По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Функция как сервис или FaaS (Function as a service) это относительно новомодный термин, которым определяется возможность бессерверного запуска кусков кода, что дает возможность разработчикам писать и обновлять эти куски кода на лету, которые будут запускаться в результате отклика на какое-нибудь событие, к примеру, когда пользователь нажмет на элемент в веб-приложении. Благодаря этому масштабировать код и внедрять микросервисы становится на порядок проще. Что такое микросервисы? Небольшая аналогия: представьте себе большое полотно от известного художника - в нашем случае это будет веб-приложением. А теперь представьте себе большое произведение искусства, которое составлено из кусочков мозаики - причем каждый кусочек можно достать, немного модернизировать и починить, что практически невозможно в случае цельного веб-приложения. Такой подход к написанию приложения из набора модульных компонентов известен как микросервисная архитектура. Причем подобный подход довольно тепло воспринимается разработчиками, так как они могут создавать и модифицировать маленькие куски кода, которые относительно легко имплементировать в структуру приложения. Причем в монолитном приложении совершенно обратная ситуация, когда это приложение является огромной и экстремально сложной системой, где изменение одного из элементов может порушить его работу и процесс внесения изменения приближается по сложности к запуску шаттла. Таким образом, использование FaaS многократно снижает сложность внесения изменений и запуска нового кода, что дает возможность разработчикам сосредоточиться на самом коде, в то время как FaaS провайдер будет следить за нужным количеством вычислительных ресурсов и различных бэкэнд сервисов. Какие плюсы такой технологии? Увеличенная скорость разработки С FaaS разработчики могут тратить больше времени на логику приложения и не думать о том, куда и как это приложение воткнуть, что как правило ведет к более высокой скорости написания и имплементации кода. Bстроенная масштабируемость Так как FaaS платформы сами по себе легко масштабируемы в автоматическом режиме, разработчикам не нужно думать о моментах, в которые производительность приложения может пострадать - например, в различные часы наибольшей нагрузки. Всю заботу о масштабируемости возьмет на себя облачный провайдер. Оптимизация затрат Знаете, какой самый большой страх пользователя облачных серверов? Что вы наберете кучу серверов, а необходимой нагрузки не будет, что повлечет за собой в пустую простаивающие мощности. Логично, что появилась такая модель как FaaS, которая позволяет заказчикам платить только за то время, когда вычислительные мощности действительно работают. Какие минусы технологии FaaS? Снижение степени контроля системы в общем Учитывая, что всю заботу за железо, оркестрацию и прочее берет на себя провайдер, отладка кода и понимание цельной картинки может быть нетривиальной задачей - поэтому многие все еще предпочитают действовать по классической модели. Процесс тестирования становится гораздо сложнее Впихнуть невпихуемое, а именно микросервисное приложение (или целый комплект таких приложений) в локальное окружение для тестирование становится нетривиальной задачей, и часто начинают требоваться люди с нетривиальным опытом и экспертизой. Как начать использовать FaaS? Вам нужно начать переговоры с облачными провайдерами, которые предоставляют подобные сервисы - все просто. В первую очередь нужно будет понимать где будут располагаться ЦОДы провайдеры - так как в случае большого расстояния между ЦОДами могут начаться непрогнозируемые и странные проблемы. Список из таких провайдеров не велик, но всем хорошо знакомы эти имена: AWS (проект Lambda), Microsoft (Azure Functions) и Yandex Cloud Functions. Но в России выбор будет практически очевиден в пользу Яндекса, так как его сервера находятся ближе всего к нашей большой стране.
