По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для того, чтобы начать разговор про загрузчиков, для начала необходимо понимать, как разбиваются жесткие диски и систему их разбиения. MBR Master Boot Record это первые 512 Байт диска, это не раздел, не партиция это участок места в начале жесткого диска, зарезервированный для загрузчика Операционной системы и таблицы разделов. Когда компьютер включается BIOS производит тестовые процедуры. После чего, передает код управления начальному загрузчику, который как раз расположен в первых байтах MBR. Причем, какому жесткому диску передавать управление мы определяем самостоятельно в соответствующих настройках BIOS. MBR это очень важная часть нашего жесткого диска, потеря его чревата потерей данных с нашего жесткого диска или невозможностью загрузится. Поэтому ранее возникала потребность в резервном копировании данной части жесткого диска. Но это было достаточно давно. В настоящее время большинство машин не использует BIOS, а использует UEFI это современная замена BIOS, которая более функциональнее и имеет больше плюсов. Нужно понимать, что UEFI это более защищенная загрузка и более скоростная, потому что позволяет инициализировать параллельно различные интерфейсы и различную последовательность команд. Так вот если у нас не BIOS, а UEFI, то HDD будет разбит не по принципу MBR, а по принципу GPT - GUID Partition table. Это другой формат размещения таблицы разделов. Это UEFI, а UEFI использует GPT там, где BIOS использует MBR. GPT для сохранения преемственности и работы старых операционных систем оставила в самом начали диска блок для MBR. Разница изначально между MBR и GPT, в том, что MBR использует адресацию типа цилиндр, головка, сектор, а GPT использует логические блоки, LBA0, LBA1, LBA2. А также для GPT необходимо понимать, что есть логическое дублирование оглавление таблицы разделов записано, как в начале, так и в конце диска. И в принципе для организации резервного копирования Linux в принципе ничего не предлагает. Но в случае если у нас MBR это необходимо делать. Для начала надо нам понять, что и куда у нас смонтировано какой раздел у нас является загрузочным и его скопировать. Вводим команду fdisk l и видим следующее: Устройство /dev/sda1 является загрузочным и, следовательно, на нем находится MBR. Команда, которая осуществляет резервное копирование она простая - это dd. Это утилита, которая позволяет копировать и конвертировать файлы. Главное отличие данной утилиты в том, что она позволяет это делать по секторно, т.е. она учитывает геометрию диска. Использование: dd if=/dev/sda of=/root/backup.mbr bs=512 count=1. if что мы копируем, of - куда мы это копируем, bs что мы копируем 1 блок размера 512, count - количество блоков. Только, что мы скопировали первый блок жесткого диска, это то самое место, где на жестком диске находится MBR. Загрузчики Первый загрузчик Lilo Linux Loader Это был самый популярный загрузчик для Linux и для Unix систем в целом, он не зависел от файловой системы, мог загружать ОС с жесткого диска или с дискеты. Из этого выходила его особенность, загрузчик Lilo хранил в своем теле положение ядер и пункты меню и требовал обновления себя с помощью специальной утилиты, можно было поместить до 16 пунктов меню при загрузке. Данного загрузчика уже нету во многих дистрибутивах ОС Linux. В настоящее время повсеместно используется загрузчик GRUB2, но мы можем поставить загрузчик Lilo, чтобы с ним разобраться. Установка довольно-таки банальная apt-get install lilo. В процессе установки выскакивает предупреждение, что это первая установка lilo, после установки необходимо будет исполнить команду, а затем запустить непосредственно загрузчик, который применит непосредственно все изменения. Нажимаем ОК. Далее запускаем liloconfig. Ничего не произошло, просто утилита создала файл и этот файл является файлом конфигурации. С помощью команды cat /etc/lilo.conf мы можем посмотреть файл конфигурации загрузчика. В заголовке файла написано сразу, что после внесения изменений необходимо выполнить команду lilo, чтобы он сразу применил их. Далее идут основные параметры конфигурационного файла. Первый параметр lba32. Вот он как раз и меняет ту самую традиционную конфигурацию цилинд-головка-сектор, на logical block адреса, что позволяет работать с большими дисками. В разделе boot мы должны указать на каком диске у нас находится MBR. Если внимательно посмотреть, то можно увидеть подсказку, где посмотреть /dev/disks/by-id/ata* uuid дисков. После, чего можно скопировать имя диска и вставить его и тогда