По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В интерфейсе Elastix 4 существует большое множество инструментов, позволяющих осуществлять автоматическое распределение звонков. Про один из таких инструментов, мы расскажем в сегодняшней статье. Речь пойдёт о модуле Follow Me, с помощью которого можно перенаправить звонок, поступивший на определенный внутренний номер по любому направлению, доступному на IP-АТС. Настройка Давайте перейдём к настройке. Для того, чтобы попасть в модуль проходим следующий путь – с главной страницы - PBX → PBX Configuration → Follow Me, откроется следующее окно: Справа находится список доступных внутренних номеров (Extensions), настроенных на нашей IP-АТС, для которых мы будем настраивать правила Follow Me. Для каждого Extension’а правила настраиваются отдельно. Выберем из списка нужный номер, например - 112 – Operator2, откроется функционал модуля Follow Me: Как видно, функционал модуля делится на 4 части - Edit Follow Me, Call Confirmation Configuration, Change External CID Configuration и Destination if no answer Если нажать в самом верху на кнопку Edit Extension 112, то мы попадаем в модуль настройки внутреннего номера – Extensions, для номера 112. Нажав на кнопку Delete Entries, мы удалим правила Follow Me для номера 112. Раздел Edit Follow Me Данном разделе настраиваются основные правила модуля, а именно – стратегия обзвона, время, в течение которого будет звонить телефон 112, прежде чем переключиться на другие номера, список номеров, на которые необходимо распределить звонок по определенной стратегии и т.п. Рассмотрим доступные функции данного раздела: Disable - Включает или отключает правила Follow Me для данного номера Initial Ring Time - Время, в течение которого АТС будет пытаться установить соединение с данным номером, прежде чем включатся правила Follow Me и не пойдёт обзвон номеров из списка Follow-me List Ring Strategy - Стратегия обзвона номеров из списка Follow-me List Ring Time - Время, в течение которого будут АТС будет пытаться установить соединение с номерами, указанными в Follow-me List. Максимально возможное значение – 60 секунд Follow-Me List - Список номеров, на которые необходимо распределить вызов по выбранной в Ring Strategy стратегии. Можно отправлять вызовы на внешние и мобильные номера, для этого нужно указать префикс выхода на внешнюю линию, которую использует ваш провайдер, сам мобильный или внешний номер и в конце обязательно #. Например 984951234567# - где 8 – префикс выхода на внешнюю линию. Extension Quick Pick - На каком номере должна закончиться стратегия обзвона Announcement - Голосовое сообщение. Можно например сообщить, что вызов переводится на секретаря. Записи добавляются через модуль - System Recordings Play Music On Hold? - Проигрывать ли Music On Hold CID Name Prefix - Опционально можно добавить звонкам некий префикс, который будет отображаться на телефонах при звонке по правилам Follow Me. Alert Info - Данная опция помогает различить звонки с разных SIP устройств Раздел Call Confirmation Configuration Данный раздел помогает настроить опции подтверждения принятия звонка. Особенно полезно, когда в Follow Me указаны внешние номера. Confirm Calls - Если данная опция включена и звонок уходит на внешний номер, то удаленной стороне будет озвучено предложение “нажмите 1 если хотите принять звонок”. Remote Announce - Сообщение удаленной стороне с предложением принять звонок, например - “нажмите 1 если хотите принять звонок” Too-Late Announce - Сообщение удаленной стороне о том, что звонок уже успели принять, прежде чем они нажали цифру 1 Раздел Change External CID Configuration В данном разделе доступны настройки отображения CallerID: Destination if no Answer Данный раздел позволяет настроить правила, по которым будет обрабатываться звонок, если ни один из номеров в списке Follow-Me List его не принял. Это может быть любое направление, доступное на IP-АТС – IVR, группа обзвона, голосовая почта и прочие.
