По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Семантическое управление версиями (или семвер) – это формальное соглашение для определения номера версии новых выпусков программного обеспечения. Стандарт помогает пользователям программного обеспечения понять серьезность изменений в каждом новом дистрибутиве. Проект, использующий семантическое управление версиями, объявляет основной номер версии (major), дополнительный номер версии (minor) и номер исправления (patch) для каждого выпуска. Строка версии 1.2.3 указывает на основную версию под номером 1, дополнительную версию под номером 2 и исправление под номером 3. Номера версий такого формата широко используются как программными пакетами, так и исполняемыми файлами конечных пользователей, такими как приложения и игры. Однако не каждый проект точно следует стандарту, установленному semver.org. Спецификация была создана для решения проблем, вызванных несовместимостью методов управления версиями между программными пакетами, используемыми в качестве зависимостей. Под «пакетом» и «зависимостью» мы подразумеваем библиотеку кода, предназначенную для использования в другом программном проекте и распространяемую диспетчером пакетов, таким как npm, composer или nuget. Это именно то применение семантического управления версиями, которое мы рассматриваем в этой статье. Major, Minor и Patch Важно понимать значение трех задействованных компонентов. Вместе они намечают путь разработки проекта и соотносят влияние каждого нового выпуска на конечных пользователей. Major number (основной номер версии) – основной номер указывает на текущую версию общедоступного интерфейса пакета. Он увеличивается каждый раз, когда вы вносите изменения, которые требуют от существующих пользователей вашего пакета обновления их собственной работы. Minor number (дополнительный номер версии) – дополнительный номер указывает на текущую функциональную версию вашего программного обеспечения. Он увеличивается всякий раз, когда вы добавляете новую функцию, но не меняете интерфейс вашего пакета. Он сообщает пользователям о том, что были внесены значительные изменения, но пакет полностью совместимым с предыдущими версиями с предыдущим дополнительным номером. Patch number (номер исправления) – номер исправления увеличивается каждый раз, когда вы вносите какое-то незначительное изменение, которое не влияет на общедоступный интерфейс или общую функциональность вашего пакета. Его чаще всего используют для исправления ошибок. Потребители всегда должны иметь возможность не задумываясь установить последнюю версию исправлений. Семантическая структура версии выпуска лучше всего моделируется в виде дерева. Наверху у вас изменения общедоступного интерфейса, каждое из которых отображается на основном номере. Каждая основная версия имеет свой собственный набор дополнительных версий, в которые добавляются новые функции без нарушения совместимости с предыдущими версиями. И наконец, дополнительные версии могут время от времени отлаживаться путем исправления некоторых ошибок. Откуда начинать? Большинство проектов должны начинаться с версии 1.0.0. Вы публикуете свой первый общедоступный интерфейс и первоначальный неизмененный набор функций. И поскольку вам еще не приходилось вносить никаких исправления, то и версия исправления – 0. Теперь давайте посмотрим, что же происходит, когда вы вносите изменения в свой пакет. После вашего первоначального выпуска вы получаете отчет об ошибке от пользователя. Когда вы выпустите исправление, то правильный номер версии уже будет 1.0.1. Если бы вы затем выпустили еще одну версию с исправлением ошибок, то вы бы увеличили номер исправления до 2, т.е. номер версии уже был бы 1.0.2. Тем временем вы также работали над новой интересной функцией. Это совершенно необязательно, поэтому пользователям не нужно ничего делать для обновления. Вы выпускаете эту версию как 1.1.0. – создана новая функциональная среда, но ее еще ни разу не исправляли. К сожалению, скоро приходят отчеты об ошибках, и среди ваших пользователей начинает распространяться версия 1.1.1. Несколько месяцев спустя вы решили провести реорганизацию кода всего проекта. Некоторые функции были удалены или теперь доступны через объединенный интерфейс. Если вы выпустите эту работу, то люди, использующие текущую версию вашего пакета, должны будут внести серьезные изменения в свой проект. Пришло время опубликовать 2.0.0. в вашем репозитории пакетов. Поддержание старых веток Увеличение какого-либо номера в вашей строке версий не создает точку невозврата. После публикации 1.1.1 вы могли обнаружить ошибку, присутствующую в 1.0.2. Используя ветки в вашей системе контроля версий, вы можете произвести исправления в обеих версиях. В итоге вы получите 1.1.2 и 1.0.3. Точно также вы можете поддерживать ветку 1.