По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Почитайте первую часть статьи. Первая проблема. Два роутера работают с одной областью OSPF, и каждый роутер имеет loopback интерфейс, объявленный в OSPF. Вот вывод таблиц маршрутизации: Как мы можем наблюдать, что роутер R1 узнал о сети 10.2.2.0/24 от роутера R2, но в таблице маршрутизации роутера R2 пусто. Что не так? Видно, что OSPF не включен на интерфейсе loopback0 роутера R1, так что же мы тогда объявляем в сетях? Похоже, мы объявляем сеть 10.10.1.0/24, но эта сеть не настроена ни на одном интерфейсе... Сеть 10.1.1.0/24 настроена на интерфейсе loopback0 роутера R1. Здесь вы видите неправильно введенную команду network. Удалим ее. R1(config)#router ospf 1 R1(config-router)#no network 10.10.1.1 0.0.0.0 area 0 R1(config-router)#network 10.1.1.0 0.0.0.255 area 0 Давайте удостоверимся, что команда network настроена правильно. Проблема устранена! Эта проблема может показаться не серьезной, но использование неправильных сетевых операторов - это то, что происходит постоянно. Особенно если мы используем меньшие подсети (например, /27 или /28 или аналогичные), люди склонны делать ошибки с обратными маскам. Итог урока: убедитесь, что вы настроили правильный сетевой адрес, обратную маску и область. Видео: протокол OSPF (Open Shortest Path First) за 8 минут Урок №2 Очередная возможная ситуация. Опять два роутера, но другая проблема. Вот таблицы маршрутизации: В очередной раз роутер R2 не увидел сеть 10.1.1.0/24. Что интересно, что роутер R1 не имеет сети 10.1.1.0/24 в своей таблице маршрутизации как непосредственно подключенной. Мы можем проверить, что роутер R1 использует правильную настройку команды network. Поскольку R1 даже не имеет сети в своей таблице маршрутизации, предположим, что проблема с интерфейсом. Кажется, кто-то забыл применить команду "no shutdown" на интерфейсе. R1(config)#interface loopback 0 R1(config-if)#no shutdown Давайте включим интерфейс. И теперь он появляется в таблице маршрутизации роутера R2. Итог урока: нельзя объявлять то, чего у тебя нет! Урок №3 Новый урок! Одна область, опять два роутера... мы хотели бы иметь "full connectivity", но не работает OSPF ... вот вывод таблиц маршрутизации: Роутер R1 не показывает никаких маршрутов OSPF, R2 показывает ... Необходимо выяснить, что не так: Быстро взглянем на роутер R2, чтобы убедиться, что он действительно объявляет правильную сеть(и). Да это так и есть. Вывод роутера R1 более интересен ... видно, что у него настроен distribute-list. В этом заключается наша проблема. Давайте удалим distribute-list. R1(config)#router ospf 1 R1(config-router)#no distribute-list 1 in Эта команда отключит его. Задача решена! Итог урока: знать о distribute-list, запрещающий объявление и / или установку префиксов в таблице маршрутизации. Урок №4 Взглянем на более сложные проблемы OSPF. На изображении выше мы имеем роутер R1 и роутер R2, но на этот раз мы имеем конфигурацию OSPF с несколькими областями. Вот конфигурация OSPF этих роутеров: Видно, что все сети были объявлены. Область 2 не связана напрямую с областью 0, поэтому была создана виртуальная связь. Роутер R1, однако, не увидел сеть 2.2.2.0/24 от роутера R2, но роутер R2 увидел сеть 1.1.1.0/24. Лучше всего начать с виртуальной линии здесь: Хм, это выглядит не очень хорошо. Виртуальная связь отключена. Обратите внимание на IP-адреса, которые мы видим здесь, это IP-адреса, настроенные на интерфейсах FastEthernet обоих маршрутизаторов. Всякий раз, когда мы настраиваем виртуальное соединение, нам нужно настроить идентификатор маршрутизатора OSPF другой стороны, а не IP-адрес другой стороны! Вот ошибка, так что давайте исправим ее. R1(config)#router ospf 1 R1(config-router)#no area 12 virtual-link 192.168.12.2 R1(config-router)#area 12 virtual-link 2.2.2.2 R2(config)#router ospf 1 R2(config-router)#no area 12 virtual-link 192.168.12.1 R2(config-router)#area 12 virtual-link 1.1.1.1 Вот так должна выглядеть virtual-link, настроенная между идентификаторами маршрутизаторов OSPF. Сразу после ввода правильных команд появятся данные сообщения в консоли. Запись OSPF для сети 2.2.2.0/24 появилась. Урок №5 Другая проблема. Те же роутеры, но появился "домен внешней маршрутизации". Это может быть другой протокол маршрутизации, такой как RIP или EIGRP, который мы будем распространять в OSPF. R2 перераспределяет сеть 2.2.2.0 / 24 в OSPF, но по какой-то причине она не отображается на R1. Чтобы было интересно, мы не будем просматривать конфигурацию OSPF на роутерах. Нет сети 2.2.2.0/24 на роутере R1, поэтому давайте изучим роутер R2. Как мы можем видеть, сеть находится в таблице маршрутизации роутера R2 как directly connected. Как мы можем видеть роутер R2 был настроен для перераспределения напрямую подключенных сетей. Это должно включать сеть 2.2.2.0/24 на интерфейса loopback0. Однако в базе данных OSPF пусто? Что может быть причиной этого? Возможно, вы помните правила различных типов областей OSPF. Давайте выясним, что это за область! Вот и объяснение, это stub area! Stub area не допускают LSA type 5 (внешние маршруты). Мы можем либо превратить эту область