По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, друг! Сегодня в статье мы расскажем, как рассчитать IP-адрес подсети с помощью инструмента ipcalc. При управлении сетью, несомненно, придется иметь дело с подсетями. Некоторые сетевые администраторы могут довольно быстро выполнять двоичные вычисления, чтобы определить маску подсети. Тем не менее, другим может потребоваться некоторая помощь, и здесь инструмент ipcalc очень пригодится. Ipcalc на самом деле делает намного больше - он принимает на вход IP-адрес и маску сети и на выходе вы получаете адрес сети, Cisco wildcard маску, широковещательный адрес, минимальный и максимальный хост и общее количество хостов. Вы также можете использовать его в качестве учебного пособия для представления результатов подсетей в простых для понимания двоичных значениях. Некоторые из применений ipcalc: Проверить IP-адрес Показать рассчитанный широковещательный адрес Отображение имени хоста, определенного через DNS Показать сетевой адрес или префикс Как установить ipcalc в Linux Чтобы установить ipcalc, просто запустите одну из приведенных ниже команд в зависимости от используемого дистрибутива Linux. $ sudo apt install ipcalc Пакет ipcalc должен автоматически устанавливаться в CentOS / RHEL / Fedora, и он является частью пакета initscripts, но если по какой-то причине он отсутствует, вы можете установить его с помощью: # yum install initscripts #RHEL/CentOS # dnf install initscripts #Fedora Как использовать ipcalc в Linux Ниже вы можете увидеть несколько примеров использования ipcalc. Получить информацию о сетевом адресе: # ipcalc 192.168.20.0 Результат примера: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте подсеть для 192.168.20.0/24. # ipcalc 192.168.20.0/24 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet Рассчитайте одну подсеть с 10 хостами: # ipcalc 192.168.20.0 -s 10 Результат: Address: 192.168.20.0 11000000.10101000.00010100. 00000000 Netmask: 255.255.255.0 = 24 11111111.11111111.11111111. 00000000 Wildcard: 0.0.0.255 00000000.00000000.00000000. 11111111 => Network: 192.168.20.0/24 11000000.10101000.00010100. 00000000 HostMin: 192.168.20.1 11000000.10101000.00010100. 00000001 HostMax: 192.168.20.254 11000000.10101000.00010100. 11111110 Broadcast: 192.168.20.255 11000000.10101000.00010100. 11111111 Hosts/Net: 254 Class C, Private Internet 1. Requested size: 10 hosts Netmask: 255.255.255.240 = 28 11111111.11111111.11111111.1111 0000 Network: 192.168.20.0/28 11000000.10101000.00010100.0000 0000 HostMin: 192.168.20.1 11000000.10101000.00010100.0000 0001 HostMax: 192.168.20.14 11000000.10101000.00010100.0000 1110 Broadcast: 192.168.20.15 11000000.10101000.00010100.0000 1111 Hosts/Net: 14 Class C, Private Internet Needed size: 16 addresses. Used network: 192.168.20.0/28 Unused: 192.168.20.16/28 192.168.20.32/27 192.168.20.64/26 192.168.20.128/25 Если вы хотите убрать двоичный вывод, вы можете использовать опцию -b, как показано ниже. # ipcalc -b 192.168.20.100 Результат: Address: 192.168.20.100 Netmask: 255.255.255.0 = 24 Wildcard: 0.0.0.255 => Network: 192.168.20.0/24 HostMin: 192.168.20.1 HostMax: 192.168.20.254 Broadcast: 192.168.20.255 Hosts/Net: 254 Class C, Private Internet Чтобы узнать больше об использовании ipcalc, вы можете использовать: # ipcalc --help # man ipcalc
img
У вас проблемы с доступом к удаленному серверу через SSH? Если SSH отвечает сообщением «Connection Refused» (Соединение отклонено), возможно, вам придется изменить запрос или проверить настройки. Почему при использовании SSH возникает отказ в подключении? Существует множество причин, по которым вы можете получить ошибку «Connection Refused» при попытке подключения к серверу по SSH. Чтобы решить эту проблему, вам сначала нужно определить, почему система отказалась от вашего подключения через SSH. Ниже вы найдете некоторые из наиболее распространенных причин, которые могут вызвать отказ в соединении SSH. Клиент SSH не установлен Прежде чем устранять другие проблемы, первым делом необходимо проверить, правильно ли