х вашего проекта, несмотря на выпуск 2.0.0. Может показаться странным публиковать 1.1.2 после 2.0.1, но это вполне нормальная практика. Семантическое управление версиями не создает линейный постоянно увеличивающийся номер версии; наоборот, оно предназначено для использования в качестве части модели разработки ветвления, которое использует простоту установки исправлений, предлагаемую системами управления исходным кодом, такими как Git. Опубликованные версии должны быть неизменяемыми. После того, как вы создали версию 2.4.3, вы не можете «обновить» его, просто добавив дополнительный код в ту же строку версии. Вы должны присваивать новый номер версии каждому выпуску, чтобы пользователи всегда могли получить доступ к каждой конкретной версии вашего пакета. Обработка пакетов, находящихся в стадии разработки Как правило, вы всегда обновляете основную версию своего пакета всякий раз, когда вносятся изменения, несовместимые с предыдущими версиями. Когда вы находитесь в стадии разработки, то ваша кодовая база может дорабатываться очень быстро, что приводит к публикации множества основных версий. Вы можете этого избежать, рекламируя свой проект как 0.y.z. Значение 0 в качестве основной версии означает, что ваш пакет неустойчив. Обычные правила в отношении совместимости с предыдущими версиями тут не применяются, поэтому вы можете выпускать новые версии, увеличивая только дополнительный номер и номер исправления. Это значит, что вы можете использовать 1.0.0 для обозначения первой «завершенной» версии вашего программного обеспечения. Вы также можете добавить дополнительные «идентификаторы» в конец строки версии, используя дефис в качестве разделителя: 1.0.0-alpha.1. Вы можете использовать такой вариант для того, чтобы четко обозначить альфа- и бета-версии. Точно также вы можете включить метаданные сборки, добавив символ +: 1.1.0-alpha.1+linux_x86. Заключение Согласованное использование семантического управления версиями помогает пользователям быть уверенными в вашем проекте. Они могут четко видеть, как развивается ваша кодовая база и нужно ли им самим провести какую-то работу, чтобы идти в ногу со временем. Объявление строки семантической версии необходимо при публикации в диспетчере наиболее популярных пакетов. Тем не менее, в конечном счете, вам решать, какие номера вы устанавливаете для каждого нового выпуска. Соблюдение стандарта четко сообщает о ваших намерениях пользователям и сводит к минимуму риск непреднамеренного нарушения чужой работы.
img
Привет! Начнем: в первую очередь необходимо подключить прибор ТИС-Е1 к компьютеру. Установка на ПК программного обеспечения TIS-Soft-E1 Если на ПК еще не установлено ПО TIS-Soft-E1, то это можно сделать следующим образом. Найти файл установщика программы TIS-Soft-E1 на диске с ПО, поставляемым в комплекте с прибором и запустить его. В запустившемся мастере установки в диалоговом окне несколько раз подряд нажать кнопку <Далее>, и затем кнопку <Установить>. Мастер оповестит о том, что ПО успешно установлено и предложит запустить приложение. На этом установка окончена, ПО готово к использованию. Подключение прибора к ПК Порт RS-232 прибора с помощью кабеля, входящего в комплект, необходимо подключить к свободному COM-порту компьютера. Во избежание выхода из строя COM-порта компьютера, рекомендуется, чтобы прибор ТИС-Е1 был выключен во время подключений/отключений порта RS-232. Следует иметь ввиду, что ПО TIS-Soft-E1 позволяет использовать COM-порты с номерами от 1 до 4, поэтому если подключить прибор к порту COM5, то связь с прибором установить не удастся. Подключить адаптер питания к разъему 9-15В на задней стенке прибора и включить его в сеть. Включить питание прибора тумблером на боковой панели. Перевести управление прибором в режим "УДАЛЕННОЕ". Для этого: Нажать кнопку "Меню" на приборе. Стрелками ↑ или ↓ выбрать пункт <Установки>, нажать кнопку "Ввод" В появившемся окне выбрать пункт <Режим работы>, нажать кнопку "Ввод" Выбрать пункт <управление>. Изначально режим управления установлен <МЕСТНОЕ>. Нажать кнопку >> для перевода