в normal area или NSSA. Давайте переведем в NSSA. R1(config)#router ospf 1 R1(config-router)#no area 12 stub R1(config-router)#area 12 nssa R2(config)#router ospf 1 R2(config-router)#no area 12 stub R2(config-router)#area 12 nssa Изменим тип области на обоих маршрутизаторах. Область NSSA допускает внешние маршруты с помощью LSA type 7. Наша сеть 2.2.2.0 / 24 теперь в базе данных OSPF маршрутизатора R2. Итог урока: Stub area не допускают внешних префиксов (LSA Type 5). Либо измените область на NSSA, либо прекратите перераспределение. Урок №6 Очередная проблема. Проблема default route OSPF. На рисунке имеются роутер R1 и роутер R2, и сеть 192.168.12.0 /24 объявленная в OSPF. Loopback интерфейсы роутера R2 не объявляется в OSPF, но мы используем default route, чтобы роутер R1 мог добраться до них. Здесь представлены конфигурации OSPF: Видно, что в выводе роутера R2 присутствует команда default-information originate для объявления default route. Увы, но мы не видим default route на роутере R1. Будем искать неполадки в настройке. Давайте проверим роутер R2: В таблице маршрутизации роутера R2 не виден default route. Чтобы OSPF объявлял default route, можно использовать два варианта: Убедитесь, что у вас есть default route в routing table (невозможно объявлять то, чего нет); Примените команду default-information originate always. Она объявит default route, даже если он не прописан. R2(config)#ip route 0.0.0.0 0.0.0.0 null 0 Выше первый метод решения проблемы. Мы создадим default route на роутере R2. Обычно указывается default route на ISP роутере, но сейчас другого роутера нет. Мы укажем default route для интерфейса null0, и он будет внесен в routing table. Правило работает! R2(config)#no ip route 0.0.0.0 0.0.0.0 null 0 R2(config)#router ospf 1 R2(config-router)#default-information originate always Итог урока: что бы объявить default route с помощью OSPF, вам нужно иметь default route в таблице маршрутизации или использовать ключевое слово "always". Урок №7 Немного сложнее проблема... те же два роутера , все в зоне 0. Вот настройки OSPF: Ничего особенного, все сети объявлены, и мы используем одну область. Увы ... таблицы маршрутизации пусты! По крайней мере, никакой отсутствует информация о OSPF ... Настройки network выглядят хорошо, так что это хороший момент вникнуть поглубже в OSPF LSDB. Давайте сначала проверим идентификаторы маршрутизатора OSPF: Здесь мы видим OSPF router ID. Если вы внимательно посмотрите на информацию выше, вы заметите что-то необычное. State full, но роутер R1 не выбрал DR / BDR, а роутер R2 выбрал роутер R1 в качестве BDR. Мы можем использовать команду show ip ospf database router для поиска информации от определенного соседа OSPF. Роутер R1 говорит нам, adv router is not-reachable. Это плохо. Роутер R2 также сообщает нам, что роутер R1 недоступен, и если вы посмотрите внимательно, то увидите, что он видит связь как point-to-point. Мы не видим этого в выводе на роутере R1. Это, вероятно, означает, что роутер R1 и роутер R2 используют другой тип сети OSPF, что приводит к разнице в LSDB. Это не позволит нашим роутерам устанавливать маршруты в таблицу маршрутизации! Теперь мы кое-что выяснили. Тип сети отличается ... широковещательная передача на роутере R2 и точка-точка на роутере R1. Нам действительно удалось установить соседство OSPF с этим, но возникает разница в LSDB. Произведем исправления. R1(config)#interface fa0/0 R1(config-if)#ip ospf network broadcast Изменение типа сети на роутере R1 сделает свое дело. Наконец "О" появляется в наших таблицах маршрутизации...проблема решена! Итог урока: убедитесь, что вы используете правильный тип сети OSPF на обоих роутерах. Урок №8 Очередная внештатная ситуация. OSPF настроено между роутерами R1 и R2, но не все сети объявлены. Loopback интерфейсы роутера R2 перераспределяются в OSPF. Вот настройки обоих роутеров: Мы наблюдаем команду redistribute connected на роутере R2, которая должна перераспределить сети на интерфейсах обратной связи в OSPF. Однако здесь ничего нет ... Обычно было бы неплохо проверить, есть ли distribute list или нет. Ключ к решению этой проблемы - эта команда. Если вы наберете redistribute connected OSPF будет распространять только classful networks. R2(config)#router ospf 1 R2(config-router)#redistribute connected subnets Нам нужно добавить параметр "subnets", позволяющий заставить его выполнять redistribute subnet основных сетей. Ну вот, наша маршрутная таблица заполнена. Итог урока: добавьте параметр " subnets " при использовании перераспределения или перераспределяются только classful networks.
img
