По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитайте предыдущую статью про криптографический обмен ключами. Предположим, вы хотите отправить большой текстовый файл или даже изображение, и позволить получателям подтвердить, что он исходит именно от вас. Что делать, если рассматриваемые данные очень большие? Или что, если данные нужно сжать для эффективной передачи? Существует естественный конфликт между криптографическими алгоритмами и сжатием. Криптографические алгоритмы пытаются произвести максимально случайный вывод, а алгоритмы сжатия пытаются воспользоваться преимуществом неслучайности данных для сжатия данных до меньшего размера. Или, возможно, вы хотите, чтобы информация была прочитана кем-либо, кто хочет ее прочитать, что означает, что не нужно ее шифровать, но вы хотите, чтобы получатели могли проверить, что вы ее передали. Криптографические хэши предназначены для решения этих проблем. Возможно, вы уже заметили по крайней мере одно сходство между идеей хеширования и криптографического алгоритма. В частности, хэш предназначен для получения очень большого фрагмента данных и создания представления фиксированной длины, поэтому на выходе для широкого диапазона входных данных очень мало конфликтов. Это очень похоже на концепцию максимально близкого к случайному выходу для любого ввода, необходимого для криптографического алгоритма. Еще одно сходство, о котором стоит упомянуть, заключается в том, что хэш-алгоритмы и криптографические алгоритмы работают лучше с очень редко заполненным входным пространством. Криптографический хеш просто заменяет обычную хеш-функцию криптографической функцией. В этом случае хэш может быть вычислен и отправлен вместе с данными. Криптографические хэши могут использоваться либо с системами с симметричными ключами, либо с системами с открытым ключом, но обычно они используются с системами с открытым ключом. Сокрытие информации о пользователе Возвращаясь к начальным статьям, еще одна проблема безопасности - это исчерпание данных. В случае отдельных пользователей исчерпание данных можно использовать для отслеживания того, что пользователи делают, пока они находятся в сети (а не только для процессов). Например: Если вы всегда носите с собой сотовый телефон, можно отслеживать перемещение Media Access Control (MAC), когда он перемещается между точками беспроводного подключения, чтобы отслеживать ваши физические перемещения. Поскольку большинство потоков данных не симметричны - данные проходят через большие пакеты, а подтверждения передаются через небольшие пакеты, наблюдатель может обнаружить, когда вы выгружаете и скачиваете данные, и, возможно, даже когда вы выполняете небольшие транзакции. В сочетании с целевым сервером эта информация может дать хорошую информацию о вашем поведении как пользователя в конкретной ситуации или с течением времени. Этот и многие другие виды анализа трафика могут выполняться даже для зашифрованного трафика. Когда вы переходите с веб-сайта на веб-сайт, наблюдатель может отслеживать, сколько времени вы тратите на каждый из них, что вы нажимаете, как вы перешли на следующий сайт, что вы искали, какие сайты вы открываете в любое время и т. д. информация может многое рассказать о вас как о личности, о том, чего вы пытаетесь достичь, и о других личных факторах. Рандомизация MAC-адресов Institute of Electrical and Electronic Engineers (IEEE) первоначально разработал адресное пространство MAC-48 для назначения производителями сетевых интерфейсов. Эти адреса затем будут использоваться "как есть" производителями сетевого оборудования, поэтому каждая часть оборудования будет иметь фиксированный, неизменный аппаратный адрес. Этот процесс был разработан задолго до того, как сотовые телефоны появились на горизонте, и до того, как конфиденциальность стала проблемой. В современном мире это означает, что за одним устройством можно следить независимо от того, где оно подключено к сети. Многие пользователи считают это неприемлемым, особенно потому, что не только провайдер может отслеживать эту информацию, но и любой, кто имеет возможность прослушивать беспроводной сигнал. Один из способов решить эту проблему-позволить устройству регулярно менять свой MAC-адрес, даже, возможно, используя другой MAC-адрес в каждом пакете. Поскольку сторонний пользователь (прослушиватель) вне сети провайдера не может "угадать" следующий MAC-адрес, который будет использоваться любым устройством, он не может отслеживать конкретное устройство. Устройство, использующее рандомизацию MAC-адресов, также будет использовать другой MAC-адрес в каждой сети, к которой оно присоединяется, поэтому оно не будет отслеживаться в нескольких сетях. Существуют атаки на рандомизацию MAC-адресов, в основном сосредоточенные вокруг аутентификации пользователя для использования сети. Большинство систем аутентификации полагаются на MAC-адрес, поскольку он запрограммирован в устройстве, чтобы идентифицировать устройство и, в свою очередь, пользователя. Как только MAC-адрес больше не является неизменным идентификатором, должно быть какое-то другое решение. Места, где рандомизация MAC-адресов может быть атакована, - это Время (timing): если устройство собирается изменить свой MAC-адрес, оно должно каким-то образом сообщить другому абоненту беспроводного соединения об этих изменениях, чтобы канал между подключенным устройством и базовой станцией мог оставаться жизнеспособным. Должна быть какая-то согласованная система синхронизации, чтобы изменяющийся MAC-адрес мог продолжать обмен данными при изменении. Если злоумышленник может определить, когда произойдет это изменение, он сможет посмотреть в нужное время и обнаружить новый MAC-адрес, который принимает устройство. Порядковые номера (Sequence numbers): как и во всех транспортных системах, должен быть какой-то способ определить, все ли пакеты были получены или отброшены. Злоумышленник может отслеживать порядковые номера, используемые для отслеживания доставки и подтверждения пакетов. В сочетании с только что отмеченной атакой по времени это может обеспечить довольно точную идентификацию конкретного устройства при изменении MAC-адреса. Отпечатки информационных элементов (Information element fingerprints): каждое мобильное устройство имеет набор поддерживаемых функций, таких как установленные браузеры, расширения, приложения и дополнительное оборудование. Поскольку каждый пользователь уникален, набор приложений, которые он использует, также, вероятно, будет довольно уникальным, создавая "отпечаток" возможностей, которые будут сообщаться через информационный элемент в ответ на зонды от базовой станции. Отпечатки идентификатора набора услуг (SSID): каждое устройство хранит список сетей, к которым оно может подключиться в настоящее время, и (потенциально) сетей, которые оно могло достичь в какой-то момент в прошлом. Этот список, вероятно, будет довольно уникальным и, следовательно, может выступать в качестве идентификатора устройства. Хотя каждый из этих элементов может обеспечить определенный уровень уникальности на уровне устройства, комбинация этих элементов может быть очень близка к идентификации конкретного устройства достаточно часто, чтобы быть практически полезной при отслеживании любого конкретного пользователя, подключающегося к беспроводной сети. Это не означает, что рандомизация MAC-адресов бесполезна, это скорее один шаг в сохранении конфиденциальности пользователя при подключении к беспроводной сети. Луковая маршрутизация Луковая маршрутизация - это механизм, используемый для маскировки пути, а также шифрования пользовательского трафика, проходящего через сеть. Рисунок 1 используется для демонстрации. На рисунке 1 хост А хочет безопасно отправить некоторый трафик на K, чтобы ни один другой узел в сети не мог видеть соединение между хостом и сервером, и чтобы ни один злоумышленник не мог видеть открытый текст. Чтобы выполнить это с помощью луковой маршрутизации, A выполняет следующие действия: Он использует службу для поиска набора узлов, которые могут соединяться между собой, и предоставления пути к серверу K. Предположим, что этот набор узлов включает [B, D, G], хотя на рисунке они показаны как маршрутизаторы, скорее всего, это программные маршрутизаторы, работающие на хостах, а не выделенные сетевые устройства. Хост A сначала найдет открытый ключ B и использует эту информацию для создания сеанса с шифрованием с симметричным ключом B. Как только этот сеанс установлен, A затем найдет открытый ключ D и использует эту информацию для обмена набором симметричных ключей с D, наконец, построит сеанс с D, используя этот симметричный секретный ключ для шифрования защищенного канала. Важно отметить, что с точки зрения D, это сеанс с B, а не с A. Хост A просто инструктирует B выполнить эти действия от его имени, а не выполнять их напрямую. Это означает, что D не знает, что A является отправителем трафика, он знает только, что трафик исходит от B и передается оттуда по зашифрованному каналу. Как только этот сеанс будет установлен, A затем проинструктирует D настроить сеанс с G таким же образом, как он проинструктировал B настроить сеанс с D. D теперь знает, что пункт назначения-G, но не знает, куда будет направлен трафик G. У хоста A теперь есть безопасный путь к K со следующими свойствами: Трафик между каждой парой узлов на пути шифруется с помощью другого симметричного закрытого ключа. Злоумышленник, который разрывает соединение между одной парой узлов на пути, по-прежнему не может наблюдать трафик, передаваемый между узлами в другом месте на пути. Выходной узел, которым является G, знает пункт назначения, но не знает источник трафика. Входной узел, которым является B, знает источник трафика, но не пункт назначения. В такой сети только А знает полный путь между собой и местом назначения. Промежуточные узлы даже не знают, сколько узлов находится в пути-они знают о предыдущем и следующем узлах. Основная форма атаки на такую систему состоит в том, чтобы захватить как можно больше выходных узлов, чтобы вы могли наблюдать трафик, выходящий из всей сети, и соотносить его обратно в полный поток информации. Атака "Человек посередине" (Man-in-the-Middle) Любой вид безопасности должен не только изучать, как вы можете защитить информацию, но также учитывать различные способы, которыми вы можете вызвать сбой защиты данных. Поскольку ни одна система не является идеальной, всегда найдется способ успешно атаковать систему. Если вам известны виды атак, которые могут быть успешно запущены против системы безопасной передачи данных, вы можете попытаться спроектировать сеть и среду таким образом, чтобы предотвратить использование этих атак. Атаки "человек посередине" (MitM) достаточно распространены, и их стоит рассмотреть более подробно. Рисунок 2 демонстрирует это. Рисунок 2-б аналогичен рисунку 2-а с одним дополнением: между хостом A и сервером C расположен хост B, который хочет начать зашифрованный сеанс. Некоторыми способами, либо подменяя IP-адрес C, либо изменяя записи службы доменных имен (DNS), чтобы имя C преобразовывалось в адрес B, или, возможно, даже изменяя систему маршрутизации, чтобы трафик, который должен быть доставлен в C, вместо этого доставлялся в B, злоумышленник заставил B принять трафик, исходящий из A и предназначенный для C. На рисунке 2-б: Хост A отправляет полуслучайное число, называемое одноразовым номером, в C. Эту информацию получает B. Хост B, который злоумышленник использует в качестве MitM, передает этот одноразовый номер на узел C таким образом, что создается впечатление, что пакет действительно исходит от узла A. В этот момент злоумышленник знает одноразовый идентификатор, зашифрованный A. Злоумышленник не знает закрытый ключ A, но имеет доступ ко всему, что A отправляет зашифрованным с помощью закрытого ключа A. Сервер C также отправляет ответ с зашифрованным одноразовым случайным числом. B получает это и записывает. Хост B передает одноразовое случайное число, полученное от C, на A. Хост A по-прежнему будет считать, что этот пакет пришел непосредственно от C. Хост B вычисляет закрытый ключ с помощью A, как если бы это был C. Хост B вычисляет закрытый ключ с помощью C, как если бы это был A. Любой трафик, который A отправляет в C, будет получен B, что: Расшифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 5 на рисунке 2-б. Зашифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 6 на рисунке 2-б, и передайте их C. Во время этого процесса злоумышленник на B имеет доступ ко всему потоку в виде открытого текста между A и C. Ни A, ни C не осознают, что они оба построили зашифрованный сеанс с B, а не друг с другом. Такого рода атаки MitM очень сложно предотвратить и обнаружить.
img
