использовать RootGuard. Проще говоря, RootGuard позаботится о том, чтобы вы не принимали определенный коммутатор в качестве корневого моста. BPDU отправляются и обрабатываются нормально, но, если коммутатор внезапно отправляет BPDU с идентификатором верхнего моста, вы не будете принимать его в качестве корневого моста. Обычно коммутатор D становится корневым мостом, потому что у него есть лучший идентификатор моста, к счастью, у нас есть RootGuard на коммутатое C, так что этого не произойдет! Рассмотрим с вами конфигурацию с коммутатором B и коммутатором C. SwitchB(config)#spanning-tree vlan 1 priority 4096 Давайте убедимся, что коммутатор C не является корневым мостом. Вот как мы включаем RootGuard на интерфейсе. SwitchB#debug spanning-tree events Spanning Tree event debugging is on Не забудьте включить отладку, если вы хотите увидеть события. SwitchC(config)#spanning-tree vlan 1 priority 0 Давайте перенастроим коммутатор B, изменив приоритет на наименьшее возможное значение 0 на коммутаторе C. Он теперь должен стать корневым мостом. Вот так коммутатор B не будет принимать коммутатор C в качестве корневого моста. Это заблокирует интерфейс для этой VLAN. Вот еще одна полезная команда, чтобы проверить, работает ли RootGuard. Связующее дерево становится все более безопасным с каждой минутой! Однако есть еще одна вещь, о которой мы должны подумать… Если вы когда-либо использовали волоконные кабели, вы могли бы заметить, что существует другой разъем для передачи и приема трафика. Если один из кабелей (передающий или принимающий) выйдет из строя, мы получим однонаправленный сбой связи, и это может привести к петлям связующего дерева. Существует два протокола, которые могут решить эту проблему: LoopGuard UDLD Давайте начнем с того, что внимательно рассмотрим, что произойдет, если у нас произойдет сбой однонаправленной связи. Представьте себе, что между коммутаторами волоконно-оптические соединения. На самом деле имеется другой разъем для передачи и приема. Коммутатор C получает BPDU от коммутатора B, и в результате интерфейс стал альтернативным портом и находится в режиме блокировки. Теперь что-то идет не так... transmit коннектор на коммутаторе B к коммутатору C был съеден мышами. В результате коммутатор C не получает никаких BPDU от коммутатора B, но он все еще может отправлять трафик для переключения между ними. Поскольку коммутатор C больше не получает BPDU на свой альтернативный порт, он перейдет в forwarding режим. Теперь у нас есть one way loop (петля в один конец), как указано зеленой стрелкой. Один из методов, который мы можем использовать для решения нашего однонаправленного сбоя связи — это настройка LoopGuard. Когда коммутатор отправляет, но не получает BPDU на интерфейсе, LoopGuard поместит интерфейс в состояние несогласованности цикла и заблокирует весь трафик! Мы снова будем использовать эту топологию для демонстрации LoopGuard. SwitchA(config)#spanning-tree loopguard default SwitchB(config)#spanning-tree loopguard default SwitchC(config)#spanning-tree loopguard default Используйте команду spanning-tree loopguard по умолчанию, чтобы включить LoopGuard глобально SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable В примере у нас нет никаких волоконных разъемов, поэтому мы не сможем создать однонаправленный сбой связи. Однако мы можем смоделировать его с помощью BPDUfilter на интерфейсе SwitchB fa0/16. Коммутатор C больше не будет получать никаких BPDU на свой альтернативный порт, что заставит его перейти в режим переадресации. Обычно это вызвало бы петлю, но, к счастью, у нас есть настроенный LoopGuard. Вы можете увидеть это сообщение об ошибке, появляющееся в вашей консоли. Проблема решена! SwitchC(config-if)#spanning-tree guard loop Если вы не хотите настраивать LoopGuard глобально, вы т можете сделать это на уровне интерфейса. Другой протокол, который мы можем использовать для борьбы с однонаправленными сбоями связи, называется UDLD (UniDirectional Link Detection). Этот протокол не является частью инструментария связующего дерева, но он помогает нам предотвратить циклы. Проще говоря, UDLD — это протокол второго уровня, который работает как механизм keepalive. Вы