По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет! Сегодня в статье мы рассмотрим базовую настройку IP-АТС компании Cisco – CME – Call Manager Express, или как теперь он называемся Cisco Unified Communications Manager Express – CUCME. Также мы покажем как зарегистрировать телефоны, работающие по протоколам SCCP и SIP. Чтобы понять, что необходимо настроить, рассмотрим, что происходит во время загрузки телефона. Процесс загрузки IP-телефона Cisco можно разделить на несколько этапов: Телефон получает питание по Ethernet кабелю используя PoE (Power over Ethernet 802.3af), либо через блок питания; Коммутатор присылает информацию о голосовом VLAN’e, используя протокол CDP (Cisco Discovery Protocol); Телефон высылает DHCP запрос в голосовой VLAN, а в ответ DHCP сервер присылает информацию о IP адресации, включая DHCP Option 150, где указан адрес TFTP сервера; Телефон связывается с TFTP сервером и скачивает конфигурационный файл и прошивку. В конфигурационном файле находятся данные об адресе и номере порта CME, а также название прошивки, которую он должен использовать. При первом подключении он отсутствует, и телефон скачивает файл по умолчанию XMLDefault.cnf.xml; На основании IP адреса, указанного в конфигурационном файле телефон связывается с сервером обработки вызовов (в нашем случае это CME); Теперь можем приступать к настройке оборудования. Настройка voice VLAN Чтобы разделить голосовой трафик и трафик с данными необходимо настроить голосовой VLAN на каждом порту коммутатора, который соединяется с IP телефонами. switch#conf t – переход в режим конфигурации switch(config)#interface fa0/1 – переход в режим конфигурации интерфейса switch(config-if)#switchport mode access – настройка порта в качестве access switch(config-if)#switchport voice vlan 100 – создание голосового VLAN с id 100 switch(config-if)#switchport access vlan 200 – создание VLAN данных с id 200 switch(config-if)#spanning-tree portfast – включение протокола STP Настройка DHCP Теперь необходимо настроить роутер Cisco как DHCP сервер для голосового VLAN. Команда Option 150 используется для указания адреса TFTP сервера, где хранятся конфигурационные файлы и прошивки. router#ip dhcp pool VOICE – создание DHCP пула router(dhcp-config)#network 192.168.1.0 255.255.255.0 – выделение подсети router(dhcp-config)#default-router 192.168.1.1 – default gateway router(dhcp-config)#option 150 192.168.1.1 – адрес TFTP сервера router(dhcp-config)#dns-server 4.2.2.2 – адрес DNS сервера Настройка NTP Перейдем к настойке времени c использованием протокола NTP, при помощи которого мы сможем выставить корректные дату и время на всех телефонах. router#conf t router(config)#ntp server 64.209.210.20 – указываем адрес NTP сервера router(config)#clock timezone MSK 3 – указываем временную зону Настройка TFTP Хотя маршрутизаторы Cisco можно использовать в качестве TFTP сервера, стоит заметить что для больших телефонных сетей лучше иметь отдельный TFTP сервер, поскольку файлы прошивки и конфигурации могут быстро заполнить всю доступную flash-память. При использовании маршрутизатора в роли TFTP сервера необходимо вручную указать все файлы для скачивания, которые мы поместили во flash-памяти. В нашем примере файлы находятся в папке phone/7940-7960/ router#conf t router(config)#tftp-server flash:/phone/7940-7960/P00308000500.bin alias P00308000500.bin router(config)#tftp-server flash:/phone/7940-7960/P00308000500.loads alias P00308000500.loads router(config)#tftp-server flash:/phone/7940-7960/P00308000500.sb2 alias P00308000500.sb2 router(config)#tftp-server flash:/phone/7940-7960/P00308000500.sbn alias P00308000500.sbn Здесь в команде tftp-server после alias указываем название файла прошивки, который будет запрашивать телефон, поскольку телефон не знает полный путь до файла, а запрашивает его только по названию. Базовые настройки CME и регистрация телефонов Теперь настроим необходимые параметры IP Source Address, Max-DN (Directory Number) и Max-Ephones для работы с протоколом