По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Итак, у нас загрузилось ядро операционной системы. Далее отрабатывают системы инициализации операционной системы. Три варианта: SysV, systemd, Upstart. Init в стиле SysV Init в стиле SysV данная процедура инициализации, самая старая она более классический Unix вариант инициализации операционной системы. Для того, чтобы понять, как происходит инициализация необходимо понять, что такое режимы загрузки (они же runlevel), разобраться как между ними переключатся, рассмотреть работу со службами. Обычно есть 7 уровней выполнения по умолчанию: Выключение Однопользовательский режим (чаще всего используется для отладки и настройки операционной системы) DebianUbuntu по умолчанию RedHatSuse по умолчанию текстовый режим. WildCard (программируемый режим, можно сюда поставить любой) RedHatSuse GUI (Graphical User Interface) Перезагрузка. Но существуют операционные системы, где 10 уровней по умолчанию. Конечно речь идет о самых распространенных ядрах и сборках *nix образных операционных системах. Для дальнейших пояснений, как работает инициализация в стиле sysV нам необходим операционная система CentOS 5.4 или ниже, потому что в более новых операционных системах данный процесс давно уже заменен. Отроем файл настроек текстовым редактором vi или любым другим удобным для вас. Мы можем увидеть содержание файла. Те самые уровни о которых шла речь выше. Плюс прописан уровень используемые при загрузке по умолчанию. Строчка id:3:initdefault: Мы данный параметр можем отредактировать и например сказать, чтобы операционная система загружалась по умолчанию в Single Mode например. Если мы посмотрим далее файл, мы можем увидеть настройку, которая описывает действия нажатия клавиш Ctrl+alt-delete. А также наглядно прописано, что запуск определенного уровня - это запуск определённого скрипта. Все скрипты запускаются из папки /etc/rc.d/ Все дальнейшие варианты инициализации растут, вот из этого варианта. И этой процедуры инициализации. Перейдем в директорию, где лежат все скрипты инициализации и выполняются данные скрипты при старте системы. В данной папке куча скриптов, которые запускают определенные службы, например, ssh запускает демона ssh для подключения клиентом по 22 порту. Т.е здесь куча служб и запускаются они этими скриптами. Если мы например хотим остановить какую нибудь службу то набираем ./rsync stop , ну и соответственно ./rsync start для запуска данной службы. Аналогично мы можем управлять через команду service, например: service rsync restart . Поднимемся на уровень выше cd .. Найдем все файлы, которые начинаются с rc. Для этого набираем: ls -l | grep rc. В результате мы увидим несколько скриптов. Посмотрим rc3.d . А для этого перейдем в эту директорию. В ней можно увидеть кучу скриптов. В вариации Ubuntu современной и затем в вариации CentOS 5.4 Те скрипты, которые начинаются с буквы K, эти скрипты при старте убивают сервис, те скрипты, которые имеют первой букву S запускают сервис. Ну и соответственно порядковый номер исполнения скрипта в очереди. Для каждого runlevel свой набор скриптов. Основные команды Init управление инициализацией с помощью нее можно перемещаться между runlevel. Telinit управление процессом init , в старых дистрибутива использовалась именно эта команда. Wall вывод сообщения пользователям системы Halt - выключение компьютера Reboot перезагрузка компьютера Shutdown - запланированное выключение Service service_name start|stop|reload|restart Для того, чтобы перемещаться по уровням загрузки, нам необходимо понять на каком уровне мы находимся сейчас. Набираем runlevel . Соответственно, если мы хотим переключится telinit 1 отрабатывают скипты мы попадаем в однопользовательский режим 1. Для того, чтобы послать сообщение все пользователям на данной машине необходимо набрать с соблюдением регистра wall "Abrakadabra". У всех пользователей появится данное сообщение на экране. Для выключения сейчас компьютера можно использовать shutdown h now. Init в стиле Systemd Init в стиле Systemd более современная система инициализации операционной системы Linux. Необходимым элементом работы системы systemd , являются Unit. Unit- это модуль которыми оперирует systemd: .service службы .mount точки монтирования .device устройства .socket сокеты Если при работе в консоли мы не указывает расширение юнита, то в принципе system может догадаться в каком случае, что используется. В операционной системе существуют 2 папки в которых хранятся Unit: /usr/lib/systemd директория с Units по умолчанию, в которой создаются units при установке какого либо программного обеспечения. /etc/systemd директория с управляемыми Units. Тут лежат те Unit которыми может управлять админ, добавлять , редактировать. Посмотрим, что находится в данных директориях переходим в /usr/lib/system Нам интересны 2 директории system и user. Содержимое папки system выглядит вот так. В данной директории лежат все необходимые Units для системы в директории user для пользователя. Картинка будет примерно аналогичная. Директория /etc/systemd. Тут