По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Для любых интерфейсов 10/100 Мбит/с или 10/100/1000Мбит/с, то есть интерфейсов, которые могут работать на разных скоростях, коммутаторы Cisco по умолчанию устанавливают значение duplex auto и speed auto. В результате эти интерфейсы пытаются автоматически определить скорость и настройку дуплекса. Кроме того, как вы уже знаете, можно настроить большинство устройств, включая интерфейсы коммутатора, для использования определенной скорости и/или дуплекса. В реальности, использование автосогласования не требует каких либо дополнительных настроек: просто можно выставить параметры скорости и дуплекса по умолчанию, и пусть порт коммутатора определяет, какие настройки использовать автоматически. Однако проблемы могут возникнуть из-за неудачных комбинаций настроек. Автоматическое согласование в рабочих сетях Устройства Ethernet, объединенные каналами связи, должны использовать один и тот же стандарт. В противном случае они не смогут корректно передавать данные. Например, старый компьютер с сетевым адаптером стандарта 100BASE-T, который использует двухпарный UTP-кабель со скоростью 100 Мбит /с, не сможет "общаться" с коммутатором, подключенному к ПК, так как порт коммутатора использует стандарт 1000BASE-T. Даже если подключите кабель, работающий по стандарту Gigabit Ethernet, канал не будет работать с оконечным устройством, пытающимся отправить данные со скоростью 100 Мбит /с на порт другого устройства, работающем со скоростью 1000 Мбит /с. Переход на новые и более быстрые стандарты Ethernet становится проблемой, поскольку обе стороны должны использовать один и тот же стандарт. Например, если вы замените старый компьютер, который поддерживает стандарт передачи данных 100BASE-T , на новый, работающий по стандарту 1000BASE-T, то соответственно порты коммутатора на другом конце линии связи должны также работать по стандарту 1000BASE-T. Поэтому, если у вас коммутатор только с поддержкой технологии 100BASE-T, то вам придется его заменить на новый. Если коммутатор будет иметь порты, которые работают только по технологии 1000BASE-T, то соответственно вам придется заменить все старые компьютеры, подключенные к коммутатору. Таким образом, наличие как сетевых адаптеров ПК (NIC), так и портов коммутатора, поддерживающих несколько стандартов/скоростей, значительно облегчает переход к следующему улучшенному стандарту. Протокол автосоглосования (IEEE autonegotiation) значительно облегчает работу с локальной сетью, когда сетевые адаптеры и порты коммутатора поддерживают несколько скоростей. IEEE autonegotiation (стандарт IEEE 802.3 u) определяет протокол, который позволяет двум узлам Ethernet, на основе витой пары, договариваться таким образом, чтобы они одновременно использовали одинаковую скорость и параметры дуплекса. Вначале каждый узел сообщает соседям, свои "возможности" по передаче данных. Затем каждый узел выбирает наилучшие варианты, поддерживаемые обоими устройствами: максимальную скорость и лучшую настройку дуплекса (full duplex лучше, чем half duplex) . Автосогласование основывается на том факте, что стандарт IEEE использует одни и те же выводы кабеля для 10BASE-T и 100BASE-T (можно использовать кабель с двумя витыми парами). И что бы согласование проходило по технологии 1000BASE-T IEEE autonegotiation просто подключает новые две пары в кабеле (необходимо использовать кабель с четырьмя витыми парами). Большинство сетей работают в режиме автосогласования, особенно между пользовательскими устройствами и коммутаторами локальной сети уровня доступа, как показано на рисунке 1. В организации установлено четыре узла. Узлы соединены кабелем с поддержкой Gigabit Ethernet (1000BASE-T). В результате, линия связи поддерживает скорость 10Мбит /с, 100Мбит /с и 1000Мбит /с. Оба узла на каждом канале посылают друг другу сообщения автосогласования. Коммутатор в нашем случае может работать в одном из трех режимов: 10/100/1000, в то время как сетевые платы ПК поддерживают различные опции. Настроены в ручную Рисунок отображает концепцию автоматического согласования стандарта IEEE. В результате сетевая карта и порт на коммутаторе работают правильно. На рисунке показаны три ПК - 1, 2 и 3, подключенные к общему коммутатору. Сетевые адаптеры этих узлов имеют характеристики соответственно: 1 ПК 10 Mb/s, 2 ПК - 10/100 Mb/s и 3 ПК - 10/100/1000 Mb/s. ПК