Интернет может быть опасным. Спросите любого хорошего IT-специалиста, и он вам обязательно расскажет о важности обеспечения безопасности и компактности систем, чтобы можно было гарантировать, что новые системы смогут безопасно предоставлять требуемые услуги. И хотя автоматизация этого процесса имеет большое значение для сокращения времени адаптации, настоящим испытанием для системы является способность предоставлять услуги стабильно и без каких-либо пауз на постоянной основе. Существуют автоматизированные средства, которые могут гарантировать, то ваши сервисы Windows будут такими же безопасными и будут безотказно работать также, как и в день их установки. Однако, поскольку все организации имеют разные потребности и разные бюджеты, то для них некоторые инструменты могут быть недоступны, например, такие как Microsoft System Center Configuration Manager. Но это не должно мешать IT-отделу использовать свою инфраструктуру для обеспечения правильной работы систем. Ниже приведены несколько принципов управления, которые можно легко реализовать при любом уровне квалификации и любом бюджете, чтобы помочь вашему IT-отделу контролировать свои серверы Windows и убедиться, что они управляются эффективно и безопасно, а также что они оптимизированы для обеспечения максимально возможной производительности. Аудит политики авторизации Все серверы должны быть закрыты для всех локальных и интерактивных входов в систему. Это означает, что никто не должен входить на сервер физически и использовать его, как если бы это был рабочий стол, независимо от его уровня доступа. Такое поведение в какой-то момент в будущем может привести к катастрофе. Помимо контроля интерактивных входов в систему, IT-отдел должен иметь политику аудита и других типов доступа к своим серверам, включая, помимо прочего, доступ к объектам, права доступа и другие изменения, которые могут быть внесены в сервер с авторизаций и без нее. Централизация журналов событий Серверы Windows имеет множество возможностей ведения журналов, которые доступны по умолчанию. Существуют настройки, с помощью которых можно расширить или ограничить эти возможности ведения журналов, включая увеличение размеров файлов журналов, независимо от того, перезаписываются ли они или нет, даже в, казалось бы, свойственных для них моментах. Централизация всех этих различных журналов в одном месте упрощает доступ к ним и их просмотр для IT-персонала. Можно воспользоваться каким-либо сервером системных журналов и упростить эти журналы, обозначив категории для определенных записей, например, пометить все неудачные попытки авторизации. Также полезным может быть доступность поиска по журналу и возможность для сервера системного журнала иметь интеграцию с инструментами исправления для устранения любых обнаруженных проблем. Контрольные и базовые показатели производительности Мы все знаем, как определить, когда сервер или сервис совсем не работают. Но как ваш IT-отдел определяет, работает ли сервер или сервис должным образом? Вот почему полезно получить контрольные показатели ваших серверов и определить базовые показатели их работы с различными интервалами (пиковые и непиковые). Имея такую информацию, можно определить, как оптимизировать параметры программного и аппаратного обеспечения, как это влияет на работу сервисов в течение дня и какие ресурсы нужно добавить, удалить или просто переместить, чтобы обеспечить минимальный уровень обслуживания. Это также помогает определить вероятное направление атак или индикаторы компрометации при обнаружении аномалий, которые могут негативно отразиться на производительности. Ограничение удаленного доступа Как администраторы, все мы любим удаленный доступ, не так ли? Я это знаю, поскольку сам почти каждый день использовал протокол удаленного рабочего стола (RDP – remote desktop protocol) для устранения проблем в удаленных системах на протяжении десятков лет своей карьеры. И несмотря на то, что был пройден долгий путь по усилению безопасности за счет усиленного шифрования, факт остается фактом: RDP (как и любые другие приложения удаленного доступа), если их не контролировать, могут позволить злоумышленникам проникнуть на ваши серверы и, что еще хуже, на сеть компании. К счастью, доступ к серверам можно ограничить несколькими способами, например, настроить правила брандмауэра для ограничения доступа к серверам из удаленных подключений, установить требования для использования VPN-туннелирования для защиты связи между сетевыми ресурсами или настроить проверку подлинности на основе сертификатов с целью проверки