По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
К Avaya Aura можно подключать не только «фирменные», но и сторонние SIP аппараты, а также SIP-софтфоны (Zoiper, MicroSIP, PhonerLite и так далее). Понятно, что полноценный функционал на таких аппаратах получить не получится, но совершать и принимать вызовы, а также использовать простые функции вполне возможно. В данной статье рассмотрим создание SIP-абонентов на релизах Avaya Aura 5.2 и 6.3 как на одних из самых распространенных. Создание SIP-абонента на релизе Avaya Aura 5.2 на базе медиа-сервера S8300 Подразумевается, что развернут не только Communication Manager (СМ), но и Session Manager (SES), на котором и будет происходить регистрация SIP-абонентов. На релизе 5.2 SIP-абоненты со стороны СМ только создаются как абоненты, но мониторинг их не осуществляется. Для СМ они всегда в состоянии Out of Service. Сначала на СМ создаем абонента. В GEDI может создавать абонентов очень легко и просто. Тут везде доступны подсказки, а выбор осуществляется с помощью мышки. Например, при нажатии на правую кнопку мыши в поле Type появится меню с выбором доступных типов подключаемых аппаратов. В консоли все тоже самое, только навигация осуществляется с клавиатуры и подсказки высвечиваются внизу экрана по нажатии F5. Вводим команду add station НОМЕР или NEXT. В случае NEXT будет выбран первый свободный номер из доступного номерного плана. Дальше будут приведены скриншоты с применением GEDI. Выбираем тип аппарата 9630SIP. В принципе можно выбрать любой тип аппарата, но аппараты 96хх серии являются более современными, а 9630 является средним аппаратом из этой серии. При этом поле Port будет автоматически выбран IP. Также лучше выставить IP SoftPhone? в y, что даст возможность использовать этот номер для регистрации софтфона. Поле Security Code НЕ ЗАПОЛНЯЕМ! Пароль для регистрации данного абонента будем вводить позже. Остальные настройки ничем не отличаются от настройки обычных абонентов. Остальные настройки ничем не отличаются от настройки обычных абонентов. Если необходимо настроить переадресацию при вызовах на этот номер, то настраиваем её на 3 странице: Unconditional – переадресация всех вызовов; Busy – переадресация при занятости абонента; No Reply – переадресация по неответу абонента; По каждому виду можно настраивать отдельно переадресацию для внутренних и внешних вызовов. Особенностью настройки SIP-абонента является необходимость указывать номер SIP-транка, созданного между СМ и SES. Дальше подключаемся через веб-браузер по адресу нашего CM и через Administration → SIP Enablemend Services попадаем в управление нашего SES. Далее Users → Add добавляем учетную запись для регистрации созданного ранее SIP-абонента. Важно: пароль для создаваемой учетной записи мы вводим именно на SES. В открывшейся форме заполняем: Primary Handle – указываем созданный ранее в СМ номер; User ID – указываем тот же номер; Password, Confirm Password – вводим и подтверждаем пароль для регистрации учетной записи; Host – указываем адрес SES, где будет регистрироваться абонент; First Name, Last Name – вводим имя и фамилию абонента; HostAdd Communication Manager Extension – ОБЯЗАТЕЛЬНО! отмечаем этот. Это позволит сразу перейти к настройке связанности регистрируемого аккаунта с номером в СМ; Далее нажимаем Add и Continue для сохранения настроек. После этого добавляем номер, созданный ранее на СМ для привязки созданного аккаунта к номеру. Далее нажимаем Add и Continue для сохранения настроек. Создание SIP-абонента на релизе Avaya Aura 6.3 Тут все немного проще. Настройка производится через System Manager. Он выполняет роль общей точки входа, объединяющей СМ и SES. Подключаемся по адресу System Manager. Далее User → User Management → Manage Users: На первой вкладке Identity вносим общую информацию о пользователе: заполняем поля, отмеченные звездочками. Имя и фамилию можно писать по-русски, они будут автоматически переведены в латиницу. Login name – вводится в формате НОМЕР@ДОМЕН (который заведен в System Manager заранее) Важно – пароль на этой странице не вводим! Переходим на вторую, основную вкладку Communication Profile, где и проводятся основные настройки. Именно тут и вводится пароль для регистрации абонента. Но вводить его нужно после заполнения всей необходимой информации, перед сохранением. Сначала добавляем Communication Address. Нажимаем New и заполняем форму: Type – автоматически подставится Avaya SIP; Handle – вводим номер абонента; Domain – выбираем из списка. Как правило он один и заведен в System Manager заранее; Далее заполняем 2 профайла: Session Manager Profile (данные, необходимые для регистрации); CM Endpoint Profile (данные, по которым будет создан абонент в Communication Manager); После заполнения нажимаем вверху страницы кнопку Commit для сохранения введенной информации. Для настроек самого абонента со стороны Communication Manager нажимаем View Endpoint. На вкладке General Options указываем номер SIP-транка, уровень ограничений (COR и COS) и так далее. На следующей вкладке Feature Options указываем необходимые функции данного абонента. В том числе отмечаем и IP SoftPhone, необходимую для использования SIP-софтфонов. После настройки сохраняем через кнопку Done. Теперь вводим и подтверждаем пароль для регистрации через этот профайл вверху страницы: Сохраняем и применяем настройки через кнопку Commit & Continue вверху страницы: На этом настройка SIP-абонента закончена. Теперь с использованием указанных данных можно зарегистрировать как сторонний SIP-аппарат, так и SIP-софтфон.