установлен SSH. На машине, с которой вы получаете доступ к серверу, должен быть настроен клиент SSH. Без правильной настройки клиента вы не сможете подключиться к серверу. Чтобы проверить, есть ли в вашей системе клиент SSH, введите в окне терминала следующее: ssh Если терминал предоставляет список параметров команды ssh, клиент SSH установлен в системе. Однако, если он ответит, что команда не найдена (command not found), вам необходимо установить клиент OpenSSH. Решение: установить клиент SSH Чтобы установить клиент SSH на свой компьютер, откройте терминал и выполните одну из команд, перечисленных ниже. Для систем Ubuntu / Debian: sudo apt установить openssh-client Для систем CentOS / RHEL: sudo yum установить openssh-client Демон SSH не установлен на сервере Так же, как вам нужна клиентская версия SSH для доступа к удаленному серверу, вам нужна версия сервера для прослушивания и приема соединений. Таким образом, сервер может отклонить входящее соединение, если SSH-сервер отсутствует или настройка неверна. Чтобы проверить, доступен ли SSH на удаленном сервере, выполните команду: ssh localhost Если на выходе отображается «Connection refused», переходите к установке SSH на сервере. Решение: установите SSH на удаленный сервер Чтобы решить проблему отсутствия сервера SSH, установите сервер OpenSSH. Учетные данные неверны Опечатки или неправильные учетные данные - частые причины отказа в SSH-соединении. Убедитесь, что вы не ошиблись при вводе имени пользователя или пароля. Затем проверьте, правильно ли вы используете IP-адрес сервера. Наконец, убедитесь, что у вас открыт правильный порт SSH. Вы можете проверить, запустив: grep Port /etc/ssh/sshd_config На выходе отображается номер порта, как на картинке ниже. Служба SSH не работает Служба SSH должна быть включена и работать в фоновом режиме. Если служба не работает, демон SSH не может принимать соединения. Чтобы проверить статус службы, введите эту команду: sudo service ssh status Вывод должен ответить, что служба активна. Если терминал отвечает, что служба не работает, включите его, чтобы решить проблему. Решение: включить службу SSH Если система показывает, что демон SSH не активен, вы можете запустить службу, выполнив: systemctl start sshd Чтобы служба запускалась при загрузке, выполните команду: sudo systemctl enable sshd Брандмауэр препятствует подключению SSH SSH может отклонить соединение из-за ограничений брандмауэра. Брандмауэр защищает сервер от потенциально опасных подключений. Однако, если в системе настроен SSH, необходимо настроить брандмауэр, чтобы разрешить SSH-соединения. Убедитесь, что брандмауэр не блокирует SSH-соединения, так как это может вызвать ошибку «Connection refused». Решение: разрешить SSH-подключения через брандмауэр Чтобы решить проблему, о которой мы упоминали выше, вы можете использовать ufw (Uncomplicated Firewall - несложный брандмауэр), инструмент интерфейса командной строки для управления конфигурацией брандмауэра. Введите следующую команду в окне терминала, чтобы разрешить SSH-соединения: sudo ufw allow ssh Порт SSH закрыт Когда вы пытаетесь подключиться к удаленному серверу, SSH отправляет запрос на определенный порт. Чтобы принять этот запрос, на сервере должен быть открыт порт SSH. Если порт закрыт, сервер отказывает в соединении. По умолчанию SSH использует порт 22. Если вы не вносили никаких изменений в конфигурацию порта, вы можете проверить, прослушивает ли сервер входящие запросы. Чтобы вывести список всех прослушивающих портов, запустите: sudo lsof -i -n -P | grep LISTEN Найдите порт 22 в выходных данных и проверьте, установлено ли для него STATE значение LISTEN. Кроме того, вы можете проверить, открыт ли конкретный порт, в данном случае порт 22: sudo lsof -i:22 Решение: откройте порт SSH Чтобы разрешить порту 22 слушать запросы, используйте команду iptables: sudo iptables -A INPUT -p tcp --dport 22 -m conntrack --ctstate NEW,ESTABLISHED -j ACCEPT Вы также можете открывать порты через графический интерфейс, изменив настройки брандмауэра. Отладка и ведение журнала SSH Чтобы проанализировать проблемы SSH в Linux, вы можете включить подробный режим или режим отладки. Когда вы включаете этот режим, SSH выдает отладочные сообщения, которые помогают устранять проблемы с подключением, конфигурацией и аутентификацией. Существует три уровня детализации: уровень 1 (-v) уровень 2 (-vv) уровень 3 (-vvv) Поэтому вместо доступа к удаленному серверу с использованием синтаксиса ssh [server_ip] добавьте параметр -v и выполните: ssh -v [server_ip] В качестве альтернативы вы можете использовать: ssh -vv [server_ip] или ssh -vvv [server_ip]