того, что подключаемая система – как к, так и от – отвергнута или ей можно доверять. Настройка сервисов Прошло уже много времени с тех пор, как большинство ролей и сервисов были включены в Windows Server по умолчанию, независимо от того, нужны они организации или нет. Это, очевидно, представляет собой грубейшую ошибку безопасности и до сих пор остается проблемой, хотя и более контролируемой в современных версиях серверов. Тем не менее, ограничение поверхности атаки ваших серверов служит для устранения потенциальных направлений компрометации, и это хорошо. Оцените потребности вашей среды и зависимостей программного обеспечения и сервисов. Это может помочь разработать план по отключению или удалению ненужных сервисов. Периодический контроль Периодический контроль тесно связан с вашей сетью и угрозами безопасности. Вы должны следить за состоянием своего сервера, чтобы выявлять любые потенциальные проблемы до того, как они перерастут в серьезную угрозу для производительности устройств и услуг, которые они предоставляют. Такой контроль помогает IT-специалистам заранее определять, нуждаются ли какие-либо серверы в обновлении или ресурсах, или же отдел должен приобрести дополнительные серверы для добавления в кластер, чтобы, опять же, поддерживать работу сервисов. Управление Patch-файлами Эта рекомендация должна быть элементарной для всех, кто занимается IT, независимо от опыта и навыков. Если в этом списке и есть что-то, что нужно всем серверам, так это именно управление patch-файлами, или исправлениями. Настройка процесса обновления операционной системы и программного обеспечения имеет первостепенное значение, от простых обновлений, устраняющих ошибки, до корректирующих исправлений, закрывающих бреши в безопасности. Это на самом деле важно, поскольку в интегрированных средах, где используется несколько продуктов Microsoft, некоторые версии ПО и сервисов просто не будут работать до тех пор, пока базовая ОС Windows Server не будет обновлена до минимального уровня. Так что, имейте это в виду, когда будете планировать цикл тестирования и обновлений. Технические средства контроля Независимо от того, внедряете ли вы устройства безопасности, такие как система предотвращения вторжений в сеть, или вашим кластерным серверам нужны балансировщики нагрузки, используйте данные, полученные в ходе мониторинга, и базовые показатели для оценки потребностей различных серверов и предоставляемых ими услуг. Это поможет определить, какие системы требуют дополнительных элементов управления, таких как веб-сервер, на котором будет запущено корпоративное веб-приложение для HR-записи. Установка брандмауэра веб-доступа (WAF – web access firewall) предназначена для выявления известных веб-атак, таких как межсайтовый скриптинг (XSS-атаки) или атаки с использованием структурированного языка запросов (SQL-инъекции) на серверную часть базы данных SQL, которая обеспечивает ее работу. Блокировка физического доступа По личному опыту знаю, что большинство организаций, от средних до крупных, осознают, что свои серверы необходимо изолировать из соображений безопасности и ОВК. И это здорово! Однако нехорошо получается, когда небольшие компании просто оставляют свои серверы открытыми вместе с обычными рабочими столами. Это действительно ужасно, потому что в таком случае сервер и связи со сторонними устройствами могут быть подвержены множеству потенциальных атак и угроз. Большая просьба – размещайте серверы в хорошо охраняемых помещениях с достаточной вентиляцией и ограничьте доступ в это помещение, разрешите его только тем, кому это действительно необходимо. Аварийное восстановление Резервные копии… резервные копии… резервные копии! Эта тема уже настолько избита, но все же мы здесь. Мы по-прежнему знаем, что некоторые организации не принимают никаких надлежащих шагов для правильного и безопасного резервного копирования своих ценных данных. А когда происходит неизбежное – сервер падает, данные теряются, а помочь некому. Но помочь можно было бы, если бы существовал план аварийного восстановления, который бы определял, какие данные нужно защитить, как, когда и где следует создавать резервные копии, а также документированные шаги по их восстановлению. По сути это очень простой процесс: 3-2-1 – три резервные копии, два отдельных носителя и, по крайней мере, одна копия за пределами рабочего места. Этот список ни в коем случае не позиционируется как исчерпывающий, и IT-специалисты должны самостоятельно изучить каждый пункт, чтобы определить, какие решения лучше всего подходят для их конкретных потребностей. Помимо этого, крайне желательно, чтобы IT-отдел советовался с высшим руководством по разработке политики проведения регулярных оценок рисков. Это поможет IT-отделу определить, где лучше всего размещать ресурсы (финансовые, технические и аппаратное/программное обеспечение), чтобы они использовались максимально эффективно.
