По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Прочитайте материал про реактивное и упреждающее распределение достижимости в сетях. Есть много случаев, когда более эффективно или в соответствии с конкретными ограничениями политики для плоскости управления изучать информацию о достижимости и топологии с другой плоскости управления, а не с помощью механизмов, описанных до этого момента в этой серии статей. Вот некоторые примеры: Две организации должны соединить свои сети, но ни одна из них не хочет позволить другой контролировать политику и работу своих плоскостей управления; Крупная организация состоит из множества бизнес-единиц, каждая из которых имеет возможность управлять собственной внутренней сетью в зависимости от местных условий и требований приложений. Организация должна каким-то образом позволить двум плоскостям управления взаимодействовать при переходе от одной к другой. Причины, по которым одна плоскость управления может получать информацию о доступности от другой, почти безграничны. Учитывая это требование, многие сетевые устройства позволяют операторам перераспределять информацию между плоскостями управления. При перераспределении достижимости возникают две проблемы, связанные с плоскостью управления: как обрабатывать метрики и как предотвращать петли маршрутизации. Примечание. Перераспределение можно рассматривать как экспорт маршрутов из одного протокола в другой. На самом деле импорт/экспорт и перераспределение часто используются для обозначения одного и того же, либо разными поставщиками, либо даже в разных ситуациях одним и тем же поставщиком. Перераспределение и метрики Взаимосвязь между свойствами связи, политиками и метриками определяются каждым протоколом плоскости управления независимо от других протоколов. Фактически, более описательная или более полезная метрическая система - это то, что иногда привлекает операторов к определенному протоколу плоскости управления. На рисунке 12 показаны два участка сети, в которых работают две разные управляющие плоскости, каждая из которых использует свой метод расчета метрик связей. Протоколы X и Y в этой сети были настроены с использованием двух разных систем для назначения показателей. При развертывании протокола X администратор разделил 1000 на скорость соединения в гигабитах. При развертывании протокола Y администратор создал "таблицу показателей" на основе наилучшего предположения о каналах с самой высокой и самой низкой скоростью, которые они могут иметь в течение следующих 10-15 лет, и назначил метрики для различных скоростей каналов в этой таблице. Результат, как показывает рисунок, несовместимые показатели: 10G каналы в протоколе X имеют метрику 100, в то время как в протоколе Y они имеют метрику 20. 100G-каналы как в протоколе X, так и в протоколе Y имеют метрику 10. Предполагая, что более низкая метрика предпочтительна, если метрики добавлены, канал [B, C, F] будет считаться более желательным путем, чем канал [B, D, G]. Однако, если учитывать пропускную способность, оба канала будут считаться одинаково желательными. Если между этими двумя протоколами настроено перераспределение, как следует обрабатывать эти метрики? Есть три общих решения этой проблемы. Администратор может назначить метрику в каждой точке перераспределения, которая передается как часть внутренней метрики протокола. Например, администратор может назначить метрику 5 для пункта назначения E на маршрутизаторе C при перераспределении из протокола X в Y. Этот пункт назначения, E, вводится в протокол Y с метрикой 5 маршрутизатором C. На маршрутизаторе F метрика для E будет от 25 для C. В G стоимость достижения E будет 35 по пути [F, C]. Желательность использования любой конкретной точки выхода для любого конкретного пункта назначения выбирается оператором при назначении этих ручных метрик. Метрика "другого" протокола может быть принята как часть внутренней метрики протокола. Это не работает в случае, когда один протокол имеет более широкий диапазон доступных метрик, чем другой. Например, если