img
Одним из преимуществ и популярности EIGRP является его быстрая конвергенция в случае сбоя связи. Однако одно, что может замедлить эту конвергенцию, - это конфигурация таймера. Именно этому посвящена эта статья, которая является третьей в серии статей о понимании EIGRP. Предыдущие статьи из цикла про EIGRP: Часть 1. Понимание EIGRP: обзор, базовая конфигурация и проверка Часть 2. Про соседство и метрики EIGRP Часть 2.2. Установка K-значений в EIGRP Следующие статьи из цикла: Часть 4. Пассивные интерфейсы в EIGRP Часть 5. Настройка статического соседства в EIGRP Часть 6. EIGRP: идентификатор роутера и требования к соседству Начнем наше обсуждение таймеров EIGRP с рассмотрения ситуации, когда два соседа EIGRP непосредственно связаны друг с другом. Если физическая связь между ними не работает, подключенный интерфейс каждого роутера отключается, и EIGRP может перейти на резервный путь (то есть возможный маршрут преемника). Такая ситуация показана на следующем рисунке: Роутеры OFF1 и OFF2, показанные на приведенном выше рисунке, соединены друг с другом. Поэтому, если кабель между ними обрывается, каждый из интерфейсов роутера, соединяющихся с этим звеном, отключаются, и EIGRP понимает, что он просто потерял соседа и начинает перестраиваться. Однако нарушение связи между несколькими соседями EIGRP не всегда так очевидно. Например, рассмотрим вариант предыдущей топологии, как показано ниже: Обратите внимание, что между роутерами OFF1 и OFF2 был подключен коммутатор (SW4) на рисунке выше. Если происходит сбой соединения между коммутатором SW4 и роутером OFF1, роутер OFF2 не сразу осознает это, потому что его порт Gig0/1 все еще находится в состоянии up/up. В результате роутер OFF2 может продолжать считать, что роутер OFF1 - это наилучший путь для доступа к сети, такой как 192.0.2.0 /24. К счастью, EIGRP использует таймеры, чтобы помочь EIGRP-спикер роутерам определить, когда они потеряли связь с соседом по определенному интерфейсу. Таймеры, используемые EIGRP, - это таймеры Hello и Hold. Давайте задержимся на мгновение, чтобы изучить их работу, потому что таймер Hold не ведет себя интуитивно. Во-первых, рассмотрим таймер Hello. Как вы можете догадаться, это определяет, как часто интерфейс роутера отправляет приветственные сообщения своему соседу. Однако таймер Hold интерфейса - это не то, как долго этот интерфейс ожидает получения приветственного сообщения от своего соседа, прежде чем считать этого соседа недоступным. Таймер Hold - это значение, которое мы посылаем соседнему роутеру, сообщая этому соседнему роутеру, как долго нас ждать, прежде чем считать нас недоступными. Эта концепция проиллюстрирована на рисунке ниже, где роутер OFF2 настроен с таймером Hello 5 секунд и таймером Hold 15 секунд. Два больших вывода из этого рисунка таковы: Таймер Hello роутера OFF2 влияет на то, как часто он посылает приветствия, в то время как таймер Hold роутера OFF2 влияет на то, как долго роутер OFF1 будет ждать приветствий роутера OFF2. Указанное время Hello и Hold является специфичным для интерфейса Gig 0/1 роутера OFF2. Другие интерфейсы могут быть сконфигурированы с различными таймерами. Поскольку таймер Hold, который мы отправляем, на самом деле является инструкцией, сообщающей соседнему роутеру, как долго нас ждать, а не как долго мы ждем Hello-сообщения соседа, причем у каждого соседа может быть свой набор таймеров. Однако наличие совпадающих таймеров между соседями считается лучшей