SCCP. router(config)#telephony-service – режим настройки телефонии router(config-telepony)#ip source-address 192.168.1.1 – адрес, на который должны приходить запросы на регистрацию от телефонов router(config-telepony)#max-ephones 24 – максимальное количество поддерживаемых телефонов router(config-telepony)#max-dn 48 – максимальное количество поддерживаемых номеров Параметры max-ephones и max-dn напрямую влияют на объем памяти, которую резервирует маршрутизатор для поддержки службы CME. При установке значения намного выше, чем необходимо, система может резервировать чрезмерные ресурсы и влиять на другие сетевые службы. Кроме того, параметр max-ephones не должен превышать количество приобретенных лицензий на функции. После этого телефоны начнут процесс регистрации. Проверить статус регистрации можно командой show ephone summary Настройка Ephone и Ephone-DN Для начала попробуем разобраться, что это такое и в чем их отличие. Ephone можно представить в качестве физического телефона с MAC адресом, а Ephone-DN в качестве телефонного номера, который мы связываем с телефонным аппаратом. Создадим номер Ephone-DN с номером 101: router#conf t router(config)#ephone-dn 1 – создание номера router(config-ephone-dn)#number 101 – указываем номер router(config-ephone-dn)#description Alexey Dobronravov – описание в CME router(config-ephone-dn)#name Alexey Dobronravov – описание на телефоне Теперь создадим Ephone и свяжем его с реальным телефоном по MAC-адресу: router#conf t router(config)#ephone 1 – создание образа телефона router(config-ephone)#mac-address 0014.1c48.acb1 – указываем MAC-адрес router(config-ephone)#button 1:1 – привязываем номер к аппарату Мы привязываем номер к телефону на его физические кнопки, которые обычно находятся возле экрана. На них как раз можно привязывать линии, и телефон может одновременно несколько номеров. Синтаксис команды через которую идет привязка телефона выглядит как button [физическая кнопка] : [ephone-dn] . Таким образом, в примере мы привязали первой кнопке на телефоне созданный нами номер ephone-dn 1. Теперь можем подключать наш телефон к сети, он пройдет все шаги загрузки и зарегистрируется на нашем CME. Таким же образом настраиваем другие телефоны и номера, после чего мы сможем совершать звонки между телефонами. Проверить статус телефона можно командой show ephone. Регистрация SIP телефона Теперь настроим CME для работы с телефонами по протоколу SIP. Первым делом разрешим звонки между SIP телефонами: router#conf t router(config)#voice service voip router(config-voice)#allow-connections sip to sip Настраиваем период регистрации телефонов (число – это время в секундах, по умолчанию 3600): router#conf t router(config)#voice service voip router(config-voice)#registrar server expires max 3600 min 3600 Создаем класс кодеков, в котором указываем кодеки, которые будут использованы: router#conf t router(config)#voice class codec 1 router(config-voice)#codec preference 1 g711alaw - кодек первого приоритета router(config-voice)#codec preference 1 g711ulaw - кодек второго приоритета router(config-voice)#codec preference 1 g729br8 - кодек третьего приоритета Создаем DN: router#conf t router(config)#voice register dn 1 – создаем DN router(config-voice-register-dn)#number 201 – указываем номер Настраиваем телефон: router#conf t router(config)#voice register pool 1 router(config-voice-register-pool)#id mac 0014.1c48.acb2 – указываем MAC телефона router(config-voice-register-pool)#number 1 dn 1 – привязываем номер к первой линии router(config-voice-register-pool)#voice-class codec 1 – используем созданный нами набор кодеков router(config-voice-register-pool)#username admin password pass – создаем аутентификационные данные После этого подключаем SIP телефон к сети и заходим по его веб-интерфейс черз бразуер по IP-адресу, находим настройки первой линии, где указываем адрес сервера 192.168.1.1 и логин с паролем admin/password, которые мы создали. Теперь таким образом можно регистрировать SIP телефоны на CME.