подключаются к коммутатору через порт поддерживающий режим работы 10/100/1000 Mb/s. С обеих сторон автосогласование включено. Результатом во всех трех случаях является: дуплекс включен в режиме FULL, выставлена соответствующая скорость. Далее разберем логику работы автосоглосования на каждом соединении: ПК 1: порт коммутатора сообщает, что он может работать на максимальной скорости в 1000 Мбит /с, но сетевая карта компьютера утверждает, что ее максимальная скорость составляет всего 10 Мбит / с. И ПК, и коммутатор выбирают самую быструю скорость, на которой они могут работать совместно (10 Мбит /с), и устанавливают лучший дуплекс (full). ПК2 сообщает коммутатору, что максимальная скорость передачи данных его сетевой карты составляет 100 Мбит /с. Это означает что ПК2 может работать по стандарту 10BASE-T или 100BASE-T. Порт коммутатора и сетевой адаптер договариваются использовать максимальную скорость в 100 Мбит /с и полный дуплекс (full). ПК3: сообщает коммутатору, что его сетевая карта может работать в трех режимах: 10/100/1000 Мбит/с, и соответственно поддерживает все три стандарта. Поэтому и сетевая карта, и порт коммутатора выбирают максимальную скорость в 1000 Мбит /с и полный дуплекс (full). Одностороннее автосогласовние (режим, при котором только один узел использует автоматическое согласование) На рисунке 1 показано двухстороннее автосогласования IEEE (оба узла используют этот процесс). Однако большинство устройств Ethernet могут отключить автоматическое согласование, и поэтому важно знать, что происходит, когда один из узлов использует автосогласование, а другой нет. Иногда возникает необходимость отключить автосогласование. Например, многие системные администраторы отключают автосогласование на соединениях между коммутаторами и просто настраивают желаемую скорость и дуплекс. Однако могут возникнуть ошибки, когда одно устройство использует автосогласование, а другое нет. В этом случае связь может не работать вообще, или она может работать нестабильно. IEEE autonegotiation (автосогласование) определяет некоторые правила (значения по умолчанию), которые узлы должны использовать в качестве значений по умолчанию, когда автосогласование завершается неудачей-то есть когда узел пытается использовать автосогласование, но ничего не слышит от устройства. Правила: Скорость: используйте самую низкую поддерживаемую скорость (часто 10 Мбит / с). Дуплекс: если ваша скорость равна 10 Мбит/, используйте полудуплекс (half duplex); Если 100 Мбит/с используйте полный дуплекс (full duplex) . Коммутаторы Cisco могут самостоятельно выбирать наилучшие настройки порта по скорости и дуплексу, чем параметры IEEE, установленные по умолчанию (speed default). Это связано с тем, что коммутаторы Cisco могут анализировать скорость, используемую другими узлами, даже без автосогласования IEEE. В результате коммутаторы Cisco используют эту свою возможность для выбора скорости, когда автосогласование не работает: Скорость: происходит попытка определения скорости (без использования автосогласования), если это не удается, используются настройки по умолчанию (устанавливается самая низкая поддерживаемая скорость, обычно 10 Мбит/с). Дуплекс: в зависимости от установленной скорости настраиваются параметры дуплекса: если скорость равна 10 Мбит/с назначается полудуплекс (half duplex), если скорость равна 100 Мбит/с, то используется полный дуплекс (full duplex). Гигабитные интерфейсы (1Gb/s) всегда используют полный дуплекс. На рисунке 2 показаны три примера, в которых пользователи изменили настройки свих сетевых карт и отключили автоматическое согласование, в то время как коммутатор (на всех портах поддерживается скорость 10/100/1000 Мбит/с) пытается провести автосогласование. То есть, на портах коммутатора выставлены параметры скорости (speed auto) и (duplex auto) дуплекса в режим auto. В верхней части рисунка отображены настроенные параметры каждой сетевой карты компьютеров, а выбор, сделанный коммутатором, указан рядом с каждым портом коммутатора. На рисунке показаны результаты работы автосогласования IEEE с отключенным режимом автосогласования на одной стороне. На рисунке показаны три компьютера - 1, 2 и 3, подключенные к общему коммутатору. Параметры сетевых адаптеров этих систем следующие: ПК1- 10/100Мбит/с, ПК2 - 10/100/1000 Мбит/с и ПК3 - 10/100Мбит/с. Компьютеры соединены с коммутатором через