Первые два типа систем (IPS - intrusion prevention system & IDS - intrusion detection system) появились в 1986 году как результат научной работы, и их базовые принципы до сих пор используются повсюду – в системах предотвращения и обнаружения, в NGIPS и NGFW – словом во всех системах, которые были упомянуты в заголовке. В статье мы расскажем, как IPS/IDS изменялись со временем, с какими проблемами сталкивались разработчики и что можно от них ожидать в будущем. Итак, как мы уже сказали, системы обнаружения угроз и системы предотвращения угроз появились после написания научной статьи некой Дороти Деннинг, и называлась эта статья «Модель обнаружения угроз», и благодаря этой статье Стэнфордский Исследовательский Институт разработал нечто под названием Intrusion Detection Expert System/ (IDES). Вольно это можно перевести как экспертная система обнаружения угроз. Она использовала статистическое обнаружений аномалий, сигнатуры и хостовыепользовательские профили для детектирования редискового поведения у систем. Таким образом, она могла определить если такие протоколы как FTP или HTTP были использованы некорректно и даже могла определять атаки с отказом обслуживания (DoS). 2000 - 2005: Обнаружение предпочтительнее предотвращения В ранних 2000х системы обнаружения считались хорошим тоном. А до этого межсетевые экраны были очень эффективны для ландшафта угроз безумных 90х годов. Фаерволы обрабатывали трафик относительно быстро, так как в них не было глубокой инспекции пакетов, то есть вы не знали, что это за трафик приходит к вам в сеть – фаерволы реагировали только на установленные в правилах (листах контроля доступа) порты, протоколы иили сетевые адреса. В начале 2000х появились новые атаки, такие как SQL-инъекции и прочие, и они моментально завоевали место на подиуме в арсенале взломщиков. И вот на этом этапе IDS системы и пригодились – а время систем предотвращения угроз еще не настало. В то время некоторые организации боялись использовать IPS так как такая система потенциально могла заблокировать безвредный трафик. Как мы более подробно описывали в нашей статье про IPS и IDS, IPS ставится «в разрыв» и блокирует подозрительные соединения, полностью разрывая коннект и связь между отправляющей и принимающими сторонами. Но как вы могли понять, такое соединение могло стать подозрительным просто по причине какой-то аномалии в подключении и грубо говоря «глюке». Таким образом, IDS системы просто сообщали о такой аномалии и ничего не блокировали, чтобы сисадмин мог среагировать и проверить - правда ли это что-то плохое или же это просто доброкачественная аномалия. По этой причине в то время рынок для систем предотвращения угроз был настолько мал, что существовало всего несколько IPS вендоров. То есть идеей было что нужно пропускать любой трафик, а разберемся, мол, уже опосля – риск потери хорошего трафика был страшнее угрозы взлома. В это время сигнатуры писались для обнаружения эксплойтов, но не уязвимостей – то есть для каждой уязвимости было 100 разных способов эксплойта. Как только злоумышленники находили уязвимость, они заставляли разработчиков IDS исходить потом и писать сотни разных сигнатур для эксплойтов – все только для того, чтобы система обнаружения отправила тревогу админу. И вендоры IDS хвастались количеством имеющихся у них сигнатрур, будто это выгодно отличало их от конкурентов – но как вы понимаете, это не было корректным критерием оценки. В общем и целом, механизмы тогда насчитывали следующее полчище методов – совпадение по паттернам, строкам, аномалиям и даже эвристический анализ. Принятие IPS - год 2005 Когда в 2005 году системы предотвращения начали становится популярнее, большее количество вендоров стали соревноваться за место под солнцем на растущем рынке, и перестали хвастать самыми длинными сигнатурами. Опять же, по причине установки «в разрыв», клиенты боялись, что все эти сигнатуры будут замедлять сеть, так как каждое соединение должно быть пропущено через них. Таким образом, было решено сменить вектор написания сигнатур на другие – те, которые будут базироваться не на эксплойте, а на самой уязвимости. Было получено опытным путем, что если в системе более 3500 сигнатур, то это будет заметно сказываться на производительности. Сегодня производители все еще помещают в систему как новые сигнатуры, так и некую классику уязвимостей, которую злоумышленники могут использовать. 2006 – 2010: Настает время производительных IPS/IDS комбайнов Вендоры, которые предлагали гибридные системы, быстро обошли конкурентов – они предлагали гораздо более производительные системы, вплоть до 5 Гбитсек, и могли мониторить сегментированные сети, DMZ, серверные фермы с веб-приложениями и площадь внутри периметра. К примеру, сегодня производительные IPS устройства легко дают более 40 гигабит в секунду. В итоге, клиенты начали массово переходить на системы предотвращения вторжений и рынок начал очень быстро расти. А когда появился стандарт безопасности PCI DSS начал требовать от организаций поддержу оплаты картами установки или IDS, или МСЭ с возможностью фильтрации веб-приложений, очень много организаций купили гибридные системы. И прошло уже много лет с момента рождения технологии, так что технологию порядочно оттюнинговали и подрихтовали, так что, ложно-положительных срабатываний стало гораздо меньше. Однако, в этот же момент начала расползаться эпидемия ботнетов. И самым популярным способом стало помещение зловредных приложений на популярных сайтах, и, если какой-нибудь браузерный плагин вроде Java или Adobe Flash был с уязвимостью, при клике на соответствующий документ вредонос тихонько скачивался на компьютер. Кроме того, в 2008 году злоумышленники активно использовали перенаправляющие ссылки на вредоносные сайты, так что IDS/IPS вендоры начали также добавлять списки IP-адресов вредоносных командных центров и их веб-адресов – если эти ресурсы содержали на себе вредоносы. 