его сможет загружать. Lilo узнает, где MBR и будет оттуда загружать систему. Verbose = 1 Verbose level - это параметр, который показывает сколько выводить информации при загрузке. Install = menu - Данный параметр отвечает, как будет выглядеть меню загрузки. Lilo предлагает 3 варианта. И для каждого варианта, есть внизу дополнительные закомментированные параметры. Prompt это параметр отвечает за ожидание пользователя, его реакции. По умолчанию 10сек. Значение параметра в децасекундах. Далее мы можем посмотреть, где находятся ядра нашей операционной системы. Когда мы запустили liloconfig загрузчик нашел наши ядра операционной системы. Как видно на скриншоте определил версию ядра, определил где будет корневая файловая система. Смонтировал в режиме read-only. В данных параметрах мы может отредактировать строчку lable, чтобы переименовать отображение при загрузке. Если есть желание можно отредактировать данный файл и добавить еще ядро, если установлена вторая OS. Загрузчик GRUB Старый загрузчик GRUB эта та версия загрузчика, который использовался с Lilo. Тогда Lilo был самый распространенный. Теперь данный загрузчик называется Grub legacy. Больше никак не развивается, для него выходят только патчи и обновления и его даже невозможно установить на новые операционные системы. Т.к. команды и инструментарий используется одинаковый, как для старого GRUB, так и для нового. Далее мы будем рассматривать современный вариант загрузчика GRUB 2. Вот так он при загрузке примерно выглядит. Загрузчик GRUB 2 был полностью переделал и имеет мало чего общего с предыдущим загрузчиком. Он может загружать любую ОС и передавать загрузку, так же другому загрузчику, альтернативной ОС. Например, MS Windows это NTDLR. Является самым популярным загрузчиком на сегодня и стоит по умолчанию в подавляющем количестве операционных систем типа Linux. Если, что-то случилось, например кто-то переставил на загрузчик lilo, мы можем вернуть загрузчик Grub обратно командой grub-install /dev/sda. Можно узнать версию загрузчика следующим способом grub-install version. Основной файл конфигурации можно посмотреть cat /boot/grub/grub.cfg. Файл настройки и конфигурации, достаточно сильно отличается от файла конфигурации lilo или первой версии GRUB. Данный файл не редактируется, т.к он создается скриптами с использованием нескольких настроечных файлов, которые мы можем найти в папке /etc/grub.d с использованием настроек файла /etc/default/grub. Примерно так выглядит файл настроек для загрузки. И здесь в более или менее в понятном нам виде находятся настройки. И данные настройки определяют поведение. Например, grub_default = 0 устанавливает ядро для запуска по умолчанию, параметр grub_hidden_timeout = 0 обозначает использоваться пустой экран. grub_hidden_timeout_quiet = true - это утверждает, что будет использоваться пустой экран.Т.е загрузка будет происходить в скрытом режим и мы не увидим. Далее обычный таймаут ожидание действий пользователя. Grub_cmdlin_linux_default = quiet тихий режим, splash - это заставка. Отредактировать данный файл возможно в редакторе. Второй путь к папке /etc/grub.d в ней лежат исполняемые файлы. Данные файлы сканируют, также ядра при необходимости добавят нужные параметры в загрузчик. Мы всегда можем добавить опцию и написать скрипт. Для применения настроек в загрузчике, надо выполнить update-grub.
img
3CX VOIP мини-АТС для Windows – это программная мини-АТС, заменяющая традиционную аппаратную мини-АТС или офисную мини-АТС с выходом на телефонную сеть общего пользования. IP мини-АТС от компании 3CX разрабатывалась специально для работы под операционной системой Microsoft Windows и основана на стандарте SIP, что упрощает управление и позволяет использовать любой SIP-телефон (программный или аппаратный). IP мини-АТС от компании 3CX разрабатывалась специально для работы под операционной системой Microsoft Windows и основана на стандарте SIP, что упрощает управление и позволяет использовать любой SIP-телефон (программный или аппаратный). Процесс установки дистрибутива 3CX Phone System 14 3CX Phone System 14 доступна в двух версиях, бесплатной (пробной) с ограниченным функционалом и коммерческой с расширенным функционалом. Бесплатная версия доступна на сайте разработчика www.3cx.ru После нажатия на кнопку Скачать, Вам будет предложено заполнить следующую форму: После заполнения данной формы начнётся скачивание дистрибутива. В процессе установки будет предложено выбрать на каких портах для HTTP и HTTPS будет доступна вэб-консоль управления. Выберем 5000 и 5001 соответственно. Далее