img
Одна из предыдущих статей была посвящена созданию групп перехвата в OpenScape Voice. Сейчас мы поговорим про другой тип групп – группы поиска или Hunt Groups. /p> Теория Hunt группа представляет из себя несколько телефонных номеров, объединенных в одну группу внутри которой происходит распределение вызова по определенному алгоритму. Для вызова группы используется либо отдельный внутренний номер (Pilot Hunt Group), либо номер, состоящий в группе (Master Hunt Group). В одной группе может находиться 2048 номеров, а один номер может находиться в 32 группах одновременно. Рассмотрим алгоритмы распределения вызовов в группе. Circular (Циклический) - Распределение вызовов происходит по порядку, согласно списку абонентов. Если абонент не отвечает, то через заранее определенное время вызов передается следующему абоненту из списка, и так далее. Если последний абонент не ответил, то вызов снова передается первому. Новый вызов адресуется абоненту, который идет в списке за тем, который принял предыдущий вызов. Linear (Линейный) - Распределение вызовов так же происходит по порядку, согласно списку абонентов, и если абонент не отвечает, то вызов передается следующему. Но отличие состоит в том, что новый вызов всегда адресуется первому свободному абоненту в списке. Manual – Application Controlled (Управляемый внешним приложением) - Распределением вызовов управляет внешнее приложение по протоколу CSTA. Parallel – Call Pickup Model (Параллельный, на основе перехвата вызова) - Для распределения используется циклический алгоритм и при этом дополнительно всем свободным абонентам группы посылается уведомление о вызове, и вызов может быть перехвачен любым свободным абонентом. Абонент может быть включен только в одну группу такого типа, и не может одновременно быть членом другой стандартной группы перехвата. Parallel – Simultaneous Alerting Model (Параллельный, на основе одновременного вызова) - Одновременный вызов всем участникам группы. UCD – Uniform Call Distribution (Универсальный) - Вызов адресуется абоненту, который был свободен дольше других. Если абонент не отвечает, то вызов передается следующему абоненту, который был свободен дольше других и так далее. Настройка группы поиска Создадим номер вызова группы. Для этого перейдем во вкладку Configuration → OpenScape Voice → Business Group → Members → Subscribers и нажмем на Add. Во вкладке General указываем номер для группы в строке Directory Number и в строке Type of Number указываем тип номера → Public для городского и Private для корпоративного. Переходим на вкладку Connection и в Connection Information указываем Profile Only После создания номера приходим в меню Configuration → OpenScape Voice → Business Group → Teams - Hunt Groups и нажмем на Add для создания Hunt группы. Во вкладке General нужно указать название группы в строке Name, ниже в строке Pilot Directory Number указать номер группы, который мы создавали до этого и в поле Type в выпадающем списке выбрать алгоритм распределения вызова. Также в этом меню и во вкладке Advance можно выставить дополнительные настройки очереди. Добавлять абонентов в группе можно во вкладке Members, нажав на кнопку Add. В строке Directory Number указываем внутренний номер абонента, и также можем сразу указать в поле Position порядковый номер абонента в списке. После добавления номера появляются в списке, в котором можно изменять позицию номера при помощи кнопок Move Up и Move Down. Добавлять телефон в группу можно еще из меню настроек номера Configuration → OpenScape Voice → Business Group → Members - Subscribers во вкладке Groups, где нужно указать либо номер, либо имя группы, и нажать затем Save.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59