img
Пока что это обсуждение предполагает, что сетевые устройства будут учитывать отметки, обнаруженные в IP-пакете. Конечно, это верно в отношении частных сетей и арендованных сетей, где условия доверия были согласованы с поставщиком услуг. Но что происходит в глобальном Интернете? Соблюдают ли сетевые устройства, обслуживающие общедоступный Интернет-трафик, и соблюдают ли значения DSCP, а также устанавливают ли приоритет одного трафика над другим во время перегрузки? С точки зрения потребителей Интернета, ответ отрицательный. Общедоступный Интернет - лучший транспорт. Нет никаких гарантий ровной доставки трафика, не говоря уже о расстановке приоритетов. Даже в этом случае глобальный Интернет все чаще используется как глобальный транспорт для трафика, передаваемого между частными объектами. Дешевые услуги широкополосного доступа в Интернет иногда предлагают большую пропускную способность по более низкой цене, чем частные каналы глобальной сети, арендованные у поставщика услуг. Компромисс этой более низкой стоимости - более низкий уровень обслуживания, часто существенно более низкий. Дешевые каналы Интернета дешевы, потому что они не предлагают гарантий уровня обслуживания, по крайней мере, недостаточно значимых, чтобы вселить уверенность в своевременной доставке трафика (если вообще). Хотя можно отмечать трафик, предназначенный для Интернета, провайдер не обращает внимания на эти отметки. Когда Интернет используется в качестве транспорта WAN, как тогда можно эффективно применять политику QoS к трафику? Создание качественного сервиса через общедоступный Интернет требует переосмысления схем приоритизации QoS. Для оператора частной сети публичный интернет-это черный ящик. Частный оператор не имеет никакого контроля над общедоступными маршрутизаторами между краями частной глобальной сети. Частный оператор не может установить приоритет определенного трафика над другим трафиком на перегруженном общедоступном интернет-канале без контроля над промежуточным общедоступным интернет-маршрутизатором. Решение для обеспечения качества обслуживания через общедоступный Интернет является многосторонним: Контроль над трафиком происходит на границе частной сети, прежде чем трафик попадет в черный ящик общедоступного Интернета. Это последняя точка, в которой оператор частной сети имеет контроль над устройством. Политика QoS обеспечивается в первую очередь путем выбора пути и, во вторую очередь, путем управления перегрузкой. В понятие выбора пути неявно подразумевается наличие более одного пути для выбора. В развивающейся модели программно-определяемой глобальной сети (SD-WAN) два или более канала глобальной сети рассматриваются как пул полосы пропускания. В пуле индивидуальный канал, используемый для передачи трафика в любой момент времени, определяется на момент за моментом, поскольку сетевые устройства на границе пула выполняют тесты качества по каждому доступному каналу или пути. В зависимости от характеристик пути в любой момент времени трафик может отправляться по тому или иному пути. Какой трафик отправляется по какому пути? SD-WAN предлагает детализированные возможности классификации трафика за пределами управляемых человеком четырех-восьми классов, определяемых метками DSCP, наложенными на байт ToS. Политика выбора пути SD-WAN может быть определена на основе каждого приложения с учетом нюансов принимаемых решений о пересылке. Это отличается от идеи маркировки как можно ближе к источнику, а затем принятия решений о пересылке во время перегрузки на основе метки. Вместо этого SD-WAN сравнивает характеристики пути в реальном времени с определенными политикой потребностями приложений, классифицированных в реальном времени, а затем принимает решение о выборе пути в реальном времени. Результатом должно быть взаимодействие пользователя с приложением, аналогичное полностью находящейся в собственности частной глобальной сети со схемой приоритизации QoS, управляющей перегрузкой. Однако механизмы, используемые для достижения подобного результата, существенно отличаются. Функциональность SD-WAN зависит от способности обнаруживать и быстро перенаправлять потоки трафика вокруг проблемы, в отличие от управления проблемой перегрузки после ее возникновения. Технологии SD-WAN не заменяют QoS; скорее они предоставляют возможность "поверх" для ситуаций, когда QoS не поддерживается в базовой сети.
img
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему. На рисунке 1 Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов? Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E? Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example? Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте? Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения. Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области: Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект. Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений. Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации: Использование известных и/или настроенных вручную идентификаторов Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов. Объявление сопоставления между двумя идентификаторами в протоколе Вычисление одного вида идентификатора из другого Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения. Хорошо известные и/или настраиваемые вручную идентификаторы Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если: Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ... Количество сопоставлений между идентификаторами относительно невелико, и ... Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ... Самым простым решением является ведение какой-либо таблицы сопоставления вручную. Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную. Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping. База данных и протокол сопоставления Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети. Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов. Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов. Сопоставления идентификаторов объявления в протоколе Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический). Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND). Вычисление одного идентификатора из другого В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу. Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59