протокол Y имеет максимальную метрику 63, метрики 10G из протокола X будут "выше максимума"; ситуация, которая вряд ли будет оптимальной. При отсутствии такого ограничения маршрутизатор C внедрит маршрут к E со стоимостью 100 в протокол Y. Стоимость достижения E на маршрутизаторе F составит 110; стоимость в G будет от 130 до [F, C]. Примечание. Здесь вы можете увидеть компромисс между состоянием плоскости управления и оптимальным использованием сети, это еще один пример компромисса сложности при проектировании реальных протоколов. Перенос внешней метрики в отдельное поле добавляет состояние плоскости управления, но позволяет более оптимально управлять трафиком через сеть. Назначение или использование внешней метрики снижает состояние плоскости управления, но за счет возможности оптимизации потока трафика. Внешняя метрика может быть перенесена в отдельное поле, поэтому каждое сетевое устройство может отдельно определять лучший путь к каждому внешнему адресату. Это третье решение является наиболее широко используемым, поскольку оно обеспечивает наилучшую возможность управления трафиком между двумя сетями. В этом решении C вводит достижимость для E с внешней стоимостью 100. В F есть две метрики в объявлении, описывающие достижимость для E; внутренняя метрика для достижения точки перераспределения (или выхода) - 20, а метрика для достижения точки E во внешней сети - 100. В G внутренняя метрика для достижения точки выхода - 30, а внешняя метрика - 100. Как реализация будет использовать оба этих показателя? Следует ли протоколу выбирать ближайшую точку выхода или, скорее, самую низкую внутреннюю метрику? Это позволит оптимизировать использование локальной сети и потенциально деоптимизировать использование сетевых ресурсов во внешней сети. Должен ли протокол выбирать точку выхода, ближайшую к внешнему назначению, или, скорее, самую низкую внешнюю метрику? Это позволит оптимизировать сетевые ресурсы во внешней сети, потенциально за счет деоптимизации использования сетевых ресурсов в локальной сети. Или протоколу следует попытаться каким-то образом объединить эти две метрики, чтобы максимально оптимизировать использование ресурсов в обеих сетях? Некоторые протоколы предпочитают всегда оптимизировать локальные или внешние ресурсы, в то время как другие предоставляют операторам возможность конфигурации. Например, протокол может позволять переносить внешние метрики в виде метрик разных типов, при этом один тип считается большим, чем любая внутренняя метрика (следовательно, сначала предпочтение отдается самой низкой внутренней метрике и использование внешней метрики в качестве средства разрешения конфликтов), а другой тип - это когда внутренние и внешние метрики считаются эквивалентными (следовательно, добавляются внутренние и внешние метрики для принятия решения о пути). Перераспределение и петли маршрутизации В приведенном выше обсуждении вы могли заметить, что места назначения, перераспределенные с одного протокола на другой, всегда выглядят так, как будто они подключены к перераспределяющему маршрутизатору. По сути, перераспределение действует как форма резюмирования (что означает, что удаляется информация о топологии, а не информация о достижимости), как описано ранее в этой серии статей. Хотя этот момент не является критическим для показателей перераспределения, важно учитывать способность плоскости управления выбирать оптимальный путь. В некоторых конкретных случаях деоптимизация может привести к тому, что плоскость управления не сможет выбрать пути без петель. Рисунок 13 демонстрирует это. Чтобы построить петлю маршрутизации в этой сети: Маршрут к хосту A перераспределяется от протокола X к Y с вручную настроенной метрикой 1. Маршрутизатор E предпочитает маршрут через C с общей метрикой (внутренней и внешней) 2. Маршрутизатор D предпочитает маршрут через E с общей метрикой 3. Маршрутизатор D перераспределяет маршрут к хосту A в протокол X с существующей метрикой 3. Маршрутизатор B имеет два маршрута к A: один со стоимостью 10 (напрямую) и один