По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Безопасность личных данных стоит почти наравне с физической безопасностью людей. Развитие Интернет технологий создало возможность мгновенного доступа ко всей информации не выходя из дома. Государственные организации создают электронный порталы, где можно получить любую информацию о себе. Финансовые организации оказывают онлайн услуги клиентам в виде интернет-банкинга. Публичные сети же сделали все это более доступным. Сидя в любом кафе можем проверить свой банковский счет, получить нужную справку в электронном формате, занять онлайн очередь в разных структурах. Но зачастую подключаясь к открытым, бесплатным беспроводным сетям мы даже не задумываемся, а на самом ли деле на том конце стоит маршрутизатор и наши данные не попадают в руки тех, кто не должен их видеть. В публичных сетях много угроз, одной из которых является атака MITM Man-in-the-Middle "Человек посередине" или атака посредника. Вкратце это такой тип атаки когда хакеры, подключившись к точке доступа, могут поместить себя в качестве посредника между двумя пользователями, у которых нет протоколов взаимной аутентификации. Как только злоумышленники полностью завладевают соединением, они могут читать и даже изменять любую передаваемую информацию. Опытные хакеры могут даже извлечь из потока данных информацию о вашей банковской карте. Последствия утраты таких данных очевидны. Такой вид атаки легче организовать в беспроводных сетях, хотя и проводные сети не застрахованы от этой атаки. Но в проводных сетях можно настроить сетевые устройства таким образом, чтобы она реагировала на смену связки IP и MAC-адреса и при обнаружении заблокировать доступ к сети подозрительному устройству. В проводных же сетях, особенно если это публичные сети, всё немного сложнее. Поэтому пользователям придется самим позаботиться о безопасности своих личных данных. Приготовиться к атаке! Чтобы не стать жертвой атаки типа MITM, нужно знать всего несколько правил безопасности. Первое правило - Firewall Во-первых, включите на своём устройстве межсетевой экран. В системе Windows это Windows Defender Firewall. Он по умолчанию включён, если у вас не установлено стороннее ПО, выполняющее ту же функцию. Проверить и включить Firewall можно на панели управления перейдя по одноимённому пункту меню и выбрав Включить/выключить Windows Defender Firewall: Это защитит ваш компьютер от вторжения злоумышленника и кражи ваших электронных данных. Также не помещает установить какой-нибудь антивирус, даже бесплатный, который способен защитить ваше устройство от заражения сетевым червем, который тоже занимается кражей данных и не только. Никакого HTTP! Во-вторых, в публичных сетях лучше избегать пользования услугами онлайн-банкинга. Но если есть сильная необходимость, то убедитесь, что ваш банк обеспечивает шифрованное соединение между вами и сервером. Проверить это легко. При шифрованном соединении в строке браузера перед адресом отображается значок замка, а перед адресом сайта отображается https://. HTTPS это защищенный протокол передачи данных в сети. Hypertext Transfer Protocol основной протокол связи в интернете. Когда пользователь вводит адрес в строке браузера, последний создает соединение с веб-сервером по этому протоколу. Позже была разработана защищенная версия данного протокола, которая отправляет данные поверх SSL или TLS. Такое соединение позволяет шифровать данные перед отправкой на сервер. Шифрование происходит на устройстве пользователя методом асимметричного шифрования с помощью публичного ключа, который сайт отправляет вам вместе с сертификатом. Посмотреть сертификат сайта и публичный ключ можно в том же браузере. В Google Chrome кликаем на значок замка и выбираем Certificate. В открывшемся окне можно увидеть всю информацию о сертификате включая срок действия и подписавшую сертификат центра сертификации. Расшифровать данные сможет только веб-сервер где имеется вторая приватная часть ключа шифрования. И даже если ваши зашифрованные данные попадут в руки злоумышленников, расшифровать их им придется долго. Правда, атака посредника имеет несколько векторов развития и при наличии необходимых навыков злоумышленник может получить доступ даже к шифрованной информации. Например, он