По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитать лекцию №19 про Connection-oriented protocols и Connectionless протоколы можно тут. Протоколы передачи данных часто бывают многоуровневыми, причем нижние уровни предоставляют услуги по одному переходу, средний набор уровней предоставляет услуги от конца до конца между двумя устройствами и, возможно, набор уровней предоставляет услуги от конца до конца между двумя приложениями или двумя экземплярами одного приложения. Рисунок 1 иллюстрирует это. Каждый набор протоколов показан как пара протоколов, потому что, как показано в модели рекурсивной архитектуры Интернета (RINA), рассмотренной в предыдущих лекциях, транспортные протоколы обычно входят в пары, причем каждый протокол в паре выполняет определенные функции. В этой серии лекций будут рассмотрены физические протоколы и протоколы передачи данных, как показано на рисунке 1. В частности, в этой лекции будут рассмотрены два широко используемых протокола для передачи данных "точка-точка" в сетях: Ethernet и WiFi (802.11). Ethernet Многие из ранних механизмов, разработанных для того, чтобы позволить нескольким компьютерам совместно использовать один провод, были основаны на проектах, заимствованных из более ориентированных на телефонные технологии. Как правило, они фокусировались на передаче токенов и других более детерминированных схемах для обеспечения того, чтобы два устройства не пытались использовать одну общую электрическую среду одновременно. Ethernet, изобретенный в начале 1970-х Bob Metcalf (который в то время работал в Xerox), разрешал перекрывающиеся разговоры другим способом-с помощью очень простого набора правил для предотвращения большинства перекрывающихся передач, а затем разрешал любые перекрывающиеся передачи путем обнаружения и обратного отсчета. Первоначальное внимание любого протокола, который взаимодействует с физической средой, будет сосредоточено на мультиплексировании, поскольку до решения этой первой проблемы можно решить лишь несколько других проблем. Поэтому эта лекция будет начинаться с описания мультиплексирующих компонентов Ethernet, а затем рассмотрены другие аспекты работы. Мультиплексирование Чтобы понять проблему мультиплексирования, с которой столкнулся Ethernet, когда он был впервые изобретен, рассмотрим следующую проблему: в сети с общим носителем вся общая среда представляет собой единую электрическую цепь (или провод). Когда один хост передает пакет, каждый другой хост в сети получает сигнал. Это очень похоже на беседу, проводимую на открытом воздухе- звук, передаваемый через общую среду (воздух), слышен каждому слушателю. Нет никакого физического способа ограничить набор слушателей во время процесса передачи. CSMA/CD В результате система, получившая название множественного доступа с контролем несущей и обнаружением коллизий (CSMA/CD), работает с использованием набора шагов: Хост слушает среду, чтобы увидеть, есть ли какие-либо существующие передачи; это часть процесса со стороны оператора связи. Узнав, что другой передачи нет, хост начнет сериализацию (передача битов сериями) битов кадра в сеть. Эта часть проста - просто слушать перед передачей. Конечно, передачи двух (или более) хостов могут конфликтовать, как показано на рисунке 2. На рисунке 2: В момент времени 1 (T1) A начинает передачу кадра на совместно используемый носитель. Для прохождения сигнала от одного конца провода к другому требуется некоторое время - это называется задержкой распространения. В момент времени 2 (T2) C прослушивает сигнал на проводе и, не обнаружив его, начинает передачу кадра на совместно используемый носитель. В этот момент уже произошла коллизия, поскольку оба A и C передают кадр в один и тот же момент, но ни один из них еще не обнаружил коллизию. В момент времени 3 (T3) два сигнала фактически сталкиваются в проводе, в результате чего они оба деформируются и, следовательно, не читаются. Столкновение можно обнаружить в точке А в тот момент, когда сигнал от С достигает точки А, прослушав свой собственный сигнал, передаваемый по проводу. Когда сигнал от С достигнет А, А получит искаженный сигнал, вызванный комбинацией этих двух сигналов (результат столкновения). Это часть обнаружением столкновений (участок СD) работы локальные сети CSMA/CD. Что должен сделать хост при обнаружении столкновения? В оригинальном конструкции Ethernet хост будет посылать сигнал блокировки достаточно долго, чтобы заставить