с метрикой от 4 до D. Маршрутизатор B выбирает путь через D, создавая петлю маршрутизации. И так далее (цикл будет продолжаться, пока каждый протокол не достигнет своей максимальной метрики). Этот пример немного растянут для создания цикла маршрутизации в тривиальной сети, но все циклы маршрутизации, вызванные перераспределением, схожи по своей структуре. В этом примере важно, что была потеряна не только топологическая информация (маршрут к A был суммирован, что, с точки зрения E, было непосредственно связано с C), но и метрическая информация (исходный маршрут со стоимостью 11 перераспределяется в протокол Y со стоимостью 1 в C). Существует ряд общих механизмов, используемых для предотвращения формирования этой петли маршрутизации. Протокол маршрутизации всегда может предпочесть внутренние маршруты внешним. В этом случае, если B всегда предпочитает внутренний маршрут A внешнему пути через D, петля маршрутизации не образуется. Многие протоколы маршрутизации будут использовать предпочтение упорядочивания при установке маршрутов в локальную таблицу маршрутизации (или базу информации о маршрутизации, RIB), чтобы всегда отдавать предпочтение внутренним маршрутам над внешними. Причина этого предпочтения состоит в том, чтобы предотвратить образование петель маршрутизации этого типа. Фильтры можно настроить так, чтобы отдельные пункты назначения не перераспределялись дважды. В этой сети маршрутизатор D может быть настроен для предотвращения перераспределения любого внешнего маршрута, полученного в протоколе Y, в протокол X. В ситуации, когда есть только два протокола (или сети) с перераспределенной между ними информацией плоскости управления, это может быть простым решением. В случаях, когда фильтры необходимо настраивать для каждого пункта назначения, управление фильтрами может стать трудоемким. Ошибки в настройке этих фильтров могут либо привести к тому, что некоторые пункты назначения станут недоступными (маршрутизация черных дыр), либо приведет к образованию петли, потенциально вызывающей сбой в плоскости управления. Маршруты могут быть помечены при перераспределении, а затем отфильтрованы на основе этих тегов в других точках перераспределения. Например, когда маршрут к A перераспределяется в протокол Y в C, маршрут может быть административно помечен некоторым номером, например, 100, чтобы маршрут можно было легко идентифицировать. На маршрутизаторе D можно настроить фильтр для блокировки любого маршрута, помеченного тегом 100, предотвращая образование петли маршрутизации. Многие протоколы позволяют маршруту нести административный тег (иногда называемый сообществом или другим подобным именем), а затем фильтровать маршруты на основе этого тега.
img
Примечание: в статье рассматривается управление уже установленным и настроенным оборудованием. Мне на работе достались два работающих SDH мультиплексора Huawei уровня STM-4 (622 Мбит/c). Система мониторинга и управления уже была настроена, и я осваивал ее "как есть". Краткое описание ПО для конфигурирования Для работы с оборудованием на рабочей станции, подключенной к интерфейсу управления мультиплексором, я запускаю две программы IManager T2000LCT-Server и IManager T2000LCT-Client, в которой и произвожу работы по конфигурированию. Для запуска ПО требуется данные о логине и пароле. При запуске клиента отображается окно, в котором приведен список всех сконфигурированных мультиплексоров, их наименования, состояние подключения к ним и уровень текущих аварий. На приведенном скриншоте оборудование, к которому непосредственно подключен ПК управления, имеет значение в столбце Gateway GNE, а мультиплексор, доступ к которому настроен через канал связи в тракте STM (то есть тот, который территориально расположен в другом месте и доступен удаленно), имеет значение Gateway Non-GNE. В столбце Login отображается статус "Not Login", а в столбце Communication состояние "Communication Interruption". Это означает, что оператор не авторизован в оборудовании, так как с ним нет. В таком состоянии можно просматривать