может взломать сервера центра сертификации и заполучить все ключи, которые выданы клиентам. Но это уже больше забота самих центров сертификации. Некоторые сайты имеют две версии, защищенную и обычную через http-протокол. Чтобы всегда пользоваться только защищенным соединением, можете устанавливать специальные расширения для браузеров. Шифрование через VPN В-третьих, при подключении к публичным сетям рекомендуется пользоваться VPN сервисами. VPN сервисы создают защищенный туннель между вами и серверами поставщика VPN услуг. Все данные в таком туннеле тоже шифруются надежными алгоритмами шифрования. Услуги VPN предоставляют даже некоторые браузеры, например Opera или Яндекс.Браузер. Так же есть специальные расширения для браузеров и настольные приложения. Правда, при работе через VPN скорость ощутимо падает, но безопасность данных того стоит. Кстати, о том, что такое VPN и как он обходит блокировки можно почитать в нашей статье Ну а напоследок, просто быть повнимательнее. Не нужно подключаться к первой попавшейся беспроводной сети с подозрительным названием. Если вы сидите в кафе, то название точки доступа обычно совпадает с названием объекта. Правда, подмену SSID никто не отменял, но для этого нужно вырубить роутер, безопасность которого забота сотрудников ИТ отдела данного объекта. Безопасного интернет-серфинга!
img
Привет! В предыдущей статье мы рассказывали как установить Asterisk 14.3.0 из “исходных файлов” . Теперь давайте дополним его красивым, удобным графическим интерфейсом. Итак, в данной статье покажем, как установить графический интерфейс FreePBX 13 на Asterisk 14 также из “источников”. Напомню, в качестве операционной системы для сервера Asterisk мы выбрали CentOS 7. Поехали! Подготовка Первым делом, установим стандартные правила Firewall. Для того, чтобы получить доступ к графическому web-интерфейсу, необходимо открыть 80 порт (http). Подключаемся к консоли сервера от пользователя root и вводим следующие команды: firewall-cmd --zone=public --add-port=80/tcp --permanent firewall-cmd –-reload Включаем MariaDB (MySQL). Для того, чтобы корректно работать, FreePBX будет необходим постоянно работающий сервис mariadb и запускаться он должен автоматически: systemctl enable mariadb.service systemctl start mariadb После того, как сервис mariadb успешно запущен, можно запустить скрипт, который позволит ограничить доступ к сервису и убрать некоторые нежелательные разрешения: mysql_secure_installation В качестве web-сервера, FreePBX использует Apache Web Server, поэтому необходимо запустить соответствующий сервис следующими командами: systemctl enable httpd.service systemctl start httpd.service Теперь вносим следующие модификации в для Apache: sed -i 's/(^upload_max_filesize = ).*/120M/' /etc/php.ini sed -i 's/^(User|Group).*/1 asterisk/' /etc/httpd/conf/httpd.conf sed -i 's/AllowOverride None/AllowOverride All/' /etc/httpd/conf/httpd.conf И перезагружаем сервис: systemctl restart httpd.service Установка и настройка FreePBX 13 Теперь, всё готово к установке. Открываем директорию из которой будем производить установки и скачиваем последнюю версию FreePBX: cd /usr/src wget http://mirror.freepbx.org/modules/packages/freepbx/freepbx-13.0-latest.tgz Дожидаемся, пока все файлы буду загружены и приступаем к установке: cd /usr/src tar xfz freepbx-13.0-latest.tgz rm -f freepbx-13.0-latest.tgz cd freepbx ./start_asterisk start ./install –n Проблема Решение Reading /etc/asterisk/asterisk.conf...Error! Unable to read /etc/asterisk/asterisk.conf or it was missing a directories section Если вы столкнулись с данной проблемой, то проверьте файл asterisk.conf, который лежит в директории /etc/asterisk. В данном файле уберите символ (!) напротивs строки [directories] Checking if Asterisk is running and we can talk to it as the 'asterisk' user...Error! Error communicating with Asterisk. Ensure that Asterisk is properly installed and running as the asterisk user Asterisk does not appear to be running Try starting Asterisk with the './start_asterisk start' command in this directory Убедитесь, что сервис Asterisk запущен командой service asterisk start Invalid Database Permissions. The error was: SQLSTATE[28000] [1045] Access denied for user 'root'@'localhost' (using password: NO) Запустите ./install вместо ./install -n и введите все параметры вручную. В частности, обратите внимание, когда система попросит пароль к базе данных database password пароль должен быть пустым. Если же ошибка не уходит, попробуйте ввести пароль root пользователя Error(s) have occured, the following is the retrieve_conf output: exit: 1 Exception: Unable to connect to Asterisk Manager from /var/lib/asterisk/bin/retrieve_conf, aborting in file /var/lib/asterisk/bin/retrieve_conf on line 11 Stack trace: 1. Exception->() /var/lib/asterisk/bin/retrieve_conf:11 Если вы столкнулись с данной проблемой, то при подключении к web-интерфейсу FreePBX, вы увидите ошибку Can Not Connect to Asterisk. Это значит, что amportal (fwconsole) ждёт от вас правильного пароля, который он берёт из БД. Чтобы решить данную проблему, необходимо ввести следующие команды: amportal a m mysql> UPDATE freepbx_settings SET value='amp111' WHERE keyword='AMPMGRPASS'; Если всё предыдущие шаги были выполнены верно, то вы увидите в консоли сообщение об успешной установке FreePBX: Теперь можно зайти на web-интерфейс FreePBX 13, для этого введите в адресную строку браузера адрес сервера Asterisk. Перед вами должно открыться окно создания администратора: Как можно заметить, на скриншоты выше у появилось предупреждение безопасности .htaccess files are disable on this webserver. Please enable them. Опасность оно представляет только если сервер будет смотреть в Интернет. Чтобы её убрать выполним следующие действия. Любым редактором открываем /etc/httpd/conf/httpd.conf, ищем строчку <Directory "/var/www/html"> и изменяем параметр AllowOverride c None на All После чего перезапускаем сервис service httpd restart На этом всё. Не забудьте обновить все модули :) Символы отображаются в виде знаков вопроса Если вы столкнулись с проблемой некорректного отображения кириллических символов, то внесите следующие строки в конфигурационный файл /etc/my.conf в разделе [mysqld]: character-set-server=utf8 collation-server=utf8_unicode_ci
img
Все маршрутизаторы добавляют подключенные маршруты. Затем в большинстве сетей используются протоколы динамической маршрутизации, чтобы каждый маршрутизатор изучал остальные маршруты в объединенной сети. Сети используют статические маршруты - маршруты, добавленные в таблицу маршрутизации посредством прямой настройки - гораздо реже, чем динамическая маршрутизация. Однако статические маршруты иногда могут быть полезны, и они также могут быть полезными инструментами обучения. Статические сетевые маршруты IOS позволяет назначать отдельные статические маршруты с помощью команды глобальной конфигурации ip route. Каждая команда ip route определяет пункт назначения, который может быть сопоставлен, обычно с идентификатором подсети и маской. Команда также перечисляет инструкции пересылки, обычно перечисляя либо исходящий интерфейс, либо IP-адрес маршрутизатора следующего перехода. Затем IOS берет эту информацию и добавляет этот маршрут в таблицу IP-маршрутизации. Статический маршрут считается сетевым, когда пункт назначения, указанный в команде ip route, определяет подсеть или всю сеть класса A, B или C. Напротив, маршрут по умолчанию соответствует всем IP-адресам назначения, а маршрут хоста соответствует одному IP-адресу (то есть адресу одного хоста). В качестве примера сетевого маршрута рассмотрим рисунок 1. На рисунке показаны только детали, относящиеся к статическому сетевому маршруту на R1 для подсети назначения 172.16.2.0/24, которая находится справа. Чтобы создать этот статический сетевой маршрут на R1, R1 настроит идентификатор и маску подсети, а также либо исходящий интерфейс R1 (S0/0/0), либо R2 в качестве IP-адреса маршрутизатора следующего перехода (172.16.4.2). Схема сети устанавливает соединение между двумя маршрутизаторами R1, R2 и двумя хостами 1 и 2. Порт G0/0 .1 R1 подключен к шлейфу слева, который, в свою очередь, подключен к хосту 1, имеющему подсеть 172.16. 