2011 – 2015: Системы предотвращения вторжений следующего поколения В эти годы был переломный момент для вендоров в сфере ИБ – так как они стали выпускать системы предотвращения угроз следующего поколеня, которые включали в себя такие фичи как контроль пользователей и приложений. Таким образом, традиционный IPS смотрит в сетевой трафик на предмет известных аттак и что-то делает с этим трафиком, в зависимости от модели развертывания, а IPS следующего поколения делает тоже самое, но кроме того он покрывает гораздо больше протоколов (вплоть до 7 уровня) для защиты от большего количества атак. Кроме того, он также позволяет гибко контролировать доступ к приложениям – то есть, например, чтобы можно было лайкать фотки в VK, но нельзя было их заливать. И более того – чтобы это могли делать только определенные группы пользователей. Следующее дополнение к IDS/IPS системам появилось после взлома RSA (компании, которая занимается мультифакторной аутентификацией) в 2011 году – тогда новостные ресурсы назвали это APT (Advanced Persistent Threat)-атакой, то есть сложной постоянной угрозой. Позже было сказано, что это была фишинговая атака, в которой содержался документ с вредоносом внутри. Клиенты стали спрашивать ИБ вендоров, могут ли они их защитить от подобных вещей, если у вендора нет сигнатуры на данный конкретный вредонос, и ответом вендоров было предоставление такой фичи как эмуляция и песочницы – но это потребовало около 18 месяцев для большинства вендоров. Так что компании FireEye и Fidelis оказались в фазе бурного роста, так как они предоставляли такие технологии песочницы, до которых всем было очень далеко. Только подумайте, песочницы впервые за всю историю могли обнаружить до сих пор неизвестную атаку нулевого дня. Как работает песочница: неизвестный исполняемый файл или документ сначала попадает в песочницу, где он запускается в разных операционных системах и алгоритм пытается имитировать действия пользователя – клавиши стучат, мышка елозит и кликает, время прокручивается – все в надежде на то, что вредонос вылупится и себя покажет. Вендоры пошли чуть дальше. Если вредонос себя проявлял, то его хэш-сумма (MD5 или SHA) сохранялась для того, чтобы в будущем всегда ловить такие файлы. Соответственно, если другой клиент на такой же системе получал тот же файл – то он не пропускался в сеть и звучала тревога. Такие системы получили название Next Generation Firewall – межсетевых экранов следующего поколения. Конечно, Гартнер использовал этот термин еще в 2003 году и предсказал, что они межсетевые экраны будут содержать внутри себя сложную IPS систему, но индустрия не принимала подобные устройства вплоть до 2013 года. 2018 – и далее: Межсетевые экраны следующего поколения Сегодня большинство организаций используют NGFW и список их фич только растет. Так как эти МСЭ отличаются различными фичами, организациям придется выбирать в зависимости от точности поставленной задачи и их требований. Опять же, есть за и против МСЭ следующего поколения: за – нужно купить только пару железяк вместо почти десятка. Против – это все один вендор, и его мудрость ограничена, то есть не существует лучшего вендора, который знал бы все и сразу. Таким образом очень неплохой практикой является комбинировать устройства защиты от разных производителей и разбавлять их «мудрость» между собой. Важно помнить, что любое устройство защиты всегда хорошо только настолько, насколько богаты знания и опыт, стоящие за этим устройством. Есть даже специальный термин – Threat Intelligence. Такие системы и базы знаний есть у всех больших ИБ вендоров. Более того, они есть полностью бесплатные и открытые – например, VirusTotal. Сегодня ландшафт угроз постоянно меняется и большинство вендоров сконцентрировано на машинном обучении, чтобы алгоритмы анализа файлов всегда улучшались, а количество шума и ложных срабатываний стремилось к минимуму. Но это бесконечная игра в кошки-мышки, и на каждый ход производителей хакеры придумают что-нибудь новое, что позже смогут нейтрализовать вендоры.
img
Linux черпал вдохновение из Unix, но Linux - это не Unix, хотя он определенно похож на Unix. Мы объясним основные различия между этими двумя известными операционными системами. Так в чем же разница? Linux - это бесплатное семейство операционных систем с открытым исходным кодом. Unix - это коммерческий продукт, предлагаемый различными поставщиками, каждый со своим вариантом, обычно предназначенным для своего собственного оборудования. Это дорогой и закрытый код. Но Linux и Unix делают примерно одно и то же, не так ли? Более-менее да. Тонкости несколько сложнее. Есть отличия помимо технических и архитектурных. Чтобы понять некоторые влияния, которые сформировали Unix и Linux, нам нужно понять их предысторию. Истоки Unix Unix более 50 лет. Он был разработан на языке ассемблера Digital Equipment