img
Многоуровневый коммутатор будет использовать информацию из таблиц, которые созданы (плоскость управления) для построения аппаратных таблиц. Он будет использовать таблицу маршрутизации для построения FIB (информационной базы пересылки) и таблицу ARP для построения таблицы смежности. Это самый быстрый способ переключения, потому что теперь у нас есть вся информация уровня 2 и 3, необходимая для пересылки аппаратных пакетов IP. Давайте посмотрим на информационную таблицу о пересылке и таблицу смежности на некоторых маршрутизаторах. Будем использовать ту же топологию, что и ранее. 3 роутера и R3 имеет интерфейс loopback0. Будем использовать статические маршруты для полного подключения: R1(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R1(config)#ip route 192.168.23.0 255.255.255.0 192.168.12.2 R2(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R3(config)#ip route 192.168.12.0 255.255.255.0 192.168.23.2 Это статические маршруты, которые мы будем использовать. Теперь посмотрим на таблицу маршрутизации и FIB: show ip cef показывает нам таблицу FIB. Вы можете видеть, что есть довольно много вещей в таблице FIB. Ниже даны разъяснения по некоторым из записей: 0.0.0.0/0 - это для интерфейса null0. Когда мы получим IP-пакеты, соответствующие этому правилу, то оно будет отброшено. 0.0.0.0 /32 - это для всех-нулевых передач. Забудьте об этом, так как мы больше не используем его. 3.3.3.0 /24 - это запись для интерфейса loopback0 R3. Обратите внимание, что следующий переход - это 192.168.12.2, а не 192.168.23.3, как в таблице маршрутизации! 192.168.12.0/24 - это наша непосредственно подключенная сеть. 192.168.12.0/32 зарезервировано для точного сетевого адреса. 192.168.12.1/32 - это IP-адрес на интерфейсе FastEthernet 0/0. 192.168.12.2/32 - это IP-адрес на интерфейсе FastEthernet 0/0 R2. 192.168.12.255/32 - это широковещательный адрес для сети 192.168.12.0/24. 224.0.0.0/4 - соответствует всему многоадресному трафику. Он будет удален, если поддержка многоадресной рассылки отключена глобально. 224.0.0.0/24 - соответствует всему многоадресному трафику, зарезервированному для трафика управления локальной сетью (например, OSPF, EIGRP). 255.255.255.255/32 - широковещательный адрес для подсети. Давайте подробно рассмотрим запись для network 3.3.3.0/24: Номер версии говорит нам, как часто эта запись CEF обновлялась с момента создания таблицы. Мы видим, что для достижения 3.3.3.0/24 нам нужно перейти к 192.168.23.3 и что требуется рекурсивный поиск. Следующий прыжок-192.168.12.2. Он также говорит, что это valid cached adjacency (допустимая кэшированная смежность). Существует целый ряд различных смежностей: Null adjacency: используется для отправки пакетов в интерфейс null0. Drop adjacency: это для пакетов, которые не могут быть переданы из-за ошибок инкапсуляции, маршрутов, которые не могут быть разрешены, или протоколов, которые не поддерживаются. Discard adjacency: это относится к пакетам, которые должны быть отброшены из-за списка доступа или другой политики. Punt adjacency: используется для пакетов, которые отправляются на плоскость управления для обработки. Пакеты, которые не пересылаются CEF, обрабатываются процессором. Если у вас есть много таких пакетов, то вы можете увидеть проблемы с производительностью. Вы можете видеть, сколько пакетов было обработано процессором: Вы можете использовать команду show cef not-cef-switched, чтобы проверить это. Количество пакетов указано по причине: No_adj: смежность не является полной.. No_encap: Информация об ARP является неполной. Unsupp’ted: пакет имеет функции, которые не поддерживаются. Redirect: Перенаправление ICMP. Receive: Это пакеты, предназначенные для IP-адреса, настроенного на интерфейсе уровня 3, пакеты, предназначенные для нашего маршрутизатора. Options: В заголовке пакета есть параметры IP-адреса. Access: ошибка сравнения со списком доступа Frag: ошибка фрагментации пакетов Мы также можем взглянуть на таблицу смежности, в которой