точно также есть две папки system и user, а также конфигурационные фалы. Данные конфигурационные файлы и отвечают за настройку systemd. Это те файлы которые пришли на замену /etc/inittab, предыдущей версии инициализации операционной системы. Файлы юнитов в директориях system и user мы можем редактировать для каких-то своих целей и даже писать targets. Далее мы можем посмотреть запущенные Units. Для этого мы можем выполнить systemctl команду, она отвечает за все действия с systemd. Для примера команда systemctl list-units нам выведет все запущенные Units, сокеты ,устройства ,точки монтирования. Можно посмотреть юниты, которые не стартанули systemd failed. А также мы можем управлять юнитами systemctl status|start|stop|restart crond. Так же Systemd работает с Target (целями). Есть target которые работают так же как runlevel в классической процедуре инициализации, они не пронумерованы в отличии от runlevel у них есть конкретные имена. В табличке можно посмотреть какие target соотносятся с какими runlevel. Их этих target может быть несколько, потому что target бывают не только загрузочные. Данная система использования target обратно совместимая с системой инициализации. Для переключения мы можем использовать команду telinit. Сами по себе target есть некая группировка юнитов, последовательность вызова юнитов. Это может быть target последовательного вызова нескольких служб и ниже стоящий target. Текущий уровень мы можем посмотреть командой runlevel. По умолчанию это будет 3. Далее мы можем написать systemctl list-units --type=target И можно увидеть, что находимся на 3-м уровне также т.к target соответствует. Так же мы можем переключатся между runlevel командой telinit. Например, для перехода в однопользовательский режим telinit 1. А так же мы можем использовать через синтаксис systemctl isolate reboot.target. Для того чтобы поставить какой-то загрузочный target по умолчанию, необходимо отредактировать загрузчик, вставить параметры ядра, которые будут запускаться. Или сделать проще командой systemctl set-default f multi-user.target (использование например 3 runlevel по умолчанию). Одной из особенностей system является интересная система журналирования journald. Демон журналов. Эта система уникальна тем, что собирает информацию из разных источников событий и привязывает их к конкретным юнитам и сервисам. Благодаря этому мы можем всю диагностическую информацию просматривать в одном месте. Соответственно находить неисправности и их устранять. Работает следующим образом: Journalctl f - показывает события по мере их возникновения. Journalctl n 10 вывод последних 10 событий Инициализация Init в стиле Инициализация Init в стиле upstart это система инициализации, в том стиле которая задумывалась для Ubuntu, и заменила процедуру инициализации, которая пришла из Unix стандартную init процедуру. Процедура инициализации upstart контролирует инициализацию демонов и служб в течении загрузки системы и их остановку если у нас система выключается или нужно переключится в другой режим. Основное отличие от классической процедуры инициализации в том, что задачи и службы останавливаются по событиям и сами события могут генерироваться задачами и службами, могут приняты быть от любого процесса системы. Могут быть службы перезапущены в автоматическом режиме если они вдруг были завершены в аварийном режиме. Еще одно отличие в том, что у данного режима инициализации есть задачи (tasks). Основными понятиями являются службы и задачи. Основное отличие службы от задачи в том, что служба перезапускается если была аварийно завершена, а задача нет. Процесс инициализации системы по upstart берет конфигурацию из файлов каталога /etc/init каталог файлов-заданий (jobs). Каждый файл отвечает за запуск каждого задания или службы и должен заканчиваться с расширением .conf . Уровни инициализации остались те же самые. Определение и переключение между уровнями выполняются теми же командами, описанными выше. Изменился файл, в котором мы описываем runlevel запуска по умолчанию. И для управления upstart используется утилита initctl. Как мы видим в каталоге /etc/init находятся конфигурационные файлы Jobs. Каждый отвечает за запуск отдельной службы. Смотрим файл конфигурации простейшего файрвола операционной системы cat ufw.conf Как мы видим ufw стартует при условии, описанном start on, выключается на определенных runlevel. Файл конфигурации с runlevel по умолчанию находится в файле cat /etc/init/rc-sysinit.conf Управляются службы простыми командами status ufw start ufw stop ufw. В данной статье мы рассмотрели различные вариации инициализации. Думаю, информация будет очень полезной.
img