конфигурацию, которая была в мультиплексорах во время последнего подключения, но текущие параметры посмотреть не получится, как и внести какие-либо изменения. Выбрав из списка необходимый мультиплексор, нажимаем внизу кнопку "NE Explorer" и попадаем в интерфейс управления конкретной единицы оборудования. Здесь мы увидим список всех установленных плат и их состояние в окошке слева вверху, а также функции, доступные для выделенной платы, в окошке слева внизу. Если выделить корень дерева оборудования (Рис.3), то получаем список функций, применимый ко всему мультиплексору (функции мультиплексора и его плат не пересекаются). Общий вид оборудования и наименование установленных плат можно посмотреть непосредственно в интерфейсе управления, нажав на иконку <Slot Layot>: Типы плат (для мультиплексора Huawei OSN1500): Модуль вентиляторов FAN Платы Q1SL4 плата линейного интерфейса STM-4. Сюда подключается оптика, которая соединяет оборудование с другим мультиплексором. Платы ECXL плата, отвечающая за кросс-коннект (коммутацию) Платы GSCC плата управления и мониторинга всем мультиплексором Модули питания PIU Платы D12S интерфейсная плата 120 ом портов E1 (32 порта) Плата AUX плата вспомогательных интерфейсов (служебный телефон, порт RS-232) Плата PQ1 интерфейсная плата портов E1. Позволяет вывести 63 потока E1. Плата N1EFS4 интерфейсная плата портов Ethernet. На плате 4 порта. Типы плат (для мультиплексора Huawei Metro 1000): Плата OI4 Плата линейного интерфейса STM-4 (для соединения с другим мультиплексором) Плата EFS интерфейсная плата портов Ethernet, содержит 4 порта FE 10/100Mb Плата SP2D интерфейсная плата портов E1, может вывести 16 потоков Плата PD2T интерфейсная плата портов E1, выводит 48 потоков Плата X42 модуль кросс-коннекта Плата STG модуль синхронизации и генератора синхросигнала Плата SCC модуль управления и мониторинга всего оборудования Плата OHP2 модуль обработки заголовков Подсказка по функционалу платы отображается внизу окошка общего вида оборудования (показано выше) при выделении какой-либо платы. Конфигурирование потоков E1 Для того, чтобы прописать в оборудовании новый поток уровня E1, откроем один из мультиплексоров, выделим корень дерева оборудования, в дереве функций откроем пункт "Configuration" и в раскрывшемся списке "SDH Service Configuration" (Рис.6) В открывшемся окне отображается список существующих соединений (кросс-коннекты), а также кнопки с возможными действиями в этом окне. Описание столбцов списка кросс-коннектов: Level уровень кросс-коннекта. Здесь мы можем указать тип виртуального контейнера и, соответственно, пропускную способность, которую выделено под данное соединение (а точнее, кратность пропускной способности). То есть, если выбран уровень VC12, то скорость будет кратна 2 Мбит/с. Если выбрать VC4, то скорость будет кратна 155 Мбит/с (это контейнер уровня STM-1, то есть мы займем целиком 1 STM-1 из 4-трактов STM-4. Type тип соединения, обозначен графическим символом, указывающим, что данное соединения является вводом-выводом (например, вывод на интерфейс E1) или проходным (например, с платы линейного интерфейса на плату интерфейсов Ethernet). Source Slot слот и плата источника кросс-коннекта. Source Timeslot/Path таймслот (порт) источника. Sink Slot - слот и плата точки назначения кросс-коннекта. Sink Timeslot/Path - таймслот (порт) точки назначения. Activation Status статус активации соединения. При создании соединения, оно может быть активировано сразу или позже, после завершения работ по подключению, чтобы избежать появления ложных аварий в системе мониторинга. Так же соединение можно активировать/деактивировать по необходимости в данном окне с помощью соответствующих кнопок. Для создания нового соединения нажмем кнопку <Create> и увидим следующее окно, в котором задаются все вышеперечисленные параметры: В появившемся окошке указываем: Level VC12 Direction (направление) оставляем Bidirectional (то есть, двунаправленное соединение) Source Slot плату-источник. Выбираем плату линейного