хранится информация уровня 2 для каждой записи: Вы можете использовать команду show adjacency summary, чтобы быстро посмотреть, сколько у нас есть смежностей. Смежность - это отображение от уровня 2 до уровня 3 и происходит из таблицы ARP. R1#show adjacency Protocol Interface Address IP FastEthernet0/0 192.168.12.2(9) R1 имеет только один интерфейс, который подключен к R2. Вы можете увидеть запись для ip 192.168.12.2, который является интерфейсом FastEthernet 0/0 R2. Давайте увеличим масштаб этой записи: Мы видим там запись для 192.168.12.2 и там написано: CC011D800000CC001D8000000800 Что означает это число? Это MAC-адреса, которые нам нужны, и Ethertype ... давайте разберем поподробнее его: CC011D800000 - это MAC-адрес интерфейса R2 FastEthernet0 / 0 CC001D800000 - это MAC-адрес интерфейса R1 FastEthernet0/0. 0800 - это Ethertype. 0x800 означает IPv4. Благодаря таблицам FIB и смежности у нас есть вся информация уровня 2 и 3, которая нам требуется для перезаписи и пересылки пакетов. Имейте в виду, что перед фактической пересылкой пакета мы сначала должны переписать информацию заголовка: Исходный MAC-адрес. Конечный MAC-адрес. Контрольная сумма кадров Ethernet. TTL IP-пакета. Контрольная сумма IP-пакетов. Как только это будет сделано, мы сможем переслать пакет. Теперь у вас есть представление о том, что такое CEF и как обрабатываются пакеты. Возникает вопрос, а в чем разница между маршрутизаторами и коммутаторами, поскольку многоуровневый коммутатор может маршрутизировать, а маршрутизатор может выполнять коммутацию. Различие между устройствамистанвится все меньше, но коммутаторы обычно используют только Ethernet. Если вы покупаете Cisco Catalyst 3560 или 3750, то у вас будут только интерфейсы Ethernet. У них есть ASICs, поэтому коммутация кадров может выполняться со скоростью линии связи. С другой стороны, маршрутизаторы имеют другие интерфейсы, такие как последовательные каналы связи, беспроводные сети, и они могут быть модернизированы модулями для VPN, VoIP и т. д. Вы не сможете настроить такие вещи, как NAT/PAT на (маленьком) коммутаторе. Однако грань между ними становится все тоньше Маршрутизаторы используются для маршрутизации, коммутаторы уровня 2-для коммутации, но многоуровневые коммутаторы могут выполнять комбинацию того и другого. Возможно, ваш коммутатор выполняет 80% коммутации и 20% маршрутизации или наоборот. TCAM можно "запрограммировать" на использование оптимальных ресурсов с помощью шаблонов SDM. SDM (Switching Database Manager) используется на коммутаторах Cisco Catalyst для управления использованием памяти TCAM. Например, коммутатор, который используется только для коммутации, не требует никакой памяти для хранения информации о маршрутизации IPv4. С другой стороны, коммутатору, который используется только в качестве маршрутизатора, не потребуется много памяти для хранения MAC-адресов. SDM предлагает ряд шаблонов, которые мы можем использовать на нашем коммутаторе, вот пример коммутатора Cisco Catalyst 3560: Выше вы можете видеть, что текущий шаблон является "desktop default", и вы можете видеть, сколько памяти он резервирует для различных элементов. Вот пример других шаблонов: Вот шаблоны SDM для коммутатора. Мы можем изменить шаблон с помощью команды sdm prefer: Вы должны перезагрузить устройство прежде, чем он вступит в силу: SW1#reload Теперь давайте еще раз проверим шаблон: По сравнению с шаблоном "desktop default" мы теперь имеем двойное хранилище для одноадресных MAC-адресов. Однако для маршрутов IPv4 ничего не зарезервировано. Это хорошая идея, чтобы установить шаблон SDM, для того чтобы соответствовать необходимому использованию вашего коммутатора. Если вы делаете как коммутацию, так и маршрутизацию и не уверены в том, какой шаблон выбрать, то вы можете посмотреть на текущее использование TCAM, вот как это сделать: На данном рисунке многое не отображено, но вы можете видеть, как заполняется TCAM в данный момент. Теперь вам есть что сравнить с шаблонами SDM.