Классификация сама по себе не приводит к определенному состоянию переадресации со стороны сетевого устройства. Скорее, классификация трафика - это первый необходимый шаг в создании основы для дифференцированного поведения пересылки. Другими словами, пакеты были классифицированы и дифференцированы, но это все. Выявление различий - это не то же самое, что дифференцированные действия с этими классами. Наше обсуждение QoS теперь переходит в сферу политики. Как управлять перегруженными интерфейсами? Когда пакеты ожидают доставки, как сетевое устройство решает, какие пакеты будут отправлены первыми? Точки принятия решения основаны в первую очередь на том, насколько хорошо пользовательский интерфейс может выдерживать джиттер, задержку и потерю пакетов. Для решения этих проблем возникают различные проблемы и инструменты QoS. Своевременность: организация очередей с малой задержкой Сетевые интерфейсы пересылают пакеты как можно быстрее. Когда трафик проходит со скоростью, меньшей или равной пропускной способности выходного интерфейса, трафик доставляется по одному пакету за раз, без каких-либо проблем. Когда интерфейс может соответствовать предъявляемым к нему требованиям, перегрузки не возникает. Без перегрузок нет необходимости беспокоиться о дифференцированных типах трафика. Отметки на отдельных пакетах можно наблюдать в статистических целях, но политики QoS, которую нужно применять, нет. Трафик поступает на выходной интерфейс и доставляется. Как было рассказано ранее в лекции "Коммутация пакетов", пакеты доставляются в кольцо передачи после коммутации. Физический процессор исходящего интерфейса удаляет пакеты из этого кольца и синхронизирует их с физической сетевой средой. Что произойдет, если будет передано больше пакетов, чем может поддерживать канал связи? В этом случае пакеты помещаются в очередь, выходную очередь, а не в кольцо передачи. Политики QoS, настроенные на маршрутизаторе, фактически реализуются в процессе удаления пакетов из очереди вывода на кольцо передачи для передачи. Когда пакеты помещаются в очередь вывода, а не в кольцо передачи, интерфейс считается перегруженным. По умолчанию перегруженные сетевые интерфейсы доставляют пакеты в порядке очереди (FIFO). FIFO не принимает стратегических решений на основе дифференцированных классов трафика; скорее, FIFO просто обслуживает буферизованные пакеты по порядку настолько быстро, насколько это позволяет выходной интерфейс. Для многих приложений FIFO - неплохой способ удаления пакетов из очереди. Например, в реальном мире может быть небольшое влияние, если пакет протокола передачи гипертекста (HTTP, протокол, используемый для передачи информации World Wide Web) с одного веб-сервера передается раньше, чем пакет с другого веб-сервера. Для других классов трафика большое внимание уделяется своевременности. В отличие от FIFO, некоторые пакеты следует переместить в начало очереди и отправить как можно быстрее, чтобы избежать задержки и влияния на работу конечного пользователя. Одно из последствий - это пакет, прибывающий слишком поздно, чтобы быть полезным. Другой удар заключается в том, что пакет вообще не поступает. Стоит рассмотреть каждый из этих сценариев, а затем несколько полезных инструментов QoS для каждого. Голосовой трафик по IP (VoIP) должен вовремя. При рассмотрении голосового трафика подумайте о любом голосовом чате в реальном времени, который осуществляется через Интернет с помощью такого приложения, как Skype. В большинстве случаев качество связи приличное. Вы можете слышать другого человека. Этот человек может вас слышать. Разговор протекает нормально. С таким же успехом вы можете находиться в одной комнате с другим человеком, даже если он находится на другом конце страны. Иногда качество звонков VoIP может снижаться. Вы можете услышать серию субсекундных заиканий в голосе человека, при этом скорость передачи голоса нерегулярна. В этом случае вы испытываете джиттер, что означает, что пакеты не поступают стабильно вовремя. Чрезмерно длинные промежутки между пакетами приводят к слышимому эффекту заикания. Хотя пакеты не были потеряны, они не были своевременно доставлены по сетевому пути. Где-то по пути пакеты задерживались достаточно долго, чтобы появились слышимые артефакты. На рисунке 5 показан джиттер при пакетной передаче. Качество вызова VoIP также может пострадать из-за потери пакетов, когда пакеты на сетевом пути были сброшены по пути. Хотя существует множество потенциальных причин потери пакетов в сетевых путях, рассмотренный здесь сценарий - это "отбрасывание хвоста", когда поступило такое количество трафика, которое выходит за пределы возможностей выходного интерфейса, и в буфере не остается места для добавления в очередь дополнительных излишков. В результате отбрасываются самые последние поступления трафика; это падение называется хвостовым падением. Качество вызова VoIP также может пострадать из-за потери пакетов, когда пакеты на сетевом пути были сброшены по пути. Хотя существует множество потенциальных причин потери пакетов в сетевых путях, рассмотренный здесь сценарий - это "отбрасывание хвоста", когда поступило такое количество трафика, которое выходит за пределы возможностей выходного интерфейса, и в буфере не остается места для добавления в очередь дополнительных излишков. В результате отбрасываются самые последние поступления трафика; это падение называется хвостовым падением. Когда трафик VoIP отбрасывается, слушатель слышит результат потери. Есть пробелы, в