1.9. Интерфейс S0/0/0 R1 последовательно подключен к R2 с IP-адресом 172.16.4.2. Интерфейс G0/0.2 на R2 подключен к шлейфу, который, в свою очередь, подключен к хосту 2 с IP-адресом 172.16.2.0.9. Здесь маршрутизатор R1 предназначен для адреса 172.16.2.0/24 в подсети. Пакеты должны перемещаться либо с интерфейса S0/0/0 маршрутизатора R1, либо с маршрутизатора R2 с IP-адресом 172.16.2.0/24. В примере 1 показана конфигурация двух примеров статических маршрутов. В частности, он показывает маршруты на маршрутизаторе R1 на рисунке 2 для двух подсетей в правой части рисунка. При настройке сети маршрутизатор R1 имеет соединение с двумя маршрутизаторами R2 и R3 справа. Интерфейс G0/0 .1 маршрутизатора R1 подключен к заглушке слева и, в свою очередь, подключен к хосту A, имеющему подсеть 172.16.1.9 с маской подсети 172.16.1.0 /24. Справа-интерфейс S0/0/1.1 из R1 с маской подсети 172.16.4.0 / 24 подключается к интерфейсу S0/0/1.2 из R2 с маской подсети 172.16.2.0 / 24 через последовательную линию. Кроме того, интерфейс G0/1/ 0.1 из R1 с маской подсети 172.16.5.0 / 24 подключается к интерфейсу G0/0/0 .3 из R3 с маской подсети 172.16.3.0 / 24 через глобальную сеть. Заглушка подключается к интерфейсу G0/0 .2 из R2, где маска подсети равна 172.16.2.0 / 24 и, в свою очередь, подключена к хосту B, имеющему подсеть 172.16.2.9. Заглушка подключается к интерфейсу G0/0 .3 из R3, где маска подсети равна 172.16.3.0 / 24 и, в свою очередь, подключена к хосту C, имеющему подсеть 172.16.3.9. ip route 172.16.2.0 255.255.255.0 S0/0/0 ip route 172.16.3.0 255.255.255.0 172.16.5.3 Пример 1 Добавление статических маршрутов в R1 В двух примерах команд ip route показаны два разных стиля инструкций пересылки. Первая команда показывает подсеть 172.16.2.0, маска 255.255.255.0, которая находится в локальной сети рядом с маршрутизатором R2. Эта же первая команда перечисляет интерфейс S0 / 0/0 маршрутизатора R1 как исходящий интерфейс. Этот маршрут в основном гласит: Чтобы отправить пакеты в подсеть с маршрутизатора R2, отправьте их через мой собственный локальный интерфейс S0/0/0 (который подключается к R2). Второй маршрут имеет такую же логику, за исключением использования различных инструкций пересылки. Вместо того, чтобы ссылаться на исходящий интерфейс R1, он вместо этого перечисляет IP-адрес соседнего маршрутизатора на WAN-канале в качестве маршрутизатора следующего прыжка. Этот маршрут в основном говорит следующее:чтобы отправить пакеты в подсеть с маршрут. Маршруты, созданные этими двумя командами ip route, на самом деле выглядят немного иначе в таблице IP-маршрутизации по сравнению друг с другом. Оба являются статическими маршрутами. Однако маршрут, который использовал конфигурацию исходящего интерфейса, также отмечается как подключенный маршрут; это всего лишь причуда вывода команды show ip route. В примере 2 эти два маршрута перечислены с помощью статической команды show ip route. Эта команда выводит подробную информацию не только о статических маршрутах, но также приводит некоторые статистические данные обо всех маршрутах IPv4. Например, в этом примере показаны две строки для двух статических маршрутов, настроенных в примере 2, но статистика утверждает, что этот маршрутизатор имеет маршруты для восьми подсетей. IOS динамически добавляет и удаляет эти статические маршруты с течением времени в зависимости от того, работает исходящий интерфейс или нет. Например, в этом случае, если интерфейс R1 S0/0/0 выходит из строя, R1 удаляет статический маршрут к 172.16.2.0/24 из таблицы маршрутизации IPv4. Позже, когда интерфейс снова открывается, IOS добавляет маршрут обратно в таблицу маршрутизации. Обратите внимание, что большинство сайтов используют протокол динамической маршрутизации для изучения всех маршрутов к удаленным подсетям, а не статические маршруты. Однако если протокол динамической маршрутизации не используется, сетевому администратору необходимо настроить статические маршруты для каждой подсети на каждом маршрутизаторе. Например, если бы маршрутизаторы имели только конфигурацию, показанную в примерах до сих пор, ПК А (из рис. 2) не смог бы получать пакеты обратно от ПК В, потому что маршрутизатор R2 не имеет маршрута для подсети ПК А. R2 понадобятся статические маршруты для других подсетей, как и R3. Наконец, обратите внимание, что статические маршруты, которые будут отправлять пакеты через интерфейс Ethernet - LAN или WAN, - должны использовать параметр IP-адреса следующего перехода в команде ip address, как показано в примере 2. Маршрутизаторы ожидают, что их интерфейсы