img
Каждое семейство операционных систем производит загрузку по-своему. Это связанно с различной архитектурой ядра операционной системы, разными инструкциями по работе с подключенными устройствами. В данной статье попробую разобрать загрузку популярной операционной системы на ядре Linux Ubuntu. Схематично процесс загрузки можно отобразить следующим образом. Загружаемся Итак, Нажимаем кнопку включения компьютера, и центральный процессор переходит на адрес BIOS. BIOS или UEFI, в более современных компьютерах, проводит систему проверок и выбирает носитель информации с которого будет производится загрузка операционной системы. На носителе находится MBR (Master Boot Record) или GPT (Guid Partition table) на новых компьютерах в которых находится загрузчик. А дальше уже в зависимости от настройки. Загрузчик может самостоятельно загружать операционную систему, а может передавать управление следующему загрузчику. Например, если Windows и Linux установлены на одном компьютере и находятся на разных разделах жесткого диска. В любом случае, если идет речь о Linux у нас есть первая стадия с небольшой частью кода, которая загружает у нас загрузчик. Загрузчик знает где лежит ядро операционной системы, загружает ядро, загружает initial run disk, там находятся необходимые файлы и модули для загрузки ядра. Далее уже ядро берет процесс управления на себя. Происходит инициализация устройств, конфигурирование процессов памяти и так далее. После всех этих процессов ядро запускает процесс init. Вернемся к вопросу загрузчиков, для каждой операционной системы разработан свой загрузчик, а иногда и несколько. NTLDR - Загрузчик операционной системы Windows, LILO - один из стандартных загрузчиков для Linux и BSD системы. GRUB - загрузчик операционной системы от проекта GNU. Нас интересуют последние два. Данные загрузчики работают в два этапа. На первом этапе у них крошечный код на MBR или GPT, который запускает исполнение кода второго этапа. Перейдем непосредственно к самой загрузке. Данное меню мы можем получить при загрузке если зажать клавишу Shift. Как видно на картинке в данном примере загрузчик GRUB версии 2.04. У нас есть несколько вариантов. Загрузка Ubuntu по умолчанию и вариант загрузки с расширенными опциями. В нашем случае расширенные опции не дают многого, а всего лишь позволяют начать загрузку в режиме восстановления recovery mode. Данная опция не является целью стати, и мы ее опустим. Вернемся к первому пункту загрузки. Выбираем, нажимаем "e" получаем следующую картину загрузки. На данной картинке можно увидеть, что корневой раздел монтируется по uuid, он будет корневым root и непосредственно сам id. ID раздела можно посмотреть после загрузки операционной системы командой blkid. Можно часть параметров отредактировать или большинство. Более подробно можно поискать в интернете. По нажатию F10 осуществляется продолжение загрузки операционной системы. После загрузки операционной системы, мы можем с помощью команды dmesg посмотреть, сообщения ядра, все что происходило с ядром. Нужно различать сообщения ядра и лог ядра. Который можно посмотреть cat /var/log/dmesg. Данный файл содержи информацию только о загрузке операционной системы. В данном файле содержится информация с самого начала загрузки операционной системы и до конца. Если событие происходит позднее, то в данном файле этой информации вы не найдете. Система инициализации ОС Есть такое понятие Init - это первый или родительский процесс, который запускает все последующие процессы. Это может быть проверка и монтирование файловых систем запуск служб и.т.д. Существует 3 варианта работы этого родительского процесса. Init в стиле SysV - родительский процесс инициализации системы на одном из заданных уровней запуска (runlevel); Т.е. есть несколько уровней загрузки (runlevel) обычно их 7 штук. Один из них - это обычный многопользовательский режим. Другие это выключение компьютера, перезагрузка, режим восстановления и т.д. Init в стиле systemd - родительский процесс инициализации системы в ускоренном режиме, за счёт параллельного запуска задач; Ускоренный режим достигается за счет использования процессора в частности Intel, который позволяет запускать процессы инициализации параллельно. К этому режиму есть еще куча софта библиотек, которые расширяют функционал. Init в стиле Upstart - родительский процесс инициализации системы на основе отслеживания событий; Данный режим используется на Ubuntu уже давным - давно, тут не только запускаются скрипты инициализации, но и запускаются скрипты отслеживания событий и реагирования на них. Т.е. это более гибкий процесс инициализации, например, если какая-то служба не запустилась или упала в процессе загрузки то, upstart умеет это отследить и запустить это повторно В операционной систему Ubuntu можно посмотреть дерево процессов использую команду pstree. В результате ее вывода мы можем увидеть, что родительским процессом являлся процесс systemd. Который запускал уже свои, какие-то дочерние процессы. Перейдем в корневую директорию boot. Здесь мы можем увидеть директорию загрузчика grub. Ядра линуксовые vmlinuz (ссылка на ядро) и до обновления старое ядро vmlinux.old (ссылка на старое ядро). Соответственно пара initrd* - файлы диска, эти файлы содержат диск, который грузится в оперативную память, данный диск содержит файлы необходимые самому ядру Linux для нормальной загрузки. Перейдя в директорию grub, мы можем найти конфигурационный файл grub.cfg и несколько вспомогательных, но не менее важных фалов. Соответственно мы можем внести изменения в данный файл на постоянной основе и соответственно данный код будет выполнятся при каждой загрузке операционной системы.