img
Добро пожаловать в статью, посвященную началу работы с виртуализацией Xen на CentOS. Xen - это гипервизор с открытым исходным кодом, позволяющий параллельно запускать различные операционные системы на одной хост-машине. Этот тип гипервизора обычно называют гипервизором №1 в мире виртуализации. Xen используется в качестве основы для виртуализации серверов, виртуализации настольных ПК, инфраструктуры как услуги (IaaS) и встраиваемых/аппаратных устройств. Возможность работы нескольких гостевых виртуальных машин на физическом хосте может значительно повысить эффективность использования основного оборудования. Передовые возможности Xen гипервизора Xen не зависит от операционной системы – основным стеком управления (который называется domain 0 (домен 0)) может быть Linux, NetBSD, OpenSolaris и так далее. Возможность изоляции драйвера - Xen может разрешить основному системному драйверу устройства работать внутри виртуальной машины. Виртуальная машина может быть перезагружена в случае отказа или сбоя драйвера без воздействия на остальную часть системы. Поддержка паравиртуализации (Paravirtualization - это тип виртуализации, в котором гостевая операционная система перекомпилируется, устанавливается внутри виртуальной машины и управляется поверх программы гипервизора, работающей на ОС хоста.): это позволяет полностью паравиртуализированным хостам работать гораздо быстрее по сравнению с полностью виртуализированным гостем, использующим аппаратные расширения виртуализации (HVM). Небольшие размеры и интерфейс. В гипервизоре Xen используется микроядерное устройство, размер которого составляет около 1 МБ. Этот небольшой объем памяти и ограниченный интерфейс гостя делают Xen более надежным и безопасным, чем другие гипервизоры. Пакеты Xen Project Пакеты Xen Project состоят из: Ядро Linux с поддержкой Xen Project Сам гипервизор Xen Модифицированная версия QEMU - поддержка HVM Набор пользовательских инструментов Компоненты Xen Гипервизор Xen Project отвечает за обработку процессора, памяти и прерываний, поскольку он работает непосредственно на оборудовании. Он запускается сразу после выхода из загрузчика. Домен/гость - это запущенный экземпляр виртуальной машины. Ниже приведен список компонентов Xen Project: Гипервизор Xen Project работает непосредственно на оборудовании. Гипервизор отвечает за управление памятью, процессором и прерываниями. Он не знает о функциях ввода-вывода, таких как работа в сети и хранение. Область контроля (Домен 0): Domain0 - специальная область, которая содержит драйверы для всех устройств в хост-системе и стеке контроля. Драйверы управляют жизненным циклом виртуальной машины - созданием, разрушением и конфигурацией. Гостевые домены/виртуальные машины - гостевая операционная система, работающая в виртуализированной среде. Существует два режима виртуализации, поддерживаемых гипервизором Xen: Паравиртуализация (PV) Аппаратная поддержка или полная виртуализация (HVM) Toolstack и консоль: Toolstack - это стек управления, в котором Domain 0 позволяет пользователю управлять созданием, конфигурацией и уничтожением виртуальных машин. Он предоставляет интерфейс, который можно использовать в консоли командной строки. На графическом интерфейсе или с помощью стека облачной оркестрации, такого как OpenStack или CloudStack. Консоль - это интерфейс к внешнему миру. PV против HVM Паравиртуализация (PV - Paravirtualization ) Эффективная и легкая технология виртуализации, которая была первоначально представлена Xen Project. Гипервизор предоставляет API, используемый ОС гостевой виртуальной машины Гостевая ОС должна быть изменена для предоставления API Не требует расширений виртуализации от центрального процессора хоста. Гостям PV и доменам управления требуется ядро с поддержкой PV и драйверы PV, чтобы гости могли знать о гипервизоре и могли эффективно работать без эмуляции или виртуального эмулируемого оборудования. Функции, реализованные в системе Paravirtualization, включают: Сигнал прерывания