любой другой хост, подключенный к проводу, обнаружить конфликт и прекратить передачу. Длина сигнала блокировки изначально была установлена таким образом, чтобы сигнал блокировки потреблял, по крайней мере, время, необходимое для передачи кадра максимального размера по проводу по всей длине провода. Почему именно столько времени? Если при определении времени передачи сигнала помехи использовался более короткий, чем максимальный кадр, то хост со старыми интерфейсами (которые не могут посылать и принимать одновременно) может фактически пропустить весь сигнал помехи при передаче одного большого кадра, что делает сигнал помехи неэффективным. Важно дать хозяевам, подключенным на самом конце проводов, достаточно времени, чтобы получить сигнал помехи, чтобы они почувствовали столкновение и предприняли следующие шаги. Как только сигнал помехи получен, каждый хост, подключенный к проводу, установит таймер обратного отсчета, так что каждый из них будет ждать некоторое случайное количество времени, прежде чем пытаться передать снова. Поскольку эти таймеры установлены на случайное число, когда два хоста с кадрами, ожидающими передачи, пытаются выполнить свою следующую передачу, столкновение не должно повториться. Если каждый хост, подключенный к одному проводу, получает один и тот же сигнал примерно в одно и то же время (учитывая задержку распространения по проводу), как любой конкретный хост может знать, должен ли он на самом деле получать определенный кадр (или, скорее, копировать информацию внутри кадра из провода в локальную память)? Это работа Media Access Control (MAC). Каждому физическому интерфейсу назначается (как минимум) один MAC-адрес. Каждый кадр Ethernet содержит MAC-адрес источника и назначения; кадр форматируется таким образом, что MAC-адрес назначения принимается раньше любых данных. После того, как весь MAC-адрес назначения получен, хост может решить, следует ли ему продолжать прием пакета или нет. Если адрес назначения совпадает с адресом интерфейса, хост продолжает копировать информацию с провода в память. Если адрес назначения не совпадает с адресом локального интерфейса, хост просто прекращает прием пакета. А как насчет дубликатов MAC-адресов? Если несколько хостов, подключенных к одному и тому же носителю, имеют один и тот же физический адрес, каждый из них будет получать и потенциально обрабатывать одни и те же кадры. Существуют способы обнаружения повторяющихся MAC-адресов, но они реализуются как часть межслойного обнаружения, а не самого Ethernet; MAC-адреса будут правильно назначены системным администратором, если они назначены вручную. MAC-адреса назначаются производителем устройства, поэтому дублирование MAC-адресов исключено, независимо от того, сколько хостов подключено друг к другу. (Поскольку MAC-адреса обычно перезаписываются на каждом маршрутизаторе, они должны быть уникальными только в сегменте или широковещательном домене. В то время как многие старые системы стремились обеспечить уникальность каждого сегмента или широковещательного домена, это обычно должно быть обеспечено с помощью ручной конфигурации, и поэтому в значительной степени было отказано в пользу попытки предоставить каждому устройству глобальный уникальный MAC-адрес, "вшитый" в чипсете Ethernet при создании.) Первое решение трудно реализовать в большинстве крупномасштабных сетей- ручная настройка MAC-адресов крайне редка в реальном мире вплоть до ее отсутствия. Второй вариант, по существу, означает, что MAC-адреса должны быть назначены отдельным устройствам, чтобы ни одно из двух устройств в мире не имело одного и того же MAC-адреса. Как такое возможно? Путем назначения MAC-адресов из центрального хранилища, управляемого через организацию стандартов. Рисунок 3 иллюстрирует это. Рис. 3 Формат адреса MAC-48/EUI-48 MAC-адрес разбит на две части: уникальный идентификатор организации (OUI) и идентификатор сетевого интерфейса. Идентификатор сетевомого интерфейса присваивается заводом-изготовителем микросхем для Ethernet. Компаниям, производящим чипсеты Ethernet, в свою очередь, присваиваются уникальный идентификатор организации Институтом инженеров электротехники и электроники (Institute of Electrical and Electronic Engineers -IEEE). До тех пор, пока организация (или производитель) назначает адреса чипсету с его OUI в первых трех октетах MAC-адреса и не назначает никаким двум устройствам один и тот же идентификатор сетевого интерфейса в последних