интерфейса, который соединен с мультиплексором на другой стороне Source VC4 выбираем один из 4-х контейнеров VC4 в тракте STM-4. Source Timeslot Range диапазон таймслотов источника. Здесь оборудование позволяет выбрать несколько тайм-слотов. Это удобно в случае, если нам необходимо создать одновременно несколько соединений между одними и теми же точками. Например, нам необходимо прокинуть 4 потока E1 между данными мультиплексорами. В таком случае, мы зададим 4 таймслота при создании соединения в каждом мультиплексоре. Таким же образом задаются слот (плата) и таймслоты и пункта назначения. В некоторых случаях, для задания путей источника и назначения удобнее будет воспользоваться графическим типом задания параметров. Для этого в полях Source Slot или Sink Slot нажимаем на кнопку с многоточием (Рис.8): В открывшемся окошке мы наглядно можем выбрать плату (2), порт на плате (3), контейнер верхнего уровня в нашем случае, один из четырех VC4 (4) и ниже один или несколько виртуальных контейнеров нижнего уровня VC12. Неактивная кнопка виртуального контейнера означает, что он уже занят. После выбора и закрытия данного окошка, возвращаемся в окно "Create SDH Service", которое мы открыли для создания нового кросс-коннекта. Осталось задать параметр Activate Immediately. При выборе Yes соединение должно быть сразу активным, иначе его нужно активировать вручную. Следует отметить, что иногда данная настройка не применяется, поэтому, после создания соединения, рекомендуется проверить значение поля Activation Status и нажать кнопку Activate в окне списка соединений. После нажатия кнопки ОК наше соединение создано в одном из мультиплексоров. Далее, нам необходимо зайти в оборудование на другом конце линейного тракта (оптического кабеля), и создать такое же соединение, указав в пути источника те же VC4 и VC12, что и на этой стороне. Некоторые настройки портов E1 В главном окне программы управления (верхнее левое окошко), если в дереве оборудования выбрать какую-то плату, то в дереве функций мы получаем доступ к настройкам самой платы. Например, выберем интерфейсную плату портов E1 и откроем ее свойства: Данное окно позволяет изменять некоторые свойства портов. В частности, в поле "Port Name" можно указать произвольное название для порта. Это никак не влияет на работу самого порта, однако улучшает читаемость событий и аварий, которые выдает порт в общем списке событий. Еще одним важным параметром, который облегчает работу при организации или тестировании потоков E1, является "Tributary Loopback". Двойной щелчок в этом поле открывает варианты постановки петли или "заворота" на порту: "Inloop" и "Outloop" - один из которых заворот во внутрь, а другой заворот в сторону подключенного внешнего оборудования. Конфигурирование портов Ethernet Пропуск портов Ethernet выполняется в несколько этапов. Выполняем кросс-коннект тайм-слотов с платы линейных интерфейсов (Q1SL4) на плату интерфейсов Ethernet (N1EFS4). Выполняем кросс-коннект занятых в предыдущем пункте тайм-слотов в внутренний интерфейс VCTRUNK# платы N1EFS4 (всего на плате 12 VCTRUNK) Прописываем на плате N1EFS4 VLAN’ы от VCTRUNK# до физического порта (на плате 4 физических порта) Первый пункт действий выполняется аналогично настройке портов E1, порядок приведен выше. Кросс-коннект виртуальных контейнеров на внутренние интерфейсы платы N1EFS4 В настройках платы N1EFS4 открываем раздел Configuration Ethernet Interface Management Ethernet Interface. В открывшемся окне выбираем Internal port и вкладку Bound Path, здесь нажимаем кнопку Configuration. В появившемся окне выбираем один из внутренних интерфейсов VCTRUNK, и виртуальные контейнеры, которые будут в него включаться: Нажимаем Ок, и сконфигурированный интерфейс появляется в нашем списке. В графе "Bound Paths" мы видим задействованные виртуальные контейнеры, а в графе "Number of Bound Paths" - их общее количество. На вкладке "TAG Attribute" списка внутренних интерфейсов настраивается режим порта: Access не тегированный порт Tag Aware тегированный порт Hybrid