и таймеры Драйверы дисков и сетевые драйверы Эмулированная системная плата и наследуемый вариант загрузки (Legacy Boot) Привилегированные инструкции и таблицы страниц Аппаратная виртуализация (HVM - Hardware-assisted virtualization ) - полная виртуализация Использует расширения виртуальной машины ЦП от ЦП хоста для обработки гостевых запросов. Требуются аппаратные расширения Intel VT или AMD-V. Полностью виртуализированные гости не требуют поддержки ядра. Следовательно, операционные системы Windows могут использоваться в качестве гостя Xen Project HVM. Программное обеспечение Xen Project использует Qemu для эмуляции аппаратного обеспечения ПК, включая BIOS, контроллер диска IDE, графический адаптер VGA, контроллер USB, сетевой адаптер и так далее Производительность эмуляции повышается за счет использования аппаратных расширений. С точки зрения производительности, полностью виртуализированные гости обычно медленнее, чем паравиртуализированные гости, из-за необходимой эмуляции. Обратите внимание, что можно использовать PV драйверы для ввода-вывода, чтобы ускорить гостевой HVM Драйверы PVHVM - PV-on-HVM Режим PVH сочетает в себе лучшие элементы HVM и PV Позволяет виртуализированным аппаратным гостям использовать PV диск и драйверы ввода-вывода Никаких изменений в гостевой ОС Гости HVM используют оптимизированные драйверы PV для повышения производительности - обходят эмуляцию дискового и сетевого ввода-вывода, что приводит к повышению производительности в системах HVM. Оптимальная производительность на гостевых операционных системах, таких как Windows. Драйверы PVHVM требуются только для гостевых виртуальных машин HVM (полностью виртуализированных). Установка Xen в CentOS 7.x Чтобы установить среду Xen Hypervisor, выполните следующие действия. 1) Включите репозиторий CentOS Xen sudo yum -y install centos-release-xen 2) Обновите ядро и установите Xen: sudo yum -y update kernel && sudo yum -y install xen 3) Настройте GRUB для запуска Xen Project. Поскольку гипервизор запускается перед запуском ОС, необходимо изменить способ настройки процесса загрузки системы: sudo vi /etc/default/grub Измените объем памяти для Domain0, чтобы он соответствовал выделенной памяти. RUB_CMDLINE_XEN_DEFAULT="dom0_mem=2048M,max:4096M cpuinfo com1=115200,8n1 console=com1,tty loglvl=all guest_loglvl=all" 4) Запустите скрипт grub-bootxen.sh, чтобы убедиться, что grub обновлен /boot/grub2/grub.cfg bash `which grub-bootxen.sh` Подтвердите изменение значений: grep dom0_mem /boot/grub2/grub.cfg 5) Перезагрузите свой сервер sudo systemctl reboot 6) После перезагрузки убедитесь, что новое ядро работает: # uname -r 7) Убедитесь, что Xen работает: # xl info host : xen.example.com release : 3.18.21-17.el7.x86_64 machine : x86_64 nr_cpus : 6 max_cpu_id : 5 nr_nodes : 1 cores_per_socket : 1 threads_per_core : 1 ......................................................................... Развертывание первой виртуальной машины На этом этапе вы должны быть готовы к началу работы с первой виртуальной машиной. В этой демонстрации мы используем virt-install для развертывания виртуальной машины на Xen. sudo yum --enablerepo=centos-virt-xen -y install libvirt libvirt-daemon-xen virt-install sudo systemctl enable libvirtd sudo systemctl start libvirtd Установка HostOS в Xen называется Dom0. Виртуальные машины, работающие через Xen, называются DomU. virt-install -d --connect xen:/// --name testvm --os-type linux --os-variant rhel7 --vcpus=1 --paravirt --ram 1024 --disk /var/lib/libvirt/images/testvm.img,size=10 --nographics -l "http://192.168.122.1/centos/7.2/os/x86_64" --extra-args="text console=com1 utf8 console=hvc0" Если вы хотите управлять виртуальными машинами DomU с помощью графического приложения, попробуйте установить virt-manager sudo yum -y install virt-manager
img