посылаете приветственные сообщения, вы их получаете, и все прекрасно. Как только вы все еще посылаете приветственные сообщения, но больше их не получаете, вы понимаете, что что-то не так, и мы блокируем интерфейс. Убедитесь, что вы отключили LoopGuard перед работой с UDLD. Мы будем использовать ту же топологию для демонстрации UDLD. Существует несколько способов настройки UDLD. Вы можете сделать это глобально с помощью команды udld, но это активирует только UDLD для оптоволоконных линий связи! Существует два варианта для UDLD: Normal (default) Aggressive Когда вы устанавливаете UDLD в нормальное состояние, он помечает порт как неопределенный, но не закрывает интерфейс, когда что-то не так. Это используется только для того, чтобы «информировать» вас, но это не предотвратит циклы. Агрессивный - это лучшее решение, когда пропадает связь с соседом. Он будет посылать кадр UDLD 8 раз в секунду. Если сосед не отвечает, интерфейс будет переведен в режим errdisable. SwitchB(config)#interface fa0/16 SwitchB(config-if)#udld port aggressive SwitchC(config)#interface fa0/16 SwitchC(config-if)#udld port aggressive Мы будем использовать коммутатор B и C, чтобы продемонстрировать UDLD. Будем использовать агрессивный режим, чтобы мы могли видеть, что интерфейс отключается, когда что-то не так. Если вы хотите увидеть, что UDLD работает, вы можете попробовать выполнить отладку. Теперь самое сложное будет имитировать однонаправленный сбой связи. LoopGuard был проще, потому что он был основан на BPDUs. UDLD запускает свой собственный протокол уровня 2, используя собственный MAC-адрес 0100.0ccc.сссс. SwitchC(config)#mac access-list extended UDLD-FILTER SwitchC(config-ext-macl)#deny any host 0100.0ccc.cccc SwitchC(config-ext-macl)#permit any any SwitchC(config-ext-macl)#exit SwitchC(config)#interface fa0/16 SwitchC(config-if)#mac access-group UDLD-FILTER in Это творческий способ создавать проблемы. При фильтрации MAC-адреса UDLD он будет думать, что существует сбой однонаправленной связи! Вы увидите много отладочной информации, но конечным результатом будет то, что порт теперь находится в состоянии err-disable. Вы можете проверить это с помощью команды show udld. LoopGuard и UDLD решают одну и ту же проблему: однонаправленные сбои связи. Они частично пересекаются, но есть ряд различий, вот общий обзор: LoopGuardUDLDНастройкиГлобально/на портуГлобально (для оптики)/на портуVLAN?ДаНет, на портуАвтосохранениеДаДа, но вам нужно настроить errdisable timeout.Защита от сбоев STP из-за однонаправленных связейДа - нужно включить его на всех корневых и альтернативных портахДа - нужно включить его на всех интерфейсах.Защита от сбоев STP из-за сбоев программного обеспечения (нет отправки BPDU)ДаНетЗащита от неправильного подключения (коммутационный оптический приемопередающий разъем)НетДа Есть еще одна последняя тема, которую хотелось бы объяснить, это не протокол связующего дерева, но речь идет о избыточных ссылках, поэтому я оставлю ее здесь. Это называется FlexLinks. Вот в чем дело: при настройке FlexLinks у вас будет активный и резервный интерфейс. Мы настроим это на коммутаторе C: Fa0/14 будет активным интерфейсом. Fa0/16 будет интерфейс резервного копирования (этот блокируется!). При настройке интерфейсов в качестве FlexLinks они не будут отправлять BPDU. Нет никакого способа обнаружить петли, потому что мы не запускаем на них связующее дерево. Всякий раз, когда наш активный интерфейс выходит из строя, резервный интерфейс заменяет его. SwitchC(config)#interface fa0/14 SwitchC(config-if)#switchport backup interface fa0/16 Именно так мы делаем интерфейс fa0/16 резервной копией интерфейса fa0/14. Вы можете видеть, что связующее дерево отключается для этих интерфейсов. Проверьте нашу конфигурацию с помощью команды show interfaces switchport backup. Вот и все, что нужно было сделать. Это интересное решение, потому что нам больше не нужно связующее дерево. Ведь в любой момент времени активен только один интерфейс. SwitchC(config)#interface f0/14 SwitchC(config-if)#shutdown Давайте закроем активный интерфейс. Вы можете видеть, что fa0/16 стал активным. Вот и все.
img