которых голос говорящего полностью отсутствует. Отброшенные пакеты могут проходить в виде тишины, поскольку последний бит принятого звука зацикливается, чтобы заполнить пробел, продолжительное шипение или другой цифровой шум. На рисунке ниже показаны отброшенные пакеты через маршрутизатор или коммутатор. Чтобы обеспечить стабильное качество вызовов даже в условиях перегруженности сетевого пути, необходимо применять схему приоритезации QoS. Эта схема должна соответствовать следующим критериям. Трафик VoIP должен быть доставлен: потеря пакетов VoIP приводит к слышимому прерыванию разговора. Трафик VoIP должен доставляться вовремя: задержка или прерывание пакетов VoIP приводит к слышимым заиканиям. Трафик VoIP не должен ограничивать пропускную способность других классов трафика: так же важно, как и VoIP, хорошо написанные политики QoS уравновешивают своевременную доставку голосовых пакетов с необходимостью для других классов трафика также использовать канал. Распространенной схемой, используемой для определения приоритетов трафика, чувствительного к потерям и jitter, является организация очередей с низкой задержкой (LLQ). Никакие RFC IETF не определяют LLQ; скорее, поставщики сетевого оборудования изобрели LLQ в качестве инструмента в наборе политик QoS для определения приоритетов трафика, требующего низкой задержки, jitter и потерь, например, голоса. LLQ есть два ключевых элемента. Трафик, обслуживаемый LLQ, передается как можно быстрее, чтобы избежать задержки и минимизировать джиттер. Трафик, обслуживаемый LLQ, не может превышать определенный объем полосы пропускания (обычно рекомендуется не более 30% доступной полосы пропускания). Трафик, превышающий предел пропускной способности, скорее отбрасывается, чем передается. Этот метод позволяет избежать потери трафика других классов. В этой схеме подразумевается компромисс для услуг классов трафика посредством LLQ. Трафик будет обслуживаться как можно быстрее, эффективно перемещая его в начало очереди, как только он обнаруживается на перегруженном интерфейсе. Загвоздка в том, что существует ограничение на то, сколько трафика в этом классе будет обрабатываться таким образом. Это ограничение налагается сетевым инженером, составляющим политику QoS. В качестве иллюстрации предположим, что канал WAN имеет доступную пропускную способность 1024 Кбит/с. Этот канал соединяет головной офис с облаком WAN поставщика услуг, которое также соединяет несколько удаленных офисов с головным офисом. Это загруженный канал WAN, по которому проходит трафик VoIP между офисами, а также трафик веб-приложений и резервный трафик время от времени. Кроме того, предположим, что система VoIP кодирует голосовой трафик с помощью кодека, требующего 64 Кбит/с на разговор. Теоретически, этот канал с пропускной способностью 1024 Кбит/с может обеспечить одновременные разговоры VoIP 16 × 64 Кбит/с. Однако это не оставит места для других типов трафика, которые присутствуют. Это занятое соединение WAN! Решение должно быть принято при написании политики QoS. Сколько голосовых разговоров будет разрешено LLQ, чтобы избежать нехватки оставшегося трафика полосы пропускания? Можно было бы сделать выбор, чтобы ограничить LLQ пропускной способностью только 512 Кбит/с, что было бы достаточно для обработки восьми одновременных разговоров, оставив остальную часть канала WAN для других классов трафика. Предполагая, что канал перегружен, что произойдет с девятым разговором VoIP, если он должен находиться в ситуации, чтобы политика QoS была эффективной? Этот вопрос на самом деле наивен, потому что он предполагает, что каждый разговор обрабатывается отдельно политикой QoS. Фактически, политика QoS рассматривает весь трафик, обслуживаемый LLQ, как одну большую группу пакетов. После присоединения девятого разговора VoIP будет трафик на 576 Кбит/с, который будет обслуживаться LLQ, которому выделено только 512 Кбит/с. Чтобы найти количество отброшенного трафика, вычтите общий трафик, выделенный для LLQ, из общего предлагаемого трафика: 576 Кбит/с - 512 Кбит/с = 64 Кбит/с трафик LLQ будет отброшен в соответствии с ограничением полосы пропускания. Отброшенные 64 Кбит/с будут исходить от класса трафика LLQ в целом, что повлияет на все разговоры VoIP. Если десятый, одиннадцатый и двенадцатый разговор VoIP присоединиться к LLQ, проблема станет более серьезной. В этом случае 64 Кбит/с × 4 = 256 Кбит/с несоответствующего трафика, который будет отброшен из LLQ, что приведет к еще большим потерям во всех разговорах VoIP. Как показывает этот пример, для управления перегрузкой необходимо знать состав приложений, время пиковой нагрузки, требования к полосе пропускания и доступные варианты сетевой архитектуры. Только после того, как будут учтены все моменты, можно найти решение, отвечающее бизнес-целям. Например, предположим, что 1024 Кбит/с - это максимальное значение, которое вы можете сделать для линии дальней связи из-за ограничений по стоимости. Вы можете увеличить ограничение полосы пропускания LLQ до 768 Кбит/с, чтобы обеспечить 12 разговоров со