Corporation (DEC) на DEC PDP/7 в качестве неофициального проекта в Bell Labs, в то время принадлежавшем AT&T. Вскоре он был перенесен на компьютер DEC PDP/11/20, а затем постепенно распространился на другие компьютеры Bell. Переписывание на язык программирования C привело к появлению в 1973 г. версии 4 Unix. Это было важно, потому что характеристики языка C и компилятора означали, что теперь переносить Unix на новые компьютерные архитектуры было относительно легко. В 1973 году Кен Томпсон и Деннис Ритчи представили на конференции доклад о Unix. В результате запросы на копии Unix хлынули в Bell. Поскольку продажа операционных систем выходила за рамки разрешенного объема деятельности AT&T, они не могли рассматривать Unix как продукт. Это привело к распространению Unix в виде исходного кода с лицензией. Номинальных затрат было достаточно, чтобы покрыть отгрузку и упаковку, а также «разумный гонорар». Unix пришла «как есть», без технической поддержки и исправлений ошибок. Но вы получили исходный код - и вы могли его изменить. Unix быстро завоевал популярность в академических учреждениях. В 1975 году Кен Томпсон провел творческий отпуск от Bell в Калифорнийском университете в Беркли. Вместе с некоторыми аспирантами он начал добавлять и улучшать их локальную копию Unix. Внешний интерес к дополнениям Berkeley вырос, что привело к выпуску первого выпуска Berkeley Software Distribution (BSD). Это был набор программ и модификаций системы, которые можно было добавить в существующую систему Unix, но это не была отдельная операционная система. Последующие версии BSD были целыми системами Unix. Теперь существовало две основных разновидности Unix: поток AT&T и поток BSD. Все другие варианты Unix, такие как AIX, HP-UX и Oracle Solaris, являются их потомками. В 1984 году были сняты некоторые ограничения для AT&T, и они смогли производить и продавать Unix. Затем Unix стала коммерциализированной. Начало Linux Рассматривая коммерциализацию Unix как дальнейшее разрушение свобод, доступных пользователям компьютеров, Ричард Столлман решил создать операционную систему, основанную на свободе. То есть свобода изменять исходный код, распространять модифицированные версии программного обеспечения и использовать программное обеспечение любым способом, который пользователь сочтет нужным. Операционная система должна была воспроизвести функциональность Unix без включения какого-либо исходного кода Unix. Он назвал операционную систему GNU и в 1983 году основал проект GNU Project для разработки этой операционной системы. В 1985 году он основал Фонд свободного программного обеспечения для продвижения, финансирования и поддержки проекта GNU. Все области операционной системы GNU достигли хорошего прогресса - кроме ядра. Разработчики проекта GNU работали над микроядром под названием GNU Hurd, но прогресс был медленным, (сегодня он все еще находится в разработке и приближается к выпуску.) Без ядра не было бы операционной системы. Основной управляющей программой Unix является его ядро. Ядро имеет полный контроль над всей системой. Он имеет подсистемы, которые предлагают услуги для обработки файловой системы, обработки ресурсов, управления памятью, запуска и остановки программ и нескольких других низкоуровневых основных задач. Ядро является сердцем ОС и действует как интерфейс между пользователем и оборудованием. Каждая подсистема ядра имеет определенные функции, такие как параллелизм, виртуальная память, подкачка и виртуальная файловая система. На внешних уровнях архитектуры у нас есть оболочка, команды и прикладные программы. Оболочка - это интерфейс между пользователем и ядром. Оболочка и пользователь вводят команды, интерпретируют эти команды и соответственно вызывают компьютерные программы. В 1987 году Эндрю С. Танебаум выпустил операционную систему MINIX (mini-Unix) в качестве учебного пособия для студентов, изучающих проектирование операционных систем. MINIX была функциональной Unix-подобной операционной системой, но имела некоторые ограничения, особенно в отношении файловой системы. В конце концов, исходный код должен быть достаточно маленьким, чтобы его можно было адекватно изучить за один университетский семестр. Некоторой функциональностью пришлось пожертвовать. Чтобы лучше понять внутреннюю работу Intel 80386 на своем новом ПК, студент-информатик Линус Торвальдс написал в качестве учебного упражнения простой код переключения задач. В конце концов, этот код стал элементарным прото-ядром, которое стало первым ядром Linux. Торвальдс был знаком с MINIX. Фактически, его первое ядро было разработано на MINIX с использованием компилятора GCC Ричарда Столлмана. Кто занимается разработкой? Дистрибутив Linux - это сумма множества различных частей, взятых из самых разных мест. Ядро Linux, набор основных утилит GNU и пользовательские приложения объединены для создания жизнеспособного дистрибутива. И кто-то должен заниматься этим объединением, обслуживанием и управлением - точно так же, как кто-то должен разрабатывать ядро, приложения и основные утилиты. Сопровождающие дистрибутива и сообщества каждого дистрибутива играют свою роль в