На дворе 2018 год, почти все устройства, о которых можно подумать, подключены к сети Интернет. Что это означает? Это означает то, что у злоумышленников потенциально появляется огромное количество возможностей для того чтобы навредить, украсть или просто всячески поиздеваться. Однако давайте поговорим про то, с чем в жизни имел опыт практически каждый, у кого был компьютер и/или мобильный телефон – о вредоносном ПО и о том, какие типы вредоносного ПО существуют. В нашем списке мы приведем их общепринятое название и примеры конкретного ПО, чтобы в случае вашего интереса вы могли изучить этот вопрос глубже. Типы вредоносов Давайте начнем с самого безобидного типа вредоносов – т.н Adware. Это самый хитрый и самый безобидный вредонос – он просто показывает рекламу, и его, я уверен, ловило 90 процентов пользователей ПК. Попадает оно путем встраивания рекламы в бесплатное ПО и путем насильной установки рекламных компонентов при посещении скомпрометированных веб-сайтов. Очень часто для внедрения на оконечное устройство используются совсем нелегитимные методы и у Adware нет процедуры деинсталляции. Также, довольно часто Adware служит исключительно «маской» для сокрытия настоящих целей вредоносного ПО и тогда он попадает уже в другую категорию. Известные имена Adware: Ad Adserverplus, BrowseFox и прочие. Следующим идет ПО под названием Spyware – т.е ПО, которое шпионит за вами – какие веб-сайты вы посещаете в интернете, что вы ищете, что покупаете в интернет-магазинах. Также оно может собирать любую информацию о вашей системе – что делает этот тип ПО только косвенно вредоносным. Но очень часто подобного рода программы помогают злоумышленникам со взломом – иными словами, это нечто вроде инструмента для проведения подробной разведки в тылу у врага (т.е у вас). Известные персонажи: CoolWebSearch, GO Keyboard (да-да, та самая известная клавиатура для ОС Android). Некоторые люди, когда начали читать эту статью могли подумать – дык это же все вирусы! Не совсем так: вирусом принято называть вредоносную программу или код, который сам интегрирует себя с другим ПО и затем воспроизводит свои копии, как только зараженное ПО будет запущено. Это и является главным характеризующим признаком непосредственно вирусов – они имеют способность к самовоспроизведению. Самое страшное в вирусах – что они могут «прицепиться» буквально к любому куску кода – т.е есть вирусы атакующие файлы, есть вирусы загрузочного сектора и прочие. Также популярны макровирусы – то есть они вставляются в привычные вам документы и после их открытия происходит автоматический запуск вредоносного макроса. Впервые был замечен в мире в начале 1970х годов и с этого момента началось лавинообразное развитие, и написание вирусов превратилось в настоящую индустрию. Вирусов – миллионы, миллиарды и не имеет смыслов перечислять отдельные названия. Черви, на мой взгляд, являются очень неприятной штукой – их можно отнести к подотряду вирусов, т.к они тоже умеют создавать копии себя повсюду – они неконтролируемо размножаются везде, куда только могут дотянуться – файлы открытые на запись, сетевые каталоги и многое другое. Их задача – размножаться и заразить все вокруг. Обычно они также имеют вирусный функционал – чтобы они могли не только распространиться, но и нанести какой-нибудь вред. Примеры - Storm Worm (с ним ваша машина становилась куском гигантского ботнета), ILOVEYOU и Morris Worm, после которого рабочие станции начинали работать очень нестабильно. Троян – наверное, одни из самых опасных вредоносов. Название, как вы понимаете, произошло из той самой истории про троянского коня – пользователи качали безобидные файлы, и при их попадании на ПК или их запуске, они превращались в тыковки и начинали творить беспредел – удалять информацию, модифицировать файлы, помогать в создании ботнетов и так далее. Важно! Трояны не имеют возможности к саморепликации – в этом их большое отличие от вируса. Чаще всего трояны создаются для таргетированного взлома больших систем для атак с отказом в обслуживании, что для многих интернет компаний является синонимом потери прибыли. Примеры - Trojan.Winlock, Pinch. Руткит – вредонос, который старается действовать скрытно, пока никто не видит. Один из самых сложных