трех октетах MAC-адреса, никакие два MAC-адреса не должны быть одинаковыми для любого набора микросхем Ethernet. Два бита в пространстве OUI выделяются, чтобы сигнализировать, был ли MAC-адрес назначен локально (что означает, что назначенный производителем MAC-адрес был переопределен конфигурацией устройства), и предназначен ли MAC-адрес в качестве одного из следующих: Unicast адрес, означает, что он описывает один интерфейс Multicast-адрес, означает, что он описывает группу получателей MAC-адрес состоит из 48 бит- при удалении двух битов пространство MAC-адресов составляет 46 бит, что означает, что оно может описывать 246-или 70,368,744,177,664- адресуемых интерфейсов. Поскольку этого (потенциально) недостаточно, чтобы учесть быстрое количество новых адресуемых устройств, таких как Bluetooth-гарнитуры и датчики, длина MAC-адреса была увеличена до 64 бит для создания MAC-адреса EUI-64, который построен таким же образом, как и более короткий 48-битный MAC-адрес. Эти адреса могут поддерживать 262-или 4,611,686,018,427,387,904-адресуемые интерфейсы. Конец эпохи CSMA / CD Модель развертывания Ethernet с разделяемой средой в значительной степени (хотя и не полностью!) заменена в большинстве сетей. Вместо общей среды большинство развертываний Ethernet теперь коммутируются, что означает, что одна электрическая цепь или один провод разбивается на несколько цепей путем подключения каждого устройства к порту на коммутаторе. Рисунок 4 демонстрирует это. На рисунке 4 каждое устройство подключено к разному набору проводов, каждый из которых оканчивается одним коммутатором. Если сетевые интерфейсы на трех хостах (A, B и C) и сетевые интерфейсы коммутатора могут отправлять или получать в любой момент времени вместо того, чтобы делать и то, и другое, A может отправлять, пока коммутатор тоже отправляет. В этом случае процесс CSMA / CD все равно должен соблюдаться для предотвращения коллизий, даже в сетях, где только два передатчика подключены к одному проводу. Такой режим работы называется полудуплексом. Однако, если наборы микросхем Ethernet могут одновременно прослушивать и передавать данные для обнаружения коллизий, эту ситуацию можно изменить. Самый простой способ справиться с этим - разместить сигналы приема и передачи на разных физических проводах в наборе проводов, используемых в кабеле Ethernet. Использование разных проводов означает, что передачи от двух подключенных систем не могут конфликтовать, поэтому набор микросхем может передавать и принимать одновременно. Чтобы включить этот режим работы, называемый полнодуплексным, витая пара Ethernet передает сигнал в одном направлении по одной паре проводов, а сигнал в противоположном направлении - по другому набору проводов. В этом случае CSMA / CD больше не нужен (коммутатор должен узнать, какое устройство (хост) подключено к каждому порту, чтобы эта схема работала). Контроль ошибок CSMA/CD предназначен для предотвращения одного вида обнаруживаемой ошибки в Ethernet: когда коллизии приводят к искажению кадра. Однако в сигнал могут входить и другие виды ошибок, как и в любой другой электрической или оптической системе. Например, в кабельной системе с витой парой, если скрученные провода слишком сильно "разматываются" при установке коннектора, один провод может передавать свой сигнал другому проводу через магнитные поля, вызывая перекрестные помехи. Когда сигнал проходит по проводу, он может достигать другого конца провода и отражаться обратно по всей длине провода. Как Ethernet контролирует эти ошибки? Оригинальный стандарт Ethernet включал в себя 32-битную циклическую проверку избыточности (Cyclic Redundancy Check-CRC) в каждом кадре, которая позволяет обнаруживать большой массив ошибок при передаче. Однако на более высоких скоростях и на оптических (а не электрических) транспортных механизмах CRC не обнаруживает достаточно ошибок, чтобы повлиять на работу протокола. Чтобы обеспечить лучший контроль ошибок, более поздние (и более быстрые) стандарты Ethernet включили более надежные механизмы контроля ошибок. Например, Gigabit Ethernet определяет схему кодирования 8B10B, предназначенную для обеспечения правильной синхронизации часов отправителя и получателя; эта схема также обнаруживает некоторые битовые ошибки. Ten-Gigabit Ethernet часто реализуется аппаратно с помощью Reed-Solomon code Error Correction (EC) и системы кодирования 16B18B, которая обеспечивает прямое исправление ошибок (FEC) и синхронизацию часов с 18% -ными издержками. Схема кодирования 8B10B пытается обеспечить наличие примерно одинакового количества битов 0 и 1 в потоке данных, что позволяет эффективно использовать лазер и обеспечивает встроенную в сигнал тактовую синхронизацию. Схема работает путем кодирования 8 бит данных (8B) в 10 передаваемых битов по проводу (10B), что означает около 25% накладных расходов на каждый передаваемый символ. Ошибки четности одного бита могут быть обнаружены и исправлены, потому что приемник знает, сколько "0" и "1" должно быть получено. Маршалинг данных Ethernet передает данные пакетами и кадрами: пакет состоит из преамбулы, кадра и любой конечной информации. Фрейм содержит заголовок, который состоит из полей фиксированной длины и переносимых данных. На рисунке 5 показан пакет Ethernet. На рисунке 5 преамбула содержит маркер начала кадра, информацию, которую приемник может использовать для синхронизации своих часов для синхронизации с входящим пакетом, и другую информацию. Адрес назначения записывается сразу после преамбулы, поэтому получатель может быстро решить, копировать этот пакет в память или нет. Адреса, тип протокола и передаваемые данные являются частью кадра. Наконец, любая информация FEC и другие трейлеры добавляются в кадр, чтобы составить последний раздел (ы) пакета. Поле type представляет особый интерес, поскольку оно предоставляет информацию для следующего уровня-протокола, предоставляющего информацию, переносимую в поле data - для идентификации протокола. Эта информация непрозрачна для Ethernet-чипсет Ethernet не знает, как интерпретировать эту информацию (только где она находится) и как ее переносить. Без этого поля не было бы последовательного способа для передачи переносимых данных в правильный протокол верхнего уровня, или, скорее, для правильного мультиплексирования нескольких протоколов верхнего уровня в кадры Ethernet, а затем правильного демультиплексирования. Управление потоком В исходной CSMA / CD реализации Ethernet сама совместно используемая среда предоставляла своего рода базовый механизм управления потоком. Предполагая, что никакие два хоста не могут передавать одновременно, и информация, передаваемая по какому-то протоколу верхнего уровня, должна быть подтверждена или отвечена, по крайней мере, время от времени, передатчик должен периодически делать перерыв, чтобы получить любое подтверждение или ответ. Иногда возникают ситуации, когда эта довольно грубая форма регулирования потока не работает- спецификация Ethernet предполагает, что некоторый протокол более высокого уровня будет контролировать поток информации, чтобы предотвратить сбои в этом случае. В коммутируемом полнодуплексном Ethernet нет CSMA/CD, так как нет общей среды. Два хоста, подключенные к паре каналов передачи, могут отправлять данные так быстро, как позволяют каналы связи. Фактически это может привести к ситуации, когда хост получает больше данных, чем может обработать. Чтобы решить эту проблему, для Ethernet был разработан фрейм паузы. Когда получатель отправляет фрейм паузы, отправитель должен прекратить отправку трафика в течение определенного периода времени. Фреймы паузы массово не применяются. Важно Многие протоколы не содержат все четыре функции, описанных как часть модели рекурсивной архитектуры Интернета (RINA): контроль ошибок, управление потоком, транспортировка и мультиплексирование. Даже среди тех протоколов, которые реализуют все четыре функции, все четыре не всегда используются. Обычно в этой ситуации разработчик протокола и/или сети передает функцию на более низкий или более высокий уровень в стеке. В некоторых случаях это работает, но вы всегда должны быть осторожны, предполагая, что это будет работать без ошибок. Например, существует разница между hop-by-hop шифрованием и end-to-end шифрованием. End-to-end передача хороша для приложений и протоколов, которые выполняют шифрование, но на самом деле не каждое приложение шифрует передаваемые данные. В этих случаях hop-by-hop шифрование может быть полезно для менее безопасных соединений, таких как беспроводные соединения.
img