img
Вопросы безопасности преследовали Интернет вещей (Internet of Things) с самого момента изобретения. Все, от поставщиков до корпоративных пользователей и потребителей, обеспокоены тем, что их модные новые устройства и системы IoT могут быть скомпрометированы. Проблема на самом деле еще хуже, поскольку уязвимые устройства IoT могут быть взломаны и использованы в гигантских ботнетах, которые угрожают даже правильно защищенным сетям. Но каких именно проблем и уязвимостей следует избегать при создании, развертывании или управлении системами IoT? И, что более важно, что мы можем сделать, чтобы смягчить эти проблемы? Именно здесь вступает в действие OWASP (Open Web Application Security Project) - проект обеспечения безопасности открытых веб-приложений. По его собственным словам, «Проект Интернета вещей OWASP призван помочь производителям, разработчикам и потребителям лучше понять проблемы безопасности, связанные с Интернетом вещей, и позволяют пользователям в любом контексте принимать более обоснованные решения в области безопасности при создании, развертывании или оценке технологий IoT». Давайте рассмотрим топ 10 уязвимостей интернета вещей. 1.Слабые, угадываемые или жестко заданные пароли Использование легко взламываемых, общедоступных или неизменяемых учетных данных, включая бэкдоры во встроенном программном обеспечении или клиентском программном обеспечении, которое предоставляет несанкционированный доступ к развернутым системам. Эта проблема настолько очевидна, что трудно поверить, что это все еще то, о чем мы должны думать. 2. Небезопасные сетевые сервисы Ненужные или небезопасные сетевые службы, работающие на самом устройстве, особенно те, которые подключены к Интернету, которые ставят под угрозу конфиденциальность, целостность или подлинность или доступность информации или допускают несанкционированное удаленное управление. 3. Небезопасные экосистемные интерфейсы Небезопасный веб-интерфейс, API бэкэнда, облачные или мобильные интерфейсы в экосистеме вне устройства, что позволяет компрометировать устройство или связанные с ним компоненты. Общие проблемы включают в себя отсутствие аутентификации или авторизации, отсутствие или слабое шифрование, а также отсутствие фильтрации ввода и вывода. 4. Отсутствие безопасных механизмов обновления Отсутствие возможности безопасного обновления устройства. Это включает в себя отсутствие проверки прошивки на устройстве, отсутствие безопасной доставки (без шифрования при передаче), отсутствие механизмов предотвращения отката и отсутствие уведомлений об изменениях безопасности из-за обновлений. Это постоянная проблема для приложений IoT, так как многие производители и предприятия не заботятся о будущем своих устройств и реализаций. Кроме того, это не всегда технологическая проблема. В некоторых случаях физическое расположение устройств IoT делает обновление - и ремонт или замену - серьезной проблемой. 5. Использование небезопасных или устаревших компонентов Использование устаревших или небезопасных программных компонентов или библиотек, которые могут позволить скомпрометировать устройство. Это включает небезопасную настройку платформ операционной системы и использование сторонних программных или аппаратных компонентов из скомпрометированной цепочки поставок. 6. Недостаточная защита конфиденциальности Личная информация пользователя, хранящаяся на устройстве или в экосистеме, которая используется небезопасно, ненадлежащим образом или без разрешения. Очевидно, что с личной информацией нужно обращаться соответствующим образом. Но ключом здесь является «разрешение». Вы почти ничего не делаете с личной информацией, если у вас нет на это разрешения. 7. Небезопасная передача и хранение данных Отсутствие шифрования или контроля доступа к конфиденциальным данным в любой точке экосистемы, в том числе в состоянии покоя, передачи или во время обработки. В то время как многие поставщики IoT обращают внимание на безопасное хранение, обеспечение безопасности данных во время передачи слишком часто игнорируется. 8. Ограниченное управление устройством Отсутствие поддержки безопасности на устройствах, развернутых в производстве, включая управление активами, управление обновлениями, безопасный вывод из эксплуатации, мониторинг систем и возможности реагирования. Устройства IoT могут быть небольшими, недорогими и развернутыми в большом количестве, но это не означает, что вам не нужно ими управлять. Фактически, это делает управление ими более важным, чем когда-либо. Даже если это не всегда легко, дешево или удобно. 9. Небезопасные настройки по умолчанию Устройства или системы поставляются с небезопасными настройками по умолчанию или не имеют возможности сделать систему более безопасной, ограничивая операторов от изменения конфигурации. 10. Отсутствие физического доступа Отсутствие мер по физической защите, позволяющих потенциальным злоумышленникам получать конфиденциальную информацию, которая может помочь в будущей удаленной атаке или получить локальный контроль над устройством. Что из этого следует? Интернет вещей уже давно стал частью реальности, и с ним нельзя забывать о безопасности. И вопросы безопасности должны ложиться не только на плечи производителей, но и на плечи администраторов и обычных пользователей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59