гибридный порт Теперь осталось соединить внутренний порт VCTRUNK# с одним из четырех внешних физических портов, прокинув VLAN между этими портами. Прописываем на плате N1EFS4 VLAN’ы от VCTRUNK# до физического порта В настройках платы N1EFS4 открываем раздел Configuration Ethernet Service Ethernet Line Service. В открывшемся окне нажимаем кнопку New. В открывшемся окне указываем порт источник VCTRUNK# и порт назначения например, PORT1. А также укажем VLAN-источник и VLAN назначения (автоматически выставляется один и тот же) В этом же окошке, в разделе Port Attributes есть возможность выбрать режимы для обоих портов (тегированный, не тегированный, гибридный). Следует отметить, что система не будет следить за корректностью режимов и соответствием количества тайм-слотов в соединениях цепочки, как на коммутаторах передачи данных, так что за этим следует следить оператору. Так же в данном окне доступно меню конфигурирования внутренних интерфейсов платы N1EFS4, которое описано в предыдущем подразделе. На этом конфигурирование портов Ethernet на мультиплексоре Huawei OSN1500/Metro1000 окончено. Следует еще раз заметить, что на противоположной стороне (на другом мультиплексоре) настройки кросс-коннекта должны быть аналогичны.
img
Proxy-server - это программное обеспечение, которое устанавливается на определенной рабочей машине и позволяет обращаться некоторым компьютерам к другим компьютерам от своего имени. Если же говорить простыми словами, пользователю даются полномочия использовать возможности другого лица. Proxy-сервер является посредником между пользователями и сетью интернет, так же как и VPN-сервисы, прокси изменяет ваш сетевой адрес. Приведем пример с отдыхом за пределами вашей страны. Допустим, вам требуется посмотреть прямую трансляцию той или иной передачи, но на трансляцию наложено ограничение на просмотр. Используя прокси-сервер вы можете сымитировать российский IP-адрес, тогда уже вы получите доступ к защищенной трансляции. Нужно понимать, что прокси-сервер просто маскирует ваш IP-адрес, но никак не шифрует его, то есть, все данные, которые вы отправляете не являются анонимными. Security Web Gateway (Шлюзы информационной безопасности) SWG (Security Web Gateway) - является аппаратной и программной системой, которая выполняет безопасный вход в интернет, а также безопасно использовать некоторые веб-приложения. Сотрудники компаний могут являться самой основной причиной успешных атак на ресурсы компании, если быть точнее, то использование ими различных ресурсов и передача их в сети интернет. Выделим несколько опасностей, на которые требуется обращать внимание при доступе во внешнюю сеть: Выполнение сетевых атак на ОС сотрудников Атаки на приложения, а также браузеры которые не защищены. Добавление вредоносного ПО. Если вы будете использовать защищенные веб-шлюзы, тогда вы сможете защититься с помощью основных опций: Фильтрация вредоносного кода в интернет трафике. Выявление слива информации. Фильтрация данных. Если вы решили выбрать класс защиты SWG, тогда вам стоит обратить внимание на следующие возможности: Обнаружение вредоносного ПО происходит за счет полного сканирования интернет-трафика. Выполняется сканирование SSL-трафика. Управление полосой пропускания списками пользователей или ресурсов. Поскольку шлюз развертывается на границе внутренней и внешней сети компании, он позволяет защитить все ресурсы организации и нейтрализовать последствия возможных атак. Если на рабочем месте сотрудника отключен антивирус, шлюз может перехватить вирус или заблокировать соединение с вредоносным ресурсом. В настоящее время ассортимент защищенных интернет-шлюзов на российском рынке представлен в основном зарубежными разработчиками. Однако среди отечественных производителей вы также можете найти оборудование, которое включает трафик, контролирует доступ и даже организует IP-телефонию. Описанные выше возможности пересекаются с другим решением по сетевой безопасности, а именно с брандмауэрами следующего поколения (NGFW). Разница заключается в