практикой для EIGRP (и является требованием для OSPF). Чтобы проиллюстрировать конфигурацию и проверку таймеров EIGPR, допустим, что роутер OFF1 имел таймер Hello 1 секунду и таймер Hold 3 секунды на своем интерфейсе Gig 0/1 (подключение к OFF2). Затем мы захотели, чтобы роутер OFF2 имел таймер Hello 5 секунд и таймер Hold 15 секунд на своем интерфейсе Gig 0/1 (подключение к роутеру OFF1). Такая конфигурация укрепляет понятие того, что соседи EIGRP не требуют совпадающих таймеров (хотя лучше всего иметь совпадающие таймеры). В следующем примере показана эта конфигурация таймера для роутеров OFF1 и OFF2. OFF1#conf term Enter configuration commands, one per line. End with CNTL/Z. OFF1(config)#int gig 0/1 OFF1(config-if) #ip hello-interval eigrp 1 1 OFF1(config-if) #ip hold-time eigrp 1 3 OFF1(config-if) #end OFF1# OFF2#conf term Enter configuration commands, one per line. End with CNTL/Z. OFF2(config)#int gig 0/1 OFF2 (config-if) #ip hello-interval eigrp 1 5 OFF2 (config-if) #ip hold-time eigrp 1 15 OFF2(config-if) #end OFF2# Команда ip hello-interval eigrp asn h_intls вводится на каждом роутере для установки таймеров Hello. Параметр asn определяет настроенную автономную систему EIGRP равным 1, и таймер Hello для роутера OFF1 настроен равным 1 секунде, в то время как таймер Hello для роутера OFF2 настроен равным 5 секундам. Аналогично, команда ip hold-time eigrp asn ho_t вводится на каждом роутере для установки таймеров Hold. Опять же, обе команды задают автономную систему 1. Таймер Hold роутера OFF1 настроен на 3 секунды, в то время как таймер Hold роутера OFF2 настроен на 15 секунд. В обоих случаях таймер Hold EIGRP был настроен таким образом, чтобы быть в три раза больше таймера Hello. Хотя такой подход является обычной практикой, он не является обязательным требованием. Кроме того, вы должны быть осторожны, чтобы не установить таймер Hold на роутере со значением меньше, чем таймер Hello. Такая неверная конфигурация может привести к тому, что соседство будет постоянно "падать" и восстанавливаться. Интересно, что Cisco IOS действительно принимает такую неправильную конфигурацию, не сообщая ошибки или предупреждения. EIGRP использует таймер Hello по умолчанию 5 секунд и таймер Hold по умолчанию 15 секунд на LAN интерфейсах. Однако в некоторых ситуациях на интерфейсах, настроенных для Frame Relay, таймеры по умолчанию будут больше. Далее, посмотрим, как мы можем проверить настройки таймера EIGRP. Команда show ip eigrp neighbors, как показано в примере ниже, показывает оставшееся время удержания для каждого соседа EIGRP. Обратите внимание в приведенном выше примере, что значение в столбце Hold равно 2 секундам для роутера OFF1 (то есть 10.1.1.1) и 13 секундам для роутера OFF3 (то есть 10.1.1.10). Эти цифры говорят нам о не настроенных таймерах Hold. Они говорят нам, сколько времени остается до того, как роутер OFF2 отключит этих соседей, в отсутствие приветственного сообщения от этих соседей. Роутер OFF2 перезапускает свой обратный отсчет времени Hold для роутера OFF3 до 15 секунд (таймер Hold роутера OFF3) каждый раз, когда он получает Hello сообщение от OFF3 (которое OFF3 отправляет каждые 5 секунд на основе своего таймера Hello). Поэтому, если вы повторно выполните команду show ip eigrp neighbors на роутере OFF2, вы, вероятно, увидите оставшееся время Hold для роутера OFF3 где - то в диапазоне 10-14 секунд. Однако, поскольку роутер OFF1 настроен с таймером Hold 3 секунды и таймером Hello 1 секунды, оставшееся время Hold, зафиксированно на роутере OFF2 для его соседства с роутером OFF1, обычно должно составлять 2 секунды. Мы можем видеть настроенные значения таймера Hello и Hold для интерфейса роутера, выполнив команду show ip eigrp interfaces detail interface_id, как показано в примере ниже. Вы можете видеть в выходных данных, что интерфейс Gig 0/1 на роутере OFF2 имеет таймер Hello 5 секунд и таймер Hold 15 секунд. Отлично, это закрепили. Теперь почитайте про пассивные интерфейсы в EIGRP.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59