интерфейсы F0/1, F0/2 и F0/3. На стороне компьютеров автосогласование отключено, и произведены настройки скорости и дуплекса вручную, которые вы можете посмотреть на рисунке 2. На стороне коммутатора включено автосогласование (10/100/1000). Разберем работу устройств на рисунке: ПК1: коммутатор не получает сообщений автосогласования, поэтому он автоматически определяет скорость передачи данных ПК1 в 100 Мбит/с. Коммутатор использует дуплекс IEEE по умолчанию, основанный на скорости 100 Мбит/с (полудуплекс). ПК2: коммутатор использует те же действия, что и при анализе работы с ПК1, за исключением того, что коммутатор выбирает использование полного дуплекса, потому что скорость составляет 1000 Мбит / с. ПК3: пользователь установил самую низшую скорость (10 Мбит/с) и не самый лучший режим дуплекса (half). Однако коммутатор Cisco определяет скорость без использования автосогласования IEEE и затем использует стандарт IEEE duplex по умолчанию для каналов 10 Мбит / с (half duplex). ПК1.Итог работы этой связки: дуплексное несоответствие. Оба узла используют скорость 100 Мбит/с, поэтому они могут обмениваться данными. Однако ПК1, используя полный дуплекс, не пытается использовать carrier sense multiple access (CSMA) для обнаружения столкновений (CSMA / CD) и отправляет кадры в любое время. В свою очередь интерфейс коммутатора F0/1 (в режиме half duplex), использует CSMA / CD. Отчего порт коммутатора F0/1 будет считать, что на канале происходят коллизии, даже если физически они не происходят. Порт остановит передачу, очистит канал, повторно отправит кадры и так до бесконечности. В результате связь будет установлена, но работать она будет нестабильно.
img
Объем киберпреступности стремительно растет. Противостоять такому натиску становится все сложнее: в сочетании с нехваткой времени и персонала многие организации просто не могут справиться с объемом работ по обеспечению безопасности. Выход очевиден - автоматизация процессов управления рисками с помощью автоматизации. Однако, как выяснил опрос профессионалов в области кибербезопасности, многие относятся с опаской к приходу "умных"технологий. Разный взгляд на автоматизацию Опрос проводила американская ИТ-компания Exabeam, ежегодно исследующая факторы, влияющие на эффективность работы специалистов по информационной безопасности. Несмотря на то, что 88% профессионалов в области кибербезопасности считают, что автоматизация облегчит их работу, молодые сотрудники обеспокоены тем, что технологии их заменят. 53% респондентов в возрасте до 45 лет "согласны или полностью согласны с тем, что ИИ и машинное обучение - угроза их занятости", указывается в отчете компании. В то же время только четверть профессионалов в области кибербезопасности старше 45 лет проявляет такое же беспокойство, отмечается в отчете. "Есть свидетельства того, что автоматизация, искусственный интеллект и машинное обучение становятся все более популярными, но опрос этого года выявил поразительные различия между поколениями, когда дело доходит до профессиональной открытости и использования всех доступных инструментов для выполнения своей работы", - сказал Фил Рутли, старший менеджер Exabeam. Тревога потерять работу В опросе Exabeam 2020 участвовали более 350 профессионалов в области кибербезопасности из разных стран мира, ответившие на самые разные вопросы. Вряд ли можно делать всеобъемлющие выводы по столь небольшой выборке, однако некоторые тенденции все же можно отметить. Неожиданным "открытием" опроса оказалась тревога молодых по поводу своей карьеры, опасения потерять свое место с приходом машин. "Отношение к автоматизации среди молодых специалистов в области кибербезопасности было для нас удивительным. Возможно, такое отношение связано с отсутствием обучения технологиям автоматизации", - говорится в пресс-релизе Exabeam. Аналитики компании отмечают, что отсутствие понимания важности автоматизации и нехватка знаний и навыков могут повлиять на безопасность работы компаний. Согласно данным исследования Cybersecurity Workforce 2019 года, в сфере кибербезопасности работают 2,8 миллиона человек, а требуется еще 4 млн. На фоне такой нехватки кадров обеспокоенность молодежи заставляет задуматься. Вероятнее всего, главная причина подобных "страхов" - непонимание, в какой степени машины могут участвовать в работе, и будут ли они отрицать потребность в человеческом персонале.