будет предложено сконфигурировать параметры для HTTPS. После завершения установки Вы увидите вот такое окно: Оно свидетельствует о том, что 3СХ установлена на компьютер. Теперь необходимо настроить параметры для доступа на вэб-консоль управления УАТС. Настройка УАТС 3CX Phone System 14 После завершения установки Вам будет предложено настроить основные параметры УАТС 3СХ через встроенный Мастер настройки. В отличие от большинства программных АТС, 3СХ имеет русскоязычный интерфейс, что гораздо облегчает настройку. Следующий пункт Публичный IP можно пропустить, поставив галочку на No, I do not have Static Public IP Address, если вы пока не планируете пользоваться услугами SIP провайдеров и звонить “наружу”, то есть через сеть Интернет. В нашем случае все звонки будут осуществляться внутри локальной сети. Следующим пунктом выбираем Создать новую АТС Далее будет предложено выбрать количество цифр внутреннего номера, столько цифр будут иметь абоненты нашей УАТС. Далее идёт настройка доступа Администратора. Здесь нужно ввести логин и пароль по которому будет доступна вэб-консоль управления 3СХ. Введём стандартные данные: Имя пользователя: admin , пароль: admin Настройку Region нужно оставить по умолчанию. Далее следует настройка номера Оператора, который принимает все входящие звонки со всех линий по умолчанию, а также настройка номера Голосовой почты, доступной каждому абоненту по уникальному ПИН коду. Оставим эти настройки по умолчанию Следующее окно уведомляет нас о том, что все службы 3СХ сконфигурированы и готовы к работе Остаётся зарегистрироваться и указать диапазон номеров доступных на УАТС. Выберем 1-10, таким образом, на сервере можно будет зарегистрировать с 101 по 110 абонента. Следующее окно уведомляет нас об успешной начальной настройке параметров 3СХ. Вэб консоль управления теперь доступна по адресу Вашего компьютера на 5000(HTTP) или 5001(HTTPS) порту. Данные для входа были сконфигурированы в пункте Доступ Администратора: Имя пользователя: admin, пароль: admin
img
Эта серия статей подробно объясняет основные понятия, принципы и операции протокола маршрутизации RIP с примерами. Узнайте, как работает RIP (Routing Information Protocol) и как обновляет таблицу маршрутизации из широковещательного сообщения шаг за шагом. Маршрутизаторы используют таблицу маршрутизации для принятия решения о переадресации. Таблица маршрутизации содержит информацию о сетевых путях. Сетевой путь - это простой фрагмент информации, который говорит, какая сеть подключена к какому интерфейсу маршрутизатора. Всякий раз, когда маршрутизатор получает пакет данных, он ищет в таблице маршрутизации адрес назначения. Если маршрутизатор найдет запись сетевого пути для адреса назначения, он переадресует пакет из связанного интерфейса. Если маршрутизатор не найдет никакой записи для адреса назначения, он отбросит пакет. Существует два способа обновления таблицы маршрутизации: статический и динамический. В статическом методе мы должны обновить его вручную. В динамическом методе мы можем использовать протокол маршрутизации, который будет обновлять его автоматически. RIP - это самый простой протокол маршрутизации. В этой статье мы узнаем, как RIP обновляет таблицу маршрутизации. В протоколе RIP маршрутизаторы узнают о сетях назначения от соседних маршрутизаторов через процесс совместного использования. Маршрутизаторы, работающие по протоколу RIP, периодически транслируют настроенные сети со всех портов. Список маршрутизаторов обновит их таблицу маршрутизации на основе этой информации. Давайте посмотрим, как работает процесс RIP шаг за шагом. Следующий рисунок иллюстрирует простую сеть, работающую по протоколу маршрутизации RIP. Когда мы запускаем эту сеть, маршрутизаторы знают только о непосредственно подключенной сети. OFF1 знает, что сеть 10.0.0.0/8 подключена к порту F0/1, а сеть 192.168.1.252/30 подключена к порту S0/0. OFF2 знает, что сеть 192.168.1.252/30 подключена к порту S0/0, а сеть 192.168.1.248/30 подключена к порту S0/1. OFF3 знает, что сеть 20.0.0.0/8 подключена к порту F0/1, а сеть 192.168.1.248/30 подключена к порту S0/0. В отличие от статической маршрутизации, где мы должны настроить все маршруты вручную, в динамической маршрутизации все, что нам нужно сделать, это просто сообщить протоколу маршрутизации, какой маршрут мы хотим объявить. А остальное будет сделано автоматически, запустив динамический протокол. В нашей сети мы используем протокол маршрутизации RIP, поэтому он будет обрабатываться RIP. Иногда RIP также известен как маршрутизация прослушки. Потому