создании дистрибутива Linux так же, как и разработчики ядра. Linux - это результат распределенных совместных усилий, выполняемых неоплачиваемыми добровольцами, такими организациями, как Canonical и Red Hat, а также отдельными лицами, спонсируемыми отраслью. Каждый коммерческий Unix разрабатывается как единое целое с использованием собственных или жестко контролируемых сторонних средств разработки. Часто они имеют уникальное ядро и разработаны специально для аппаратных платформ, поставляемых каждым поставщиком. Бесплатные производные потока BSD Unix с открытым исходным кодом, такие как FreeBSD, OpenBSD и DragonBSD, используют комбинацию устаревшего кода BSD и нового кода. Теперь они поддерживаются сообществом и управляются так же, как и дистрибутивы Linux. Также важно отметить, что Linux - это только ядро, а не полная ОС. Это ядро Linux обычно входит в состав дистрибутивов Linux, что делает его полноценной ОС. Дистрибутив Linux - это операционная система, созданная из набора программного обеспечения, построенного на ядре Linux, и система управления пакетами. Стандартный дистрибутив Linux состоит из ядра Linux, системы GNU, утилит GNU, библиотек, компилятора, дополнительного программного обеспечения, документации, оконной системы, оконного менеджера и среды рабочего стола. Таким образом, дистрибутивы Linux фактически делают ядро Linux полностью пригодным для использования в качестве операционной системы, добавляя к нему различные приложения. Существуют различные разновидности дистрибутивов Linux, которые обслуживают широкий спектр потребностей пользователей. Например, у нас есть ОС на базе OpenWrt Linux для встраиваемых устройств, Linux Mint для персональных компьютеров и Rocks Cluster Distribution для суперкомпьютеров. Всего существует около 600 дистрибутивов Linux. Или, например, популярная мобильная ОС Android от Google основана на Linux. Каждая итерация ОС Android построена на текущем ядре Linux. Стандарты и соответствие В общем, Linux не соответствует ни единой спецификации Unix (SUS), ни POSIX. Он пытается удовлетворить оба стандарта, не будучи зависим от них. Таие ОС называются Unix-подобными ОС (Unix-like, UN*X или *nix). Linux - это Unix-подобная операционная система с некоторыми изменениями в дизайне Unix. Было одно или два (буквально одно или два) исключения, такие как Inspur K-UX, китайский Linux, совместимый с POSIX. POSIX (Portable Operating System Interface — переносимый интерфейс операционных систем) — набор стандартов, описывающих интерфейсы между операционной системой и прикладной программой (системный API) Single UNIX Specification (SUS) — общее название для семейства стандартов, которым должна удовлетворять операционная система, чтобы называться «UNIX» Настоящий Unix, как и коммерческие предложения, соответствует требованиям. Некоторые производные BSD, включая все версии macOS, кроме одной, совместимы с POSIX. Имена вариантов, такие как AIX, HP-UX и Solaris, являются товарными знаками соответствующих организаций. MacOS - это сертифицированная ОС Unix. У него есть собственное ядро под названием XNU. MacOS используется в компьютерах Apple. Товарные знаки и авторское право Linux - зарегистрированная торговая марка Линуса Торвальдса. Linux Foundation управляет торговой маркой от его имени. Ядро Linux и основные утилиты выпускаются под различными общедоступными лицензиями GNU с «авторским левом». Исходный код находится в свободном доступе. Unix - зарегистрированная торговая марка Open Group. Он защищен авторским правом, проприетарен и имеет закрытый код. FreeBSD защищена авторским правом FreeBSD Project, и исходный код доступен. Различия в использовании С точки зрения пользовательского опыта, в командной строке нет большой видимой разницы. Из-за стандартов и соответствия POSIX программное обеспечение, написанное на Unix, может быть скомпилировано для операционной системы Linux с ограниченными усилиями по переносу. Например, скрипты оболочки можно использовать непосредственно в Linux во многих случаях с небольшими изменениями или даже без них. Некоторые утилиты командной строки имеют несколько разные параметры командной строки, но, по сути, на обеих платформах доступен один и тот же арсенал инструментов. Фактически, в IBM AIX есть AIX Toolbox для приложений Linux. Это позволяет системному администратору устанавливать сотни пакетов GNU (например, Bash, GCC и другие). Различные разновидности Unix имеют разные доступные графические интерфейсы пользователя (GUI), как и Linux. Пользователь Linux, знакомый с GNOME или Mate, сможет нащупать свой путь при первом знакомстве с KDE или Xfce. То же самое и с рядом графических интерфейсов пользователя, доступных в Unix, таких как Motif, Common Desktop Environment и X Windows System. Все они достаточно похожи, чтобы по ним мог ориентироваться любой, кто знаком с концепциями оконной среды с диалогами, меню и значками. Вы узнаете больше о различиях при администрировании систем. Например, есть разные механизмы инициализации. Производные от System V Unix и потоков BSD имеют разные системы инициализации. Бесплатные варианты BSD поддерживали схемы