NoSQL - это общее обозначение принципов, направленные на воплощение механизмов управления базами данных, которые имеют ощутимые отличия от привычных моделей с доступом к информации посредством языка SQL. Если стандартные СУБД воплощают принципы атомарности, изолированности и согласованности, то NoSQL характеризуется гибким состоянием, которое может меняться с течением времени и базовой доступностью для каждого запроса. К особенностям NoSQL можно отнести: Использование любых типов хранилищ Допускается разрабатывать БД без применения схемы Масштабируемость в линейном формате - чем больше процессоров, тем выше производительность Универсальность - большие возможности для хранения и аналитики данных Базы данных на основе NoSQL получают широкое распространение, поскольку помогают создавать повышенное количество разных приложений. Характеристики NoSQL В БД NoSQL можно использовать все модели информации - текст, графика, документ с применением пары ключ-значение. Под термином NoSQL можно встретить разные БД, но есть ряд характеристик, присущих всем без исключения. Не применяется SQL, под которым понимается ANSI SQL DML. Полностью реализовать его не удалось пока еще никому, хотя попытки адаптировать уже встречались. Неструктурированная структура. В отличие от реляционных БД NoSQL не имеет стандартной структуры. Здесь можно добавлять поля в любых местах без изменения общего вида данных. Информация представляется в виде агрегатов. БД NoSQL использует данные как целостные объекты, а не как часть общей информации. Распределение происходит без совместных ресурсов. При использовании принципов NoSQL представление данных может проводиться разными способами. Вот несколько самых распространенных типов: Ключ-знание - распространенный способ отражения данных. Методика чаще используется для хранения графических сведений Столбцы - хранение в виде матрицы, в которой каждая строка и столбец являются ключом. Такие механизмы предназначены для хранения больших объемов информации, а также подходят при наличии счетчиков и ограничений по времени при использовании данных Документированная СУБД подойдет для иерархического расположения сведений, чаще всего реализуется в издательском деле Графовая база подойдет для воплощения социальных сетей, поскольку здесь реализуется большое количество связей Таким образом, NoSQL становится универсальным способом расположения данных и может использоваться практически во всех отраслях. Сравнение NoSQL и стандартных БД В последнее время БД на основе NoSQL стали более популярными. И если ранее при разработке использовались в основном реляционные БД, то сегодня они уже идут вровень. Реляционные БД сегодня используются чаще для строгих транзакций, подходят для определенных алгоритмов и аналитических действий. NoSQL распространяются практически на любые направления и могут использоваться для аналитики неструктурированной информации. Если сравнивать показатели обеих принципов, то реляционные базы характеризуются более жесткими требованиями, повышенной четкостью и рамками исполнения задач. В то время как NoSQL более вариативна, гибко подстраивается под условия задачи и допускает горизонтальное масштабирование при необходимости. Таким образом, нельзя сказать, что однозначно один механизм лучше другого. Сегодня традиционные БД оптимально дополняются базами NoSQL, что значительно расширяет горизонт возможностей.
img
Всем привет! В этой статье мы хотим рассказать про то, что такое Extension Mobility в Cisco Unified Communications Manager (CUCM) , и про то, как его настроить. Cisco Extension Mobility позволяет пользователю залогиниться на любой телефон, подключенный к CUCM. Это может использоваться, когда пользователи часто перемещаются с одного рабочего места на другое. Все персональные настройки, такие как номер телефона (Directory Number) и быстрый набор (user-specific parameters) могут быть динамически настроены на телефоне, который будет использоваться, что позволит пользователю не теряя времени начать работу. Стоит отличать Extension Mobility от Device Mobility, который позволяет перенастраивать телефоны в зависимости от их местонахождения. Extension Mobility работает как сервис, и после того как телефон будет на него подписан, у пользователя появится возможность выбрать этот сервис и ввести свой User ID и PIN. После этого CUCM применит Device Profile и перезагрузит телефон. Если пользователь будет пытаться залогиниться на нескольких телефонах одновременно, то есть несколько вариантов: Allow Multiple Logins – Пользователь может войти на несколько телефонов сразу, при этом все телефоны звонят одновременно Deny Login – Пользователь может быть залогиненным только на одном устройстве. Если он попытается войти на другое, то будет выдаваться сообщение