что в этом протоколе маршрутизации маршрутизаторы изучают информацию о маршрутизации от непосредственно подключенных соседей, а эти соседи учатся от других соседних маршрутизаторов. Протокол RIP будет совместно использовать настроенные маршруты в сети через широковещательные передачи. Эти широковещательные передачи называются обновлениями маршрутизации. Прослушивающие маршрутизаторы обновят свою таблицу маршрутизации на основе этих обновлений. OFF1 будет слушать трансляцию из OFF2. От OFF2, он узнает об одной новой сети 192.168.1.248/30 OFF2 будет слушать две передачи с OFF1 и OFF3. Из OFF1 он узнает о 10.0.0.0/8 и от OFF3 он узнает о сети 20.0.0.0/8. OFF3 будет слушать трансляцию из OFF2. От OFF2 он узнает о сети 192.168.1.252. Маршрутизатор выполняет несколько измерений, обрабатывая и помещая новую информацию о маршруте в таблицу маршрутизации. Мы объясним их позже в этой статье. Если маршрутизатор обнаружит новый маршрут в обновлении, он поместит его в таблицу маршрутизации. Через 30 секунд (интервал времени по умолчанию между двумя обновлениями маршрутизации) все маршрутизаторы снова будут транслировать свои таблицы маршрутизации с обновленной информацией. В данный момент времени: OFF1 будет транслироваться для 10.0.0.0/8, 192.168.1.248/30 и 192.168.1.252/30. OFF2 будет транслировать для 10.0.0.0/8, 20.0.0.0/8, 192.168.1.248/30 и 192.168.1.252/30. OFF3 будет транслироваться для 20.0.0.0/8, 192.168.1.248/30 и 192.168.1.252/30. OFF1 узнает о сети 20.0.0.0/8 из трансляции OFF2. У OFF2 нет ничего, чтобы обновить из трансляции OFF1 и OFF2. OFF3 узнает о сети 10.0.0.0/8 из трансляции OFF2. Через 30 секунд маршрутизатор снова будет транслировать новую информацию о маршрутизации. На этот раз маршрутизаторам нечего обновлять. Эта стадия называется конвергенцией. Конвергенция Конвергенция - это термин, который относится к времени, затраченному всеми маршрутизаторами на понимание текущей топологии сети. Метрика протокола маршрутизации RIP У нас может быть два или более путей для целевой сети. В этой ситуации RIP использует измерение, называемое метрикой, чтобы определить наилучший путь для целевой сети. RIP использует подсчет прыжков как метрику. Прыжки - это количество маршрутизаторов, необходимое для достижения целевой сети. Например, в приведенной выше сети OFF1 есть два маршрута для достижения сети 20.0.0.0/8. Маршрут 1: - через OFF3 [на интерфейсе S0/1]. С прыжком - один. Маршрут 2: - через OFF2-OFF3 [на интерфейсе S0/0]. С прыжком - два. Итак, по какому маршруту OFF1 доберется до места назначения? Маршрут 1 имеет один прыжок, в то время как маршрут 2 имеет два прыжка. Маршрут 1 имеет меньшее количество переходов, поэтому он будет помещен в таблицу маршрутизации. Резюме Протокол маршрутизации RIP использует локальную широковещательную передачу для обмена информацией о маршрутизации. RIP транслирует обновления маршрутизации каждые 30 секунд, независимо от того, изменилось что-то в сети или нет. По истечении 30 секунд маршрутизаторы, работающие по протоколу RIP, будут транслировать информацию о своей маршрутизации на любые устройства, подключенные к их интерфейсам. Перед отправкой обновлений маршрутизации маршрутизатор добавляет метрику инициализации ко всем маршрутам, которые он имеет, и увеличивает метрику входящих маршрутов в объявлениях, чтобы маршрутизатор листинга мог узнать, как далеко находится сеть назначения. При отправке широковещательных передач RIP не заботится о том, кто слушает эти широковещательные обновления или нет. После отправки широковещательного сообщения RIP не заботится о том, получили ли соседи эти широковещательные обновления или нет. Когда маршрутизатор получает обновления маршрутизации, он сравнивает их с маршрутами, которые уже есть в его таблице маршрутизации. Если обновление содержит информацию о маршруте, которая недоступна в его таблице маршрутизации, маршрутизатор будет рассматривать этот маршрут как новый маршрут. Маршрутизатор добавит все новые маршруты в таблицу маршрутизации перед обновлением существующего. Если обновление содержит лучшую информацию для любого существующего маршрута, маршрутизатор заменит старую запись новым маршрутом. Если обновление содержит худшую информацию для любого существующего маршрута, маршрутизатор проигнорирует ее. Если обновление содержит точно такую же информацию о любом существующем маршруте, маршрутизатор сбросит таймер для этой записи в таблице маршрутизации Далее, почитайте нашу статью о функциях и терминологии RIP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59