возможностях межсетевого экрана решения NGFW, в то время как Security Web Gateway имеет встроенный прокси-сервер. Поэтому, если брандмауэр уже установлен и настроен в компании, рекомендуется выбрать безопасный интернет-шлюз и наоборот в случае прокси-сервера. Популярные прокси-серверы Ниже приведем список популярных прокси-серверов в настоящее время: NordVPN ExpressVPN CyberGhost PrivateVPN Hotspot Shield Зачем нужно использовать прокси? Если у вас установлен и качественно настроен прокси-сервер, вы можете, среди прочего, отфильтровать подозрительные и нежелательные данные. Например, прокси-сервер HTTP предназначен для блокировки исходящего трафика от троянов, которые каким-то образом незаметно проникли в вашу систему и попытались отправить данные из секретных портов злоумышленнику. Прокси-сервер SMTP предназначен для защиты электронной почты от вредоносных вложений, выполняя анализ входящего трафика, который атакует почтовый сервер и блокирует его. Приведем некоторый пример с программным обеспечением Microsoft Exchange 5.5, в которой достаточно было злоумышленнику отправить неожиданную строчку знаков. Но, всему этому мешает прокси-сервер SMTP Firebox, который ограничивает максимальное значение символов в строке, и за счет этого уменьшил количество атаки такого типа. Было время, когда большинство производителей довольно-таки редко рассказывали об уязвимостях в безопасности. В настоящее время же идет очень много разговоров о различных дырах в безопасности, что защита с использованием Proxy-server становится на первое место. Возможно, многие пользователи больше предпочли бы следить за выходом нового обновления, надеясь на то, что производители устранили дыры в системе безопасности, но увы, не всегда постоянное обновления программных продуктов решают свои прежние проблемы, добавляя еще новых. Где найти Proxy-server? Возможность использовать высококачественные прокси-серверы можно найти в программном обеспечении FireBox. Их можно найти в диспетчере политик: Редактировать - Добавить службу - Прокси-серверы. Когда вы развернете его, вы найдете полный список серверов. Описание каждого Proxy-сервера Ниже обсудим короткое описание самых популярных Proxy-серверов: Proxy-сервер SMTP - выполняет роль защиты электронной почты. К предполагаемым угрозам от злоумышленников возможно выделить: вложения, которые имеют вредоносный код; информация, нарушающая политику безопасности. SMTP допускает возможность выбрать тип доступных вложений, также возможно указать максимальный размер письма, допустимые заголовки, символы и тому подобное. Представленный прокси-сервер по умолчанию всегда включен. Proxy-сервер HTTP - обеспечивает защиту интернет трафика. Большинство Web-серверов используют 80 порт. Представленный прокси обеспечивает защиту интернет трафика, не позволяя злоумышленникам вторгнуться через другой порт. Но также существует множество различных законных продуктов, которые используют другой порт для передачи информации. Поэтому для продуктивной защиты трафика требуется использовать настроенную службу прокси-HTTP. Proxy-сервер FTP - выполняет защиту трафика, который работает через протокол передачи данных. Мы можем выделить приемлемые угрозы с FTP: хакеры пытаются сохранить недопустимые файлы на вашем FTP-сервере, также используют ваш FTP-сервер для незаконных действий, например, они атакуют другой FTP-сервер, и выполнение защиты по передаче файлов на другой адрес пытаясь обойти сетевой брандмауэр. С помощью FTP вы можете заблокировать все угрозы. Proxy-сервер H.323 - выполняет защиту протокола, который используется в мультимедийных приборах. Представленный прокси-сервер чаще всего используется в программных продуктах, как NetMeeting, CU-SeeMe, веб-камерах и прочее. Данный протокол чаще открывает порты с высоким номером, но открывается их минимальное число, к примеру когда идет видеосвязь, по окончанию закрывает их. Прокси-сервер также выполняет защиту трафика, каковой пытается подключиться при работе.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59