img
На самом деле поиск DNS это не то, что требует частого внимания. Но иногда приходится заботиться об этом. Например, если у вашего провайдера слабые сервера или же в вашей сети часто происходят DNS обращения, то нужно настроить локальный кэширующий DNS сервер. Как кэширующий DNS-сервер может пригодиться? Кэширующий DNS-сервер занимается обработкой DNS запросов, которые выполняет ваша система, затем сохраняет результаты в памяти или кэширует их. В следующий раз, когда система посылает DNS запрос для того же адреса, то локальный сервер почти мгновенно выдает результат. Эта идея может показаться бесполезной. Подумаешь, какие-то там секунды. Но если DNS сервера провайдера тратят много времени на разрешение имени, то в результате падает скорость Интернет серфинга. Например, домашняя страница новостного канала MSNBC для корректной работы обращается более чем к 100 уникальным доменам. Даже если на запрос тратится одна десятая секунды, в итоге получается 10 секунд ожидания, что по нынешним меркам слишком много. Локальный кэширующий DNS увеличивает скорость не только дома или в офисе, он также помогает работе серверов. Например, у вас есть почтовый сервер с анти-спам фильтром, который выполняет очень много DNS запросов. Локальный кэш намного увеличить скорость его работы. И наконец, system-resolved поддерживает новейшие стандарты вроде DNSSEC и DNSoverTLS или DoT. Эти технологии увеличивают безопасность при работе в Интренет. Какой локальный кэширующий сервер выбрать? В этом руководстве будет использован сервер systemd-resolved. Эта утилита является частью набора управления системой systemd. Если в вашей системе используется systemd, а большинство дистрибутивов Linux используют это, то в системе уже установлен systemd-resolved, но не запущен. Большинство систем не используют эту утилиту. systemd-resolved запускает небольшой локальный кэширующий DNS-сервер, который мы настроим на запуск при загрузке системы. Затем мы изменим конфигурацию всей системы так, чтобы DNS запросы шли на локальный сервер. Как проверить используется ли systemd-resolved? В некоторых дистрибутивах, например Ubuntu 19.04, по умолчанию используется systemd-resolved. Если у вас уже запущен systemd-resolved, тогда не нужно что-то настраивать в системе. Но нужно проверить на корректность утилит управления сетевыми настройками, такие как NetworkManager, так как они могут игнорировать системные настройки сети. Перед тем как перейти к следующему разделу проверьте запущен ли в вашей системе systemd-resolved: $ resolvectl status Если в ответ получите сообщение ниже, значит в системе не настроен systemd-resolved: $ resolvectl status Failed to get global data: Unit dbus-org.freedesktop.resolve1.service not found. И наоборот, если на выходе видите что-то подобное, то systemd-resolved уже работает: Global LLMNR setting: yes MulticastDNS setting: yes DNSOverTLS setting: opportunistic DNSSEC setting: allow-downgrade DNSSEC supported: no Current DNS Server: 1.1.1.1 DNS Servers: 1.1.1.1 1.0.0.1 Включение и настройка systemd-resolved Отдельно устанавливать systemd-resolved не нужно, так как этот сервис является частью systemd. Всё что нужно сделать это запустить его и добавить в автозагрузку. Для включения данной службы введите команду ниже: $ sudo systemctl start systemd-resolved.service Далее нужно ввести следующую команду, чтобы добавить службу в автозапуск. $ sudo systemctl enable systemd-resolved.service И наконец нужно прописать DNS сервера, куда будет обращаться локальный сервер для разрешения имен. Есть много разных сервисов, но приведённые ниже самые быстрые, бесплатные и оба поддерживают DNSSEC и DoT: Google Public DNS 8.8.8.8 8.8.4.4 Cloudflare Public DNS 1.1.1.1 1.0.0.1 Для этого откройте конфигурационный файл systemd-resolved любым текстовым редактором: $ sudo nano /etc/systemd/resolved.conf Отредактируйте строку, которая начинается на: #DNS= И пропишите одну из вышеуказанных пар. Мы используем Cloudflare Public DNS: DNS=1.1.1.1 1.0.0.1 Сохраните изменения и перезапустите службу systemd-resolved: $ sudo systemctl restart systemd-resolved.service Итак, systemd-resolved уже запущен и готов для выполнения быстрых и безопасных DNS запросов, как только мы настроим систему соответствующим образом. Настройка системы для использования systemd-resolved Есть несколько путей настройки системы на использование локального DNS сервера. Мы рассмотрим два наиболее