типов ПО для детектирования и устранения. Некоторые верят, что лучший способ борьбы с вероятным руткитом на жестком диске – полное форматирование. Используются для кражи данных, для обеспечения доступа в систему вредоносов других типов и прочие. Может работать на уровне ядра, прошивки, гипервизора, оперативной памяти и много где еще. Руткит также может отключить антивирус, замедлять систему и прочие. – то есть если вы замечаете аномалии в поведении вашей сети или вашего компьютера – это повод задуматься. Бэкдоры – практически тоже самое что и трояны или черви, только они как бы открывают дверь аварийного выхода на вашем компьютере и могут предоставлять доступ к компьютеру для взломщика или другого типа вредоносного ПО. Представьте себе, сколько важной информации вы вводите на вашем ПК или телефоне ежедневно – пароли, персональные данные, финансовая информация. Вам кажется, что вы в безопасности и даже пытаетесь прикрыть клавиатуру рукой. Однако, злоумышленники придумали нечто под названием кейлоггер – ПО такого типа записывает все, что вы вводите на своем компьютере и отсылает это вовне – для сбора подобной информации и для ее последующего использования в нехорошем ключе. Кейлоггеры могут использовать родители, для того, чтобы понять, что может скрывать их чадо. А могут и крупные корпорации в целях промышленного шпионажа. В тему кейлоггеров также хорошо ложатся угонщики браузеров. Этот тип вредоносного ПО изменяет логику работы браузера: иная домашняя страница, добавление в избранное нежелательных сайтов и потенциальную кражу ваших данных во время интернет-шоппинга. Т.е вы ввели номер карты, списание произошло, но деньги вполне могут улететь к кому-то другому. Так что будьте аккуратны, особенно, если вы заметили те или иные аномалии в работе вашего браузера. Сколько раз, когда вы серфили в Интернете вам предлагали установить антивирус или программу, которая поборет все типы вредоносного ПО? Сотни раз? Тысячи? Грустная новость в том, что чаще всего эти ссылки вели бы на скачивание будто бы хорошей программы, которая помогла бы вам выжить в этом страшном мире. Но ключевое слово – это будто бы. Практически наверняка это оказалось бы точно таким же вредоносом, или даже десятком вредоносных программ всех типов. Как известный пример – Antivirus 2010. Такие программы я называю антивирусами-жуликами. Как многие справедливо заметят, у нас на дворе сейчас 2018 год, а совсем не 2010. И что является самым популярным вредоносом? Верно – шифровальщики. Эти файлы попадают к вам на компьютер как внешне безобидные, затем устанавливают связь с командным центром. После связи с командным центром они устраняют теневые копии, скачивают ключи шифрования и начинают просить вас отправить выкуп, иначе ваша информация навсегда останется зашифрованной. Выкуп, естественно, злоумышленники чаще всего просят в криптовалюте. Частенько, после отправки выкупа вам пришлют ключ для расшифровки данных, однако гарантий нет никаких – поэтому мой призыв: пожалуйста, не платите выкуп террористам. Шифровальщики также часто выступают как первый эшелон в атаке на вас и параллельно устанавливают другое ПО. Известные названия, о которых слышал каждый второй – WannaCry, NotPetya и др. Заключение Выше вы ознакомились с длинным перечнем типов вредоносного ПО, однако вы должны понять, что вредоносное ПО может с легкостью содержать признаки всех вышеописанных типов злокачественных программ и может атаковать вашу системы сразу с нескольких векторов. К сожалению, вредоносное ПО развивается и эволюционирует на ежедневном уровне, оно мутирует и пытается стать незаметным для защитных систем. Кроме того, это целая экономика, которая превышает рынок ИТ более чем вдвое. Для злоумышленников это очень простой способ заработать денег – им должно повезти всего единожды, и они могут предпринимать миллиарды попыток – у вас просто нет шансов защищать себя все время. Однако, это нужно понять и принять, и разработать некие правила с точки зрения защиты информации и действий в случае атаки, и тогда у вас получится минимизировать урон от действий злоумышленников. Предупрежден – значит вооружен.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59