об ошибки, до тех пор, пока он не выйдет из первого устройства. Auto-logout - Пользователь также может быть залогиненным только на одном устройстве, но когда он вводит свой данные на втором устройстве, система отключит его на первом. Настройка Extension Mobility Шаг 1. Активация сервиса Cisco Extension Mobility Первым делом нам нужно перейти в раздел Cisco Unified Serviceability и перейти во вкладку Tools – Service Activation. Тут выбираем наш сервер и ставим галочку напротив пункта Cisco Extension Mobility. Шаг 2. Настройка EM Service параметров Возвращаемся в раздел CM Administration и переходим во вкладку System – Service Parameters. Здесь выбираем наш сервер, и из выпадающего меню Service выбираем Cisco Extension Mobility. Ниже в разделе Clusterwide Parameters. Тут можно настроить параметры входа, такие как время работы, возможность множественного входа и другие. Шаг 3. Добавление EM Service. Переходим во вкладку Device – Device Settings – Phone Services и нажимаем Add New. В поле Service Name указываем желаемое имя сервиса. В поле Service URL нужно указать следующую строчку: http://[IP_адрес_CUCM_Publisher]:8080/emapp/EMAppServlet?device=#DEVICENAME# Перед сохранением нужно удостовериться, что галочка в пункте Enable стоит. Также можно активировать пункт Enterprise Subscription, для того чтобы все телефоны подписались на Extension Mobility Service автоматически. Шаг 4. Создание Default Device Profile Default Device Profile со стандартными параметрами используется если модель телефона не совпадает с моделью в Profile. Для настройки переходим во вкладку Device – Device Settings – Default Device Profile и нажимаем Add New. В строке Product Type выбираем модель телефона, которая будет использоваться, а в строке Device Protocol указываем протокол, по которому работает телефон - SCCP или SIP. Доступные настройки зависят от выбранного телефона и протокола. Здесь можно задать настройки Music on Hold, Locale, Phone Button и Softkey Template и другие, которые будут использованы в профиле. Шаг 5. Создание Device Profile Создадим Device Profile, который будет использоваться на телефоне, после того, как пользователь залогинится. Переходим во вкладку Device – Device Settings – Device Profile и в новом окне нажимаем Add New. Так же как и в предыдущем пункте выбираем модель телефона, протокол и задаем параметры профиля (user-specific settings). Затем нажимаем Save. После этого в открывшемся окне в меню Association Info нажимаем на Line [1] – Add a new DN и указываем номер телефона в стоке Directory Number. При необходимости заполняем остальные поля и нажимаем Save и возвращаемся в предыдущее меню. Шаг 6. Подписка Device Profile на EM Service Из меню Device Profile в выпадающем меню Related Links справа сверху выбираем Subscribe/Unsubscribe Services и нажимаем Go. В открывшемся окне в стоке Select a Service выбираем созданный нами сервис и нажимаем Next. Далее указываем имя сервиса и нажимаем Subscribe, а затем Save. Шаг 7. Ассоциируем пользователей End User с Device Profile. Сначала нужно создать учетную запись пользователя. Для этого идем во вкладку User Management – End User и нажимаем Add New. Здесь нужно заполнить поля User ID, Password, PIN, Last Name и остальные, если необходимо. Затем заходим в настройки созданного пользователя и в разделе Extension Mobility из поля Available Profiles переносим созданный нами профиль в поле Controlled Profiles, путем нажатия на кнопку “вниз”. Ниже в поле Device Profile выбираем профиль для пользователя. Шаг 8. Включение EM на телефонах Переходим во вкладку Device – Phone и выбираем телефон, на котором хотим настроить Extension Mobility. Находим раздел Extension Mobility и ставим галочку в пункте Enable Extension Mobility. Далее нужно подписать телефон на сервис. Как и ранее сверху справа находим меню Related Links и выбираем Subscribe/Unsubscribe Services. (этот пункт не обязателен, если при создании сервиса мы поставили галочку в пункте Enterprise Subscription). Тут снова указываем созданный нами сервис и его имя и нажимаем Save. Шаг 9. Тестирование После всех настроек на телефоне, на котором мы настроили EM service. Для этого на телефоне нажимаем кнопку Services. Здесь выбираем наш сервис и вводим Used ID и PIN. После этого телефон перезагрузится и загрузится с новым профилем и номером. Выйти из профиля можно также нажатием кнопки Services.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59