используемых метода. Первый – рекомендуемый метод, второй конфигурация в режиме совместимости. Разница в том, как будет обрабатываться файл /etc/resolv.conf. В файле /etc/resolv.conf содержатся IP адреса серверов разрешения имен, которые используются программами. Программы при необходимости разрешения доменного имени обращаются к этому файлу в поисках адресов серверов разрешения имен. Итак, первый метод конфигурации заключается в создании символьной ссылки на /run/systemd/resolve/stub-resolv.conf. В этом случае файл /etc/resolv.conf управляется службой systemd-resolved. Это может вызвать проблемы в том случае, если другие программы пытаются управлять файлом /etc/resolv.conf. Режим совместимости оставляет /etc/resolv.conf не тронутым, позволяя программам управлять им. В этом режиме, в настройках программ, управляющих файлом /etc/resolv.conf в качестве системного сервера разрешения имен должен быть указан IP 127.0.0.53. Конфигурация в рекомендуемом режиме При этом режиме конфигурация проводится вручную. Сначала нужно удалить или переименоваться оригинальный файл /etc/resolv.conf. Лучше переименовать, чтобы при необходимости можно было использовать информацию в нем. $ sudo mv /etc/resolv.conf /etc/resolv.conf.original Затем создаем символьную ссылку: $ sudo ln -s /run/systemd/resolve/stub-resolv.conf /etc/resolv.conf И наконец перезапускаем службу systemd-resolved: $ sudo systemctl restart systemd-resolved.service Настройка в режиме совместимости В режиме совместимости, нужно убедиться, что локальный сервер разрешения имен system-resolved запущен и используется системными службами. Откройте файл /etc/resolv.conf любым редактором: $ sudo nano /etc/resolv.conf Удалите все строки, которые содержать ключевое слово nameserver и добавьте одну единственную строку: nameserver 127.0.0.53 Этот файл мажет быть изменён любой программой. Чтобы предотвратить это нужно настроить программы так, чтобы в качестве DNS они использовали адрес 127.0.0.53. Отладка systemd-resolved Посмотреть, как система выполняет DNS запросы после внесённых изменений сложно. Самый эффективный метод – это включить режим отладки для службы systemd-resolved, а затем просмотреть файл логов. systemd-resolved можно перевести в режим отладки созданием специального служебного файла, в котором содержатся настройки отладки. Делается это следующей командой: $ sudo systemctl edit systemd-resolved.service Вставьте в файл следующие строки: [Service] Environment=SYSTEMD_LOG_LEVEL=debug После этого служба systemd-resolved автоматический перезапуститься. Откройте второй терминал и просмотрите логи в journald: $ sudo journalctl -f -u systemd-resolved Строка, которая содержит слова “Using DNS server” показывает, какой DNS сервер используется для разрешения имён. В нашем случае это DNS сервера Cloudflare Using DNS server 1.1.1.1 for transaction 19995. Слова “Cache miss” в начале строки означает, что для данного домена нет закэшированной информации: Cache miss for example.com IN SOA И наконец слова “Positive cache” в начале строки означает, что systemd-resolved уже запрашивал информацию об этом домене и теперь ответы возвращает из кэша: Positive cache hit for example.com IN A Не забудьте отключить режим отладки, так как в это время создается большой файл логов. Сделать это можно командой: $ sudo systemctl edit systemd-resolved.service а затем удалить добавленные выше две строки. Использование защищенных DNS запросов systemd-resolved один из немногих DNS серверов, которые поддерживает DNSSEC и DNSoverTLS. Эта два механизма позволяют убедиться, что полученная DNS информация подлинная (DNSSEC) и он не был изменён по пути (DoT). Эти функции легко включаются редактированием основного конфигурационного файла system-resolved: $ sudo nano /etc/systemd/resolved.conf Измените файл следующим образом: DNSSEC=allow-downgrade DNSOverTLS=opportunistic Сохраните изменения и перезапустите службу systemd-resolved. $ sudo systemctl restart systemd-resolved.service Пока прописанные DNS сервера поддерживают эти две функции все DNS запросы будут защищены. DNS сервера Google и CloudFlare поддерживают эти механизмы защиты. Заключение Теперь ваша система будет выполнять DNS запросы быстро и эффективно даже если провайдер не работает достаточно быстро. Кроме этого, ваша цифровая жизнь лучше защищена новейшими механизмами защиты DNS запросов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59