Ethernet смогут достичь любого количества других IP-адресов в подключенной подсети. Ссылка на маршрутизатор следующего перехода определяет конкретное устройство в подключенной подсети, а ссылка на исходящий интерфейс локального маршрутизатора не определяет конкретный соседний маршрутизатор. Статические маршруты хоста Ранее в этой лекции маршрут хоста определялся как маршрут к одному адресу хоста. Для настройки такого статического маршрута команда ip route использует IP-адрес плюс маску 255.255.255.255, чтобы логика сопоставления соответствовала только этому одному адресу. Сетевой администратор может использовать маршруты хоста для направления пакетов, отправленных одному хосту по одному пути, а весь остальной трафик - в подсеть этого хоста по другому пути. Например, вы можете определить эти два статических маршрута для подсети 10.1.1.0 / 24 и Хоста 10.1.1.9 с двумя различными адресами следующего перехода следующим образом: ip route 10.1.1.0 255.255.255.0 10.2.2.2 ip route 10.1.1.9 255.255.255.255 10.9.9.9 Обратите внимание, что эти два маршрута перекрываются: пакет, отправленный в 10.1.1.9, который поступает на маршрутизатор, будет соответствовать обоим маршрутам. Когда это происходит, маршрутизаторы используют наиболее конкретный маршрут (то есть маршрут с наибольшей длиной префикса). Таким образом, пакет, отправленный на 10.1.1.9, будет перенаправлен на маршрутизатор следующего прыжка 10.9.9.9, а пакеты, отправленные в другие пункты назначения в подсети 10.1.1.0/24, будут отправлены на маршрутизатор следующего прыжка 10.2.2.2. Плавающие статические маршруты Затем рассмотрим случай, когда статический маршрут конкурирует с другими статическими маршрутами или маршрутами, изученными протоколом маршрутизации. То есть команда ip route определяет маршрут к подсети, но маршрутизатор также знает другие статические или динамически изученные маршруты для достижения этой же подсети. В этих случаях маршрутизатор должен сначала решить, какой источник маршрутизации имеет лучшее административное расстояние, а чем меньше, тем лучше, а затем использовать маршрут, полученный от лучшего источника. Чтобы увидеть, как это работает, рассмотрим пример, проиллюстрированный на рисунке 3, который показывает другую конструкцию, чем в предыдущих примерах, на этот раз с филиалом с двумя каналами WAN: одним очень быстрым каналом Gigabit Ethernet и одним довольно медленным (но дешево) Т1. В этом проекте сеть Open Shortest Path First Version 2 (OSPFv2) по первичному каналу, изучая маршрут для подсети 172.16.2.0/24. R1 также определяет статический маршрут по резервному каналу к той же самой подсети, поэтому R1 должен выбрать, использовать ли статический маршрут или маршрут, полученный с помощью OSPF. Сетевая диаграмма показывает интерфейс G0 / 0 маршрутизатора R1, который подключен к маршрутизатору R2 через ethernet через облако MPLS. Интерфейс S0 / 0 / 1 R1 соединен с маршрутизатором R3 по последовательной линии. R2 и R3 соединены в ядре облака корпоративной сети, имеющего подсеть 172.16.2.0/24. Маршрутизатор R1 достигает подсети либо по OSPF v1 по основному каналу, либо по статическому маршруту по резервному каналу. По умолчанию IOS отдает предпочтение статическим маршрутам, чем маршрутам, изученным OSPF. По умолчанию IOS предоставляет статическим маршрутам административное расстояние 1, а маршрутам OSPF-административное расстояние 110. Используя эти значения по умолчанию на рисунке 3, R1 будет использовать T1 для достижения подсети 172.16.2.0 / 24 в этом случае, что не является удачным решением. Вместо этого сетевой администратор предпочитает использовать маршруты, изученные OSPF, по гораздо более быстрому основному каналу и использовать статический маршрут по резервному каналу только по мере необходимости, когда основной канал выходит из строя. Чтобы отдавать предпочтение маршрутам OSPF, в конфигурации необходимо изменить настройки административного расстояния и использовать то, что многие сетевики называют плавающим статическим маршрутом. Плавающий статический маршрут перемещается в таблицу IP-маршрутизации или перемещается из нее в зависимости от того, существует ли в настоящее время лучший (меньший) маршрут административного расстояния, полученный протоколом маршрутизации. По