инициализации BSD. По умолчанию дистрибутивы Linux будут использовать систему инициализации, производную от Unix System V или systemd. Подробнее про различия Использование и операции Linux используется от малых до средних операций, в то время как ранее UNIX был единственным вариантом. Большинство поставщиков программного обеспечения перешли на Linux, поскольку это открытое программное обеспечение, которое свободно распространяется и предпочтительно для веб-служб и офисных операций. В большинстве случаев используется Linux, но бывают случаи, когда UNIX имеет преимущество. Как и на предприятиях, которые используют массивные симметричные многопроцессорные системы, UNIX - правильный выбор. Серьёзным конкурентом Linux какое-то была FreeBSD, но благодоря открытости Linux стал лидером мира свободного ПО. Основные характеристики Linux - это ядро, а Unix - это стандартизация. Есть ряд функций, которыми отличаются обе операционные системы, некоторые из них приведены ниже. Возможности UNIX: Это многопользовательская и многозадачная ОС. На серверах и рабочих станциях UNIX используется в качестве главной управляющей программы. Возможности Linux: Это многозадачная ОС, которая также поддерживает многопользовательские программы. Одна программа может иметь более одного процесса, и каждый из процессов может иметь более одного потока. На одном компьютере вы можете установить Linux, а также другую ОС, и обе ОС будут работать без сбоев. У него есть авторизованная учетная запись, поэтому отдельные учетные записи защищены. Безопасность Не существует полностью защищенной ОС, но если мы сравним Unix и Linux, мы увидим, что Linux гораздо более оперативно реагирует на ошибки и угрозы. Оба имеют одинаковые характеристики, такие как правильная сегментация домена в многопользовательской среде, есть система паролей, с помощью которой система шифруется и так далее. Преимущество открытой программной системы в том, что она находится в свободном доступе, что делает ее более защищенной от ошибок. Когда кто-либо из разработчиков видит ошибку в программном обеспечении, он может сообщить об этом кому угодно на форуме разработчиков. В случае Unix система не является открытым программным обеспечением, поэтому она имеет ограничения и гораздо более уязвима для угроз. Аппаратная архитектура Если мы увидим коммерческие версии Unix, то большинство из них поддерживает свои собственные аппаратные машины. Например. HP-UX поддерживает только компьютеры PA-RISC и Itanium, Solaris работает на SPARC и x86, который является процессором питания. Они подпадают под ограничения UNIX, и по этой причине производители Unix имеют преимущество в том, что они могут оптимизировать код и драйверы. В случае с Linux это не так. Linux был написан таким образом, чтобы он мог поддерживать максимальное количество машин. Есть несколько платформ и машин, на которых может работать Linux с поддержкой нескольких других устройств ввода-вывода. Здесь разработчики не знают, в какой системе будет установлено программное обеспечение, поэтому они не могут оптимизировать код. Ядро Процесс установки исправлений и компиляции различен для Linux и Unix. В Linux патч может быть выпущен на форуме, и конечный пользователь может установить его на свой компьютер. Этот патч также может редактироваться и изменяться конечным пользователем. Поскольку существует множество сред, поддерживающих приложения Linux, разработчики зависят от многих глаз, чтобы знать об ошибках и угрозах. Ядра выпускаются только в двоичной форме коммерческими поставщиками Unix. Если необходимо установить обновление, администратор должен дождаться, пока поставщик выпустит исправление в двоичной форме. Поддержка файловой системы Существует множество файловых систем, поддерживаемых Linux, тогда как в случае Unix он поддерживает меньшее количество систем. Ниже мы увидим некоторые файловые системы, поддерживаемые разными ОС. Linux - Jfs, Xfs, Btrfs, Ext2, Ext3, Ext4, FAT, FAT32, NTFS, devpts и так далее. Unix - ufs, xfs, zfs, jfs, hfs +, hfs и так далее. Доступность приложений Как упоминалось выше, Linux - это клон Unix. Таким образом, многие приложения одинаковы в обеих ОС. Некоторые похожие команды - cp, ls, vi и cc. Linux - это версия GNU, тогда как Unix основан на оригинальных инструментах. Но это не следует путать, поскольку некоторые поставщики Unix используют инструменты GNU в своих установках. Большинство поставщиков предоставляют эти инструменты в виде предварительно скомпилированных пакетов, которые устанавливаются или поставляются как дополнительный компонент. Все дистрибутивы Linux поставляются с набором приложений с открытым исходным кодом, и есть несколько других, свободно доступных для разработчиков и конечных пользователей. Таким образом, Unix также портировал эти приложения, и они доступны в коммерческой версии Unix. Поддержка Все версии Unix являются платными, а версии для Linux можно использовать бесплатно. Это также добавляет в Unix функцию, заключающуюся в том, что если кто-то купит Unix, он получит коммерческую поддержку. В случае с Linux у нас есть несколько открытых форумов, где пользователи могут