Повсеместное распространение компьютерных сетей в крупных корпорациях породило ряд проблем. Чем больше масштабы сети, тем дороже будет ее обслуживание. Действительно, при расширении территориальной деятельности организация должна закупать новое, зачастую дорогостоящее оборудование и объявлять тендер на услуги сетевых провайдеров связи. При этом если компания ориентируется на высокую скорость и надежность обмена данными, то эти предложения должны постоянно обновляться. Для оптимизации решения таких проблем и были созданы Software Defined Wide Area Network — программно-определяемые сети в рамках глобальной сети (WAN). Применение этой технологии позволяет серьезно сэкономить на каналах передачи данных, не теряя качества, а также ускорить включение в общую сеть организации новых территориально удаленных филиалов. Зачем нужна программно определяемая WAN сеть? Одной из главных возможностей, которые SD-WAN предоставляет пользователю, является оптимизация сетей VPN или MPLS. Как правило, небольшие организации с одним офисом могут вполне неплохо обходиться без данной технологии, однако крупные организации, имеющие филиалы в разных городах (или странах) вынуждены искать надежные и быстрые способы связи между офисами. Даже если у провайдера услуг связи есть покрытие на оба пункта – это не всегда является надежным решением, так как по пути пакеты данных могут теряться, информация может приходить поврежденной, несвоевременной или не в полном объеме. Если же покрытия основного провайдера на территории, где компания планирует открывать новый филиал, нет, то в данном случае нужно будет уже заключать второй договор на обслуживание уже с местным провайдером. При этом при передаче информации между VPN-сетями различных провайдеров пользователь также столкнется с вышеописанной проблемой, но уже более остро, поскольку чем большее количество сетей минует информация при передаче, тем выше вероятность ее повреждения либо перехвата. Кроме того, если организация серьезно озабочена проблемой надежной передачи данных, то не лишним будет запустить также дублирующий резервный канал связи, уже от другого поставщика телекоммуникационных услуг. Услуги эти, к слову, недешевы, да и помимо этого организация общей компьютерной сети организации с закупкой оборудования и прокладкой кабелей – дело затратное. Выгодно ли для бизнеса внедрение SD-WAN решений? Главным плюсом SD-WAN, в данном случае, является сокращение расходов на телекоммуникационные услуги и закупку более дорогого оборудования. Технически, программно-распределяемая сеть устроена следующим образом: компания закупает, устанавливает в центре обработки данных и настраивает модуль контроллера. Это самая основная (и дорогая) часть SD-WAN с технической точки зрения. К коммутатору контроллера подключаются основной и резервный каналы связи, при этом специализированные программы на борту контроллера будут анализировать загруженность каналов передачи данных и подбирать оптимальный баланс передачи. Кроме того, ПО контроллера создает надежную, безопасную и прозрачную сеть, в которой контроллер выступает в роли основного роутера и «мозга». Да, решение не из дешевых, но технология будет окупаться (по оценке специалистов, в среднем за 5 лет) за счет распределения передачи данных, а также за счет экономии оборудования, закупаемого для филиалов. Нет необходимости закупать более «умные» устройства, а контроллер может удаленно управлять и сетями попроще, причем в автоматическом режиме – достаточно подключить устройство в новом офисе к сети, а все настройки придут с основного модуля. Кроме того, благодаря использованию такой технологии может возрасти качество телефонной связи и качество предоставления других IT-услуг в организации, которые могут быть чувствительны к качеству канала и задержкам. На текущий момент многие компании занимаются созданием и оптимизацией функционала SD-WAN. Это и Huawei, и Mikrotik, и Cisco, а также многие другие разработчики. Поэтому у пользователя есть возможность ознакомиться с вариантами от разных поставщиков и подобрать для себя наиболее оптимальное решение.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59