сути, маршрутизатор игнорирует статический маршрут в то время, когда известен лучший маршрут протокола маршрутизации. Чтобы реализовать плавающий статический маршрут, вам необходимо использовать параметр в команде ip route, который устанавливает административное расстояние только для этого маршрута, делая значение больше, чем административное расстояние по умолчанию для протокола маршрутизации. Например, команда ip route 172.16.2.0 255.255.255.0 172.16.5.3 130 на маршрутизаторе R1 будет делать именно это - установив административное расстояние статического маршрута равным 130. Пока основной канал остается активным, а OSPF на маршрутизаторе R1 изучает маршрут для 172.16.2.0/24, с административным расстоянием по умолчанию 110, R1 игнорирует статический маршрут. Наконец, обратите внимание, что хотя команда show ip route перечисляет административное расстояние большинства маршрутов в виде первого из двух чисел в двух скобках, команда show ip route subnet явно указывает административное расстояние. В примере 3 показан образец, соответствующий этому последнему примеру. Статические маршруты по умолчанию Когда маршрутизатор пытается маршрутизировать пакет, он может не совпадать с IP-адресом назначения пакета ни с одним маршрутом. Когда это происходит, маршрутизатор обычно просто отбрасывает пакет. Маршрутизаторы могут быть сконфигурированы таким образом, чтобы они использовали либо статически настроенный, либо динамически изучаемый маршрут по умолчанию. Маршрут по умолчанию соответствует всем пакетам, так что, если пакет не соответствует какому-либо другому более конкретному маршруту в таблице маршрутизации, маршрутизатор может, по крайней мере, переслать пакет на основе маршрута по умолчанию. Классический пример, когда компании могут использовать статические маршруты по умолчанию в своих корпоративных сетях TCP / IP, - это когда компания имеет много удаленных узлов, каждый из которых имеет одно относительно медленное WAN-соединение. Каждый удаленный узел имеет только один возможный физический маршрут для отправки пакетов в остальную часть сети. Таким образом, вместо использования протокола маршрутизации, который отправляет сообщения по глобальной сети и использует драгоценную полосу пропускания глобальной сети, каждый удаленный маршрутизатор может использовать маршрут по умолчанию, который направляет весь трафик на центральный сайт, как показано на рисунке 4. Соединение состоит из трех маршрутизаторов: Core, B1 и B1000. Последовательные соединения показаны между маршрутизаторами Core - B1 и Core - B1000. Все эти маршрутизаторы подключены к подсети индивидуально. Маршрутизатор B1 отправляет все нелокальные пакеты в Core через интерфейс S0/0/1. Существует также связь между B1 и B1000. IOS позволяет настроить статический маршрут по умолчанию, используя специальные значения для полей подсети и маски в команде ip route: 0.0.0.0 и 0.0.0.0. Например, команда ip route 0.0.0.0 0.0.0.0 S0/0/1 создает статический маршрут по умолчанию на маршрутизаторе B1-маршрут, который соответствует всем IP-пакетам-и отправляет эти пакеты через интерфейс S0/0/1. В примере 4 показан пример статического маршрута по умолчанию с использованием маршрутизатора R2 с рисунка 1. Ранее на этом рисунке вместе с примером 3 был показан маршрутизатор R1 со статическими маршрутами к двум подсетям в правой части рисунка. Пример 4 завершает настройку статических IP-маршрутов путем настройки R2 в правой части рисунка 1 со статическим маршрутом по умолчанию для маршрутизации пакетов обратно к маршрутизаторам в левой части рисунка. Вывод команды show ip route содержит несколько новых и интересных фактов. Во-первых, он перечисляет маршрут с кодом S, что означает статический, но также со знаком *, что означает, что это кандидат в маршрут по умолчанию. Маршрутизатор может узнать о нескольких маршрутах по умолчанию, и затем маршрутизатор должен выбрать, какой из них использовать; * означает, что это, по крайней мере, кандидат на то, чтобы стать маршрутом по умолчанию. Чуть выше "шлюз последней надежды" относится к выбранному маршруту по умолчанию, который в данном случае является только что настроенным статическим маршрутом с исходящим интерфейсом S0/0/1.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59