скоростью 64 Кбит/с каждый. Однако для другого трафика останется только 256 Кбит/с, чего, возможно, недостаточно для удовлетворения потребностей вашего бизнеса в других приложениях. В этом случае можно согласовать с администратором системы голосовой связи использование голосового кодека, требующего меньшей полосы пропускания. Если новый кодек, требующий только 16 Кбит/с полосы пропускания на вызов, развернут вместо исходных 64 Кбит/с, 32 разговора VoIP могут быть перенаправлены без потерь через LLQ с выделенной полосой пропускания 512 Кбит/с. Компромисс? Качество голоса. Человеческий голос, закодированный со скоростью 64 Кбит/с, будет звучать более четко и естественно по сравнению с голосом, закодированным на скорости 16 Кбит/с. Также может быть лучше кодировать со скоростью 16 Кбит/с, чтобы отбрасывать меньше пакетов и, следовательно, общее качество лучше. Какое решение применить, будет зависеть от конкретной ситуации. Через интерфейс может пройти больше трафика, чем указано в ограничении полосы пропускания LLQ. Если ограничение полосы пропускания для трафика, обслуживаемого LLQ, установлено на максимум 512 Кбит/с, возможно, что трафик класса более чем на 512 Кбит/с пройдет через интерфейс. Такое запрограммированное поведение проявляется только в том случае, если интерфейс не перегружен. В исходном примере, где используется кодек 64 Кбит/с, передача 10 разговоров со скоростью 64 Кбит/с по каналу приведет к передаче голосового трафика 640 Кбит/с по каналу пропускной способности 1024 Кбит/с (1024 Кбит/с - 640 Кбит/с = 384 Кбит/с осталось). Пока все другие классы трафика остаются ниже общего использования полосы пропускания 384 Кбит / с, канал не будет перегружен. Если канал не перегружен, политики QoS не вступают в силу. Если политика QoS не действует, то ограничение полосы пропускания LLQ в 512 Кбит/с не влияет на 640 Кбит/с агрегированного голосового трафика. В этой статье о LLQ контекстом был голосовой трафик, но имейте в виду, что LLQ может применяться к любому желаемому виду трафика. Однако в сетях, где присутствует VoIP, VoIP обычно является единственным трафиком, обслуживаемым LLQ. Для сетей, в которых нет трафика VoIP, LLQ становится интересным инструментом, гарантирующим своевременную доставку с малой задержкой и дрожанием других видов трафика приложений. Однако LLQ - не единственный инструмент, доступный для составителя политики QoS. Также пригодятся несколько других инструментов.
img
В 2013 году была опубликована версия OSPF для маршрутизации IPv6. Известный как OSPFv3, он был первоначально указан в RFC 2740, который позже был заменен на RFC 5340 и обновлен более поздними стандартами. Маршаллинг данных в OSPF Как и многие другие протоколы, разработанные на заре проектирования сетей, OSPF был разработан для минимизации вычислительной мощности, памяти и полосы пропускания, необходимых для передачи информации о маршрутизации IPv4 по сети. Два конкретных выбора, сделанных на ранних этапах процесса проектирования OSPF, отражают эту озабоченность по поводу использования ресурсов: OSPF использует поля фиксированной длины для упорядочивания данных, а не TLV. Это экономит накладные расходы на перенос дополнительных метаданных в виде заголовков Type Length Value (TLV), снижает требования к обработке, позволяя сопоставлять структуры данных фиксированного размера в памяти с пакетами по мере их приема с канала связи, и уменьшает размер данных OSPF на линии. OSPF разбивает базу данных топологии на несколько типов данных, а не полагается на один LSP с TLV. Это означает, что каждый вид информации - доступность, топология и т. д. - передается в уникальном формате пакета. Каждый тип информации, которую OSPF может нести, переносится в разном типе Link State Advertisement (LSA). Вот некоторые из наиболее примечательных типов LSA: Тип 1: код 0x2001, Router LSA Тип 2: код 0x2002, Network LSA Тип 3: код 0x2003, Inter-Area Prefix LSA Тип 4: код 0x2004, Inter-Area Router LSA Тип 5: код 0x4005, AS-external LSA Тип 7: код 0x2007, Type-7 (NSSA) LSA Существует ряд других типов LSA, включая непрозрачные данные, членство в группе многоадресной рассылки и LSA с лавинной рассылкой (например, для одного соседа, одного канала или одного домена лавинной рассылки). Каждый маршрутизатор OSPF генерирует ровно один Router LSA (тип 1). Этот LSA описывает любых соседей, примыкающих к объявляемому маршрутизатору, а также любые подключенные достижимые пункты назначения. Состояние каналов связи на этих соседей и пунктов назначения определяется из объявления соседей и пункта назначения. Несмотря на фразу «состояние канала», каналы не объявляются как отдельная «вещь» (это часто вызывает путаницу). Если Router LSA становится слишком большим, чтобы поместиться в один IP-пакет (из-за MTU канала), он будет разделен на несколько IP-фрагментов для передачи от маршрутизатора к маршрутизатору. Каждый маршрутизатор повторно собирает весь Router LSA перед его локальной обработкой и лавинно рассылает весь Router LSA, если он изменяется. OSPF также использует несколько разных типов пакетов - они не совпадают с типами LSA. Скорее, их можно рассматривать как разные «службы» в OSPF или, возможно, как разные «номера портов», выполняемые поверх протокола User Datagram Protocol (UDP) или протокола Transmission Control Protocol (TCP). Hello - это тип 1. Они используются для обнаружения и сохранения соседей. Database Descriptor (DBD) относится к типу 2. Они используются для описания таблицы локальной топологии. Link State Request (LSR) относится к типу 3. Они используются для запроса определенных объявлений состояния канала от соседнего маршрутизатора. Link State Update (LSU) относится к типу 4. Они используются для передачи объявлений состояния канала. Link State Acknowledgment - это тип 5. Это просто список заголовков LSA. Любой LSA, указанный в этом пакете, подтверждается как полученный передающим маршрутизатором. Обнаружение соседей и топологии В качестве протокола состояния канала OSPF должен гарантировать, что каждый маршрутизатор в пределах области (flooding domain) имеет одну и ту же базу данных для расчета loop-free путей. Любое изменение в базе данных общей топологии может привести к возникновению зацикливания маршрутизации, который будет длиться до тех пор, пока существует изменение в базе данных общей топологии. Таким образом, одной из целей формирования соседей OSPF является обеспечение надежной flooding рассылки информации о топологии через сеть. Вторая причина формирования соседей OSPF - обнаружение топологии сети путем определения того, какие маршрутизаторы находятся рядом с локальным маршрутизатором. На рисунке 1 показан процесс формирования соседей OSPF. На рисунке 1: B отправляет пакет приветствия к A. Поскольку приветствие B содержит пустой список видимых соседей, A переводит B в состояние инициализации и добавляет B в список видимых соседей. A передает приветствие B в списке видимых соседей. B получает приветствие от A и отправляет приветствие с A в списке видимых соседей. A получает это приветствие. Поскольку сам A находится в списке соседей, A помещает B в двустороннее состояние. Это означает, что A проверил наличие двусторонней связи между собой и B. Если по этой линии избираются DR и BDR, то выборы происходят после шага 5. Как только выборы завершены, DR и BDR переводятся в состояние exstart. Во время этого состояния ведущий и ведомый выбираются для обмена DBDS и LSA. По сути, мастер управляет потоком DBDS и LSA между новыми соседними маршрутизаторами. Соседние маршрутизаторы на канале point-to-point технически переходят непосредственно в состояние full state в этой точке. B переведен в состояние обмена. A отправляет B набор DBD с описанием своей базы данных. B отправляет набор DBD с описанием своей базы данных в A. A отправляет запрос состояния канала B для каждого LSA, описанного B, и A не имеет его копии в своей локальной таблице топологии. B отправляет LSA для каждого запроса Link State (LS) от A. 11. Как только базы данных синхронизируются, B переводится в full state. Процесс формирования соседей OSPF проверяет MTU на обоих концах линии связи, передавая MTU исходящего интерфейса в hello сообщении. Если два hello-пакета не совпадают по размеру MTU, два маршрутизатора OSPF не образуют смежности. Надежная лавинная рассылка. OSPF должен не только гарантировать завершение первоначального обмена информацией о топологии, но также гарантировать, что текущие изменения в топологии сети будут переданы на каждый маршрутизатор во flooding domain. На рисунке 2 показан заголовок LSA OSPF. Изучение этого заголовка поможет нам понять, как OSPF надежно массово рассылает информацию о топологии и доступности через сеть. На рисунке 2: LS Age - это (примерно) количество секунд с момента создания Link State Advertisement. Это число идет увеличивается, а не уменьшается. Когда LS Age достигает значения MAXAGE (на любом маршрутизаторе, а не только на исходном маршрутизаторе), маршрутизатор увеличивает порядковый номер на 1, устанавливает для LS Age максимальное число и повторно загружает LSA по всей сети. Это позволяет удалить старую информацию о топологии и доступности, которая не обновлялась некоторое время. Маршрутизатор, который инициирует какой-либо конкретный LSA, обновит свои LSA за некоторое количество секунд до того, как это поле LSA Age достигнет максимума- это интервал обновления LS. Link State Identifier - это уникальный идентификатор, присвоенный исходным маршрутизатором для описания этого LSA. Обычно это адрес канала или какой-либо адрес локального уровня канала (например, Ethernet Media Access Control (MAC-адрес). Advertising Router - это идентификатор маршрутизатора-отправителя. Его часто путают с IP-адресом, поскольку он часто является производным от локально настроенного IP-адреса, но это не IP-адрес. Link State Sequence Number указывает версию LSA. Как правило, более высокие числа означают более новые версии, хотя существуют более ранние версии OSPF, в которых используется круговое числовое пространство, а не абсолютно увеличивающееся. Реализации, которые используют абсолютно увеличивающееся числовое