задавать вопросы и предлагать лучшее решение. Linux более отзывчив, поскольку несколько конечных пользователей заявили, что форумы более отзывчивы, чем коммерческая техническая поддержка Unix. Сравнительная таблица Особенности Linux Unix Разработчик Вдохновленный MINIX (Unix-подобная ОС), Linux был первоначально разработан финско-американским инженером-программистом Линусом Торвальдсом. Поскольку это открытый исходный код, у нас есть разработчики сообщества для Linux. Первоначально полученный от AT&T Unix, он был разработан в Bell Labs Кеннетом Лэйном Томпсоном, Деннисом Ричи и тремя другими. Написано на C и другие языки программирования. C и язык ассемблера. Семейство ОС Unix-подобный (Unix-like) Unix Исходная модель Открытый исходный код Смешанный. Однако, традиционно с закрытым исходным кодом, немногие проекты Unix имеют открытый исходный код, включая ОС Illumos и ОС BSD (Berkley Software Distribution). Доступно на языках Многоязычный Английский Первый выпуск Linux новее по сравнению с Unix. Он был производным от Unix и был выпущен в сентябре 1991 года. Unix старше. Был выпущен в октябре 1973 года для сторонних организаций. До этого он использовался внутри Bell Labs с момента основания в 1970 году. Тип ядра Монолитное ядро Тип ядра варьируется. Он может быть монолитным, микроядерным и гибридным. Лицензия GNUv2 (Стандартная общественная лицензия GPL) и другие. Лицензирование различается. Некоторые версии являются проприетарными, другие - бесплатными / OSS. Официальный веб-сайт https://www.kernel.org/ http://opengroup.org/unix Пользовательский интерфейс по умолчанию Оболочка Unix CLI (интерфейс командной строки) и графический (система X Windows) Текстовый режим интерфейса По умолчанию оболочка - BASH (Bourne Again Shell). Более того, он совместим со многими интерпретаторами команд. Первоначально оболочка Bourne. Он также совместим со многими интерпретаторами команд. Стоимость Можно получить и использовать бесплатно. Существуют также платные версии Linux. Но, как правило, Linux дешевле Windows. Проприетарные операционные системы имеют разные структуры затрат, устанавливаемые продавцами, соответственно. Примеры Debian, Ubuntu, Fedora, Red Hat, Android и т. Д. IBM AIX, Solaris, HP-UX, Darwin, macOS X и т. Д. Архитектура Первоначально был создан для оборудования Intel x86, порты доступны для многих типов процессоров. Совместим с машинами PA и Itanium. Solaris также доступен на x86/x64. OSX - это PowerPC. Обнаружение и устранение угроз Поскольку Linux в основном управляется сообществом открытого исходного кода, над кодом работают многие разработчики в разных частях мира. Следовательно, в случае Linux обнаружение и устранение угроз происходит довольно быстро. Из-за проприетарной природы Unix пользователям необходимо дождаться соответствующих исправлений для исправления ошибок. Безопасность Как Linux, так и ОС на базе Unix обычно считаются очень хорошо защищенными от вредоносных программ. Это связано с отсутствием корневого доступа, быстрыми обновлениями и сравнительно низкой долей рынка (по сравнению с Windows). По состоянию на 2018 год широко распространенного Linux-вируса не было. Unix также считается очень безопасным. Заразить еще сложнее, так как источник тоже недоступен. В настоящее время для Unix нет активно распространяющегося вируса. Цена Linux бесплатный. Однако корпоративная поддержка доступна по цене. Unix не бесплатен. Однако некоторые версии Unix бесплатны для использования в целях разработки (Solaris). В среде для совместной работы Unix стоит 1407 долларов на пользователя, а Linux стоит 256 долларов на пользователя. Следовательно, UNIX очень дорогая. Заключение Unix очень стар и считается родителем всех операционных систем. Ядро Linux также является производным от Unix. Основное различие между операционными системами на основе Unix и Linux заключается не в части представления, а в том, как они работают внутри, то есть в основном в части ядра. Разница между ними также будет зависеть от того, какие именно версии Linux и Unix вы сравниваете. Также важно указать, что Linux (и многие другие Unix-подобные ОС) можно свободно получать и изменять, в то время как операционные системы Unix - нет. Стоимость всегда является основным вопросом при принятии решения, какую технологию использовать, и Linux имеет в этом отношении преимущество. Linux более гибкий и бесплатный по сравнению с настоящими системами Unix, и именно поэтому Linux стал более популярным. При обсуждении команд в Unix и Linux они не одинаковы, но очень похожи. Фактически, команды в каждом дистрибутиве одного и того же семейства ОС также различаются. В Solaris, HP, Intel и других используются Интернет-серверы Unix, рабочие станции и персональные компьютеры. В то время как Linux широко используется для компьютерного программного обеспечения и оборудования, игр, планшетов, мэйнфреймов и т.д. Есть исследования, которые говорят, что Linux за последние несколько лет развивается быстрее, чем любая другая ОС. Следовательно, в будущем Linux может оставить далеко позади установки UNIX.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59