img
Файл CSV (Comma Separated Values - значения, разделенные запятыми) использует запятые для разделения различных значений в файле. Файл CSV является стандартным форматом при переносе таблицы в другую систему или ее импорте в другое приложение базы данных. Это подробное руководство покажет вам, как экспортировать базу данных MySQL в файл CSV и импортировать файл CSV обратно в базу данных MySQL. Экспорт MySQL в CSV Нам понадобится: Доступ к командной строке или окну терминала Учетная запись пользователя с привилегиями root или sudo Учетная запись пользователя MySQL с правами root Предварительно настроенная учетная запись phpMyAdmin (необязательно) Экспорт MySQL в CSV с phpMyAdmin Инструмент phpMyAdmin предоставляет бесплатный графический интерфейс для управления базами данных MySQL. Вы можете использовать его для экспорта любой из отслеживаемых баз данных в файл CSV. Войдите в phpMyAdmin. Затем нажмите кнопку Databases (Базы данных) в верхней части баннера. В списке баз данных щелкните ссылку на базу данных, которую вы хотите экспортировать. В этом примере мы выбрали базу данных user. На следующем экране отображается список таблиц в этой базе данных. Установите флажки для таблиц, которые вы хотите экспортировать. Нажмите кнопку Export на баннере внизу. Оставьте метод экспорта установленным как есть. Используйте раскрывающееся меню Format, чтобы выбрать CSV, затем нажмите Go. Диалоговое окно предлагает указать место, где вы хотите сохранить файл CSV. Экспорт из MySQL в CSV с помощью командной строки Вы можете выполнить экспорт без излишеств через CLI, выбрав все данные в таблице и указав место, куда их нужно сохранить. Начните с открытия оболочки MySQL, затем переключитесь на базу данных, которую вы хотите экспортировать. Введите следующую команду: SELECT * FROM myTable INTO OUTFILE ' mpmyExportFile.csv' FIELDS ENCLOSED BY '"' TERMINATED BY ';' ESCAPED BY '"' LINES TERMINATED BY ' '; Замените myTable реальным именем таблицы из вашей базы данных. Вы можете заменить mpmyExportFile.csv любым другим именем файла или местоположением. Не забудьте сохранить имя файла .csv в конце. Примечание. В этом примере используется местоположение файла Linux. Если вы работаете в Windows, вы можете использовать c:/folder/file.csv для вашего местоположения файла. Дополнительные параметры для экспорта из MySQL Чтобы указать отдельные наборы данных для экспорта из таблицы: SELECT column1, column2, column3, column4 FROM myTable WHERE column2 = 'value'; Замените column1 (и остальные) фактическими именами столбцов, которые вы хотите экспортировать. Обязательно используйте команду FROM, чтобы указать таблицу, из которой вы экспортируете. Оператор WHERE является необязательным и позволяет экспортировать только те строки, которые содержат определенное значение. Замените значение фактическим значением, которое вы хотите экспортировать. Например: SELECT order_date, order_number, order_status FROM current_orders WHERE order_status='pending';
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59