пространство, перезапускают процесс OSPF, если достигнут конец числового пространства. Link State Checksum - это контрольная сумма, вычисляемая для LSA, используемая для обнаружения ошибок при передаче или хранении информации. Рисунок 3 используется для изучения процесса flooding рассылки. На рисунке 3: Линия связи на 2001: db8: 3e8: 100 :: / 64 настроена, запущена, подключена и т. д. A перестраивает свой Router LSA (тип 1), чтобы включить эту новую информацию о доступности, упаковывает его в LSU (который может быть фрагментирован при размещении в IP-пакеты) и лавинно рассылает его B. B получает это LSA и подтверждает его получение подтверждением состояния канала (link state acknowledgment). A повторно отправит LSA, если B не подтвердит его достаточно быстро. Теперь B проверит свою таблицу топологии, чтобы определить, является ли этот LSA новым или копией уже имеющегося. B определяет это в первую очередь путем изучения порядкового номера, включенного в сам LSA. Если это новый (или обновленный) LSA, B инициирует тот же процесс для лавинной рассылки измененного LSA в C. Подведение итогов об OSPF OSPF можно описать как: Изучение доступных пунктов назначения через конфигурацию и локальную информацию (проактивный протокол) Использование лавинной рассылки для синхронизации базы данных в каждой промежуточной системе в домене лавинной рассылки (протокол состояния канала) Расчет путей без петель с использованием алгоритма SPF Дейкстры Проверка двусторонней связи при формировании соседей путем переноса списка «видимых соседей» в своих пакетах приветствия. Проверка MTU при формировании смежности путем переноса MTU в приветственном пакете OSPF широко используется в малых и крупных сетях, включая розничную торговлю, поставщиков услуг, финансовые и многие другие предприятия. Общие элементы OSPF и IS-IS В предыдущих лекциях были рассмотрены аспекты, отличающие OSPF и IS-IS друг от друга. Однако есть ряд вещей, которые OSPF и IS-IS реализовали достаточно схожими способами, чтобы рассматривать их решения как простые варианты. К ним относятся обработка каналов с множественным доступом, концепция Shortest Path Tree и способ way two-way. Каналы с множественным доступом Каналы с множественным доступом, такие как Ethernet, - это каналы, по которым подключенные устройства «совместно используют» доступную полосу пропускания, и каждое устройство может отправлять пакеты напрямую любому другому устройству, подключенному к тому же каналу. Каналы с множественным доступом создают особые проблемы для протоколов, которые синхронизируют базу данных по каналу. Рассмотрим рисунок 3 для понимания. Один из вариантов, который протокол может использовать при работе по каналу с множественным доступом, - это просто сформировать смежности, как это обычно происходит по каналу «точка-точка» (point-to-point). Например, на рисунке 3: A может образовывать смежность с B, C и D. B может образовывать смежность с A, C и D. C может образовывать смежность с A, B и D. D может образовывать смежность с A, B и C Если используется этот шаблон формирования смежности, когда A получает новый фрагмент LSP (IS-IS) или LSA (OSPF) от некоторого маршрутизатора, не подключенного к совместно используемому каналу: A передаст новый фрагмент или LSA по отдельности B, C и D. Когда B получает фрагмент или LSA, он передаст новый фрагмент или LSA в C и D отдельно. Когда C получает фрагмент или LSA, он передает новый фрагмент или LSA D. Учитывая передачу каждого фрагмента или LSA, а также следующий CSNP или подтверждение, чтобы гарантировать синхронизацию локальной базы данных на каждом маршрутизаторе, большое количество пакетов должно пересекать совместно используемый канал, чтобы гарантировать синхронизацию базы данных каждого устройства. Чтобы уменьшить переполнение каналов множественного доступа, IS-IS и OSPF выбирают одно устройство, которое отвечает за обеспечение того, чтобы каждое устройство, подключенное к каналу, имело синхронизированную базу данных. На рисунке 3 для IS-IS: Одно устройство выбрано для управления лавинной рассылкой по каналу. В IS-IS это устройство называется выделенной промежуточной системой (Designated Intermediate System - DIS). Каждое устройство с новой информацией о состоянии канала отправляет фрагмент на адрес многоадресной рассылки, чтобы каждое устройство в общем канале получило его. Ни одно из устройств, подключенных к каналу, не отправляет никаких подтверждений при получении обновленного фрагмента. DIS регулярно отправляет копию своего CSNP на один и тот же адрес многоадресной рассылки, поэтому каждое устройство в канале множественного доступа получает его копию. Если какое-либо устройство на общем канале обнаружит, что в нем отсутствует какой-то конкретный фрагмент, на основе описания базы данных DIS в CSNP, оно отправит PSNP в канал, запрашивая недостающую информацию. Если какое-либо устройство в общем канале обнаружит, что у него есть информация, которой нет у DIS, на основе описания базы данных DIS в CSNP, оно перенаправит недостающий фрагмент в канал. Таким образом, новая информация о состоянии канала передается по линии минимальное количество раз. На рисунке 3 для OSPF: Для управления лавинной рассылкой по каналу выбирается одно устройство, называемое назначенным маршрутизатором (Designated Router - DR). Также выбирается резервное устройство, называемое резервным назначенным маршрутизатором (Backup Designated Router - BDR). Каждое устройство с новой информацией о состоянии канала пересылает ее на специальный адрес многоадресной рассылки, контролируемый DR и BDR (маршрутизаторами, работающими только как DR). DR получает этот LSA, проверяет его, чтобы определить, содержит ли он новую информацию, а затем повторно загружает его на многоадресный адрес, который прослушивают все маршрутизаторы OSPF на канале (все маршрутизаторы SPF). Однако выбор DIS или DR не влияет только на лавинную передачу информации по каналу множественного доступа. Это также влияет на способ вычисления SPF через канал. Рисунок 4 показывает это. На рисунке 4 A выбран в качестве DIS или DR для схемы множественного доступа. A не только гарантирует, что каждое устройство в канале имеет синхронизированную базу данных, но также создает псевдоузел или p-узел и объявляет его, как если бы это было реальное устройство, подключенное к сети. Каждый из маршрутизаторов, подключенных к совместно используемому каналу, объявляет о возможности подключения к p-узлу, а не к каждой из других подключенных систем. В IS-IS A создает LSP для p-узла. Этот p-узел объявляет канал с нулевой стоимостью обратно каждому устройству, подключенному к каналу множественного доступа. В OSPF A создает Network LSA (тип 2). Без этого p-узла сеть выглядит как full mesh (полная сетка) для других промежуточных систем в домене лавинной рассылки, как показано в левой части рисунка 4. С p-узлом сеть выглядит как hub-and-spoke с p-узлом в качестве концентратора. Каждое устройство объявляет канал на p-узел, при этом стоимость канала устанавливается равной стоимости локального интерфейса для совместно используемого канала. В свою очередь p-узел возвращает канал с нулевой стоимостью обратно на каждое устройство, подключенное к общему каналу. Это снижает сложность вычисления SPF для крупномасштабных каналов с множественным доступом. Концептуализация связей, узлов и достижимости в протоколах состояний каналов Один сбивающий с толку аспект протоколов состояния каналов - это то, как узлы, каналы и достижимость взаимодействуют друг с другом. Рассмотрим рисунок 5. И в OSPF, и в IS-IS узлы и каналы используются как Shortest Path Tree, как показано более темными сплошными линиями. Пунктирные линии показывают, как информация о доступности прикрепляется к каждому узлу. Каждый узел, подключенный к конкретному достижимому пункту назначения, объявляет пункт назначения - не только один из двух узлов, подключенных к каналу точка-точка, но и оба. Почему так? Основная причина в том, что это просто самое простое решение для объявления доступных мест назначения. Если вы хотите создать протокол маршрутизации, который объявлял бы каждое достижимое назначение только как подключенное к одному устройству, вам нужно было бы найти способ выбрать, какое из подключенных устройств должно объявлять достижимое назначение. Кроме того, если выбранное устройство выйдет из строя, то какое-то другое устройство должно взять на себя объявление достижимого пункта назначения, что может занять время и негативно повлиять на конвергенцию. Наконец, позволяя каждому устройству объявлять о доступности для всех подключенных пунктов назначения, вы фактически можете найти кратчайший путь к каждому пункту назначения. Проверка двустороннего подключения в SPF Двусторонняя связь является проблемой для плоскостей управления в двух разных местах: между соседними устройствами и при вычислении путей без петель через сеть. И IS-IS, и OSPF также обеспечивают двустороннюю связь при вычислении путей без петель. Существенным элементом является проверка обратной связи. Рисунок 6 используется для демонстрации этого. На рисунке 6 направление каждого звена обозначено стрелкой (или набором стрелок). Связь [A,B] является однонаправленной по отношению к A. Остальные связи являются двусторонними (двунаправленными). При вычислении SPF D будет делать следующее: При обработке информации о состоянии связи C обратите внимание, что C утверждает, что он подключен к B. D найдет информацию о состоянии связи B и проверит, чтобы убедиться, что B также утверждает, что он подключен к C. В этом случае B действительно утверждает, что подключен к C, поэтому D будет использовать канал [B, C]. При обработке информации о состоянии связи B обратите внимание, что B утверждает, что он подключен к A. Однако, изучая информацию о состоянии связи A, D не может найти никакой информации от A, утверждающего, что он подключен к B. Из-за этого D не будет использовать канал [A, B]. Эта проверка обычно выполняется либо до того, как линия связи будет перемещена в TENT, либо до того, как линия связи будет перемещена из TENT в PATH.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59