прибора в режим <УДАЛЕННОЕ>. При этом на дисплее установится надпись "Режим управления от внешней ЭВМ", и кроме кнопок >> и <<, позволяющих перейти в режим <МЕСТНОЕ>, в этом режиме более клавиатура прибора не работает. Запустить программу TIS-Soft-E1 с помощью ярлыка на рабочем столе Или <Пуск/ Все программы/ TIS-Soft-E1/ TIS-Soft-E1 >. Внешний вид окна программы TIS-Soft-E1 представлено на рисунке. Окно программы делится на три области ОБЩЕЕ, ПРИЕМ и РЕЗУЛЬТАТЫ. Область ОБЩЕЕ при нажатии на кнопку "Передача" в верхней части программы меняется на область ПЕРЕДАЧА. Первоначально необходимо выбрать COM-порт компьютера, к которому подключен прибор. Для этого в верхней строке выбрать меню <Прибор> и выбрать из выпадающего списка нужный порт. Далее необходимо осуществить соединение программы с прибором, для чего необходимо нажать кнопку <Связь> в верхней правой части окна программы. Если программа выдала сообщение "Нет ответа от прибора", то, вероятно, существует проблема подключения прибор не включен, не переведен в режим удаленного управления, неправильно выбран com-порт компьютера. Если программа выдает сообщение об ошибке открытия порта, то вероятно данный порт в данный момент используется другой программой или выбран неправильно. Если прибор включен, подключен к ПК и COM-порт выбран правильно, то программа выдает сообщение, что будут загружены конфигурация и данные из прибора. Нажать кнопку "ОК". В течение нескольких секунд данные из прибора загрузятся в ПК. Кнопка <Связь> поменяет свое название на <Разъединить>, кнопка <Старт> станет активной. На этом подключение прибора к ПК закончено. Теперь все управление прибором осуществляется с помощью окна программы на ПК. Подключение измеряемого оборудования к прибору ТИС-Е1 На задней стенке прибора имеются гнезда: "Выход испытательного сигнала" - выход прибора: "Вход испытательного сигнала" - вход прибора: Вход внешней синхронизации: А так же выход внешней синхронизации и заземление. При проведении измерений с перерывом связи и постановкой "заворота" на удаленном конце, необходимо проделать следующее: Выход прибора ТИС-Е1 необходимо подключить на вход оборудования, выход оборудования - на вход прибора. На удаленном конце на измеряемом потоке необходимо установить шлейф. При правильном подключении прибора и при наличии "заворота" (шлейфа) на удаленном конце, в окне прибора должна отсутствовать аварийная сигнализация. Аварийные сигналы выведены в крайней левой части области "РЕЗУЛЬТАТЫ": Как правило, возникают следующие аварии: LOS отсутствие входного сигнала. Необходимо проверить соединение ВЫХОД оборудования ВХОД прибора (кабель, разъемы, контакт на кроссовом оборудовании), правильность подключения, работоспособность оборудования. AIS индикация удаленной аварии. Отсутствует входной сигнал или присутствует какая-либо другая авария на удаленном конце. LOF потеря цикловой синхронизации. PL несоответствие входного сигнала выходному. Сигнал на входе прибора не соответствует испытательному сигналу на выходе прибора. Может означать, что на удаленном конце не установлен шлейф или неправильное соединение ВЫХОД прибора ВХОД оборудования. После правильного подключения прибора к оборудованию необходимо настроить параметры измерений. Настройка параметров прибора При запуске программы открыто окно общих параметров измерений, к которым относятся: Параметры испытательного сигнала Период измерений Совместная/раздельная настройка параметров приема/передачи. Интервал записи промежуточных данных в память Вид измеряемых ошибок Параметры испытательного сигнала - установить переключатель в положение ПСП (псевдослучайная последовательность), параметры последовательности оставить по умолчанию (2^15 -. Период проведения измерений. Выбрать <Оперативное>, в следующей строке установить переключатель в положение <За>, в активировавшемся окне нажать кнопку с многоточием, в новом окне указать период измерений. Для оперативных измерений обычно достаточно 15-ти минут. Так же, при необходимости, можно проводить измерения до определенного времени, для чего нужно установить указанный выше переключатель в положение <До>, и , как и в предыдущем случае, установить время завершения измерений. Следующий переключатель позволяет настраивать параметры приема/передачи совместно или раздельно. В нашем случае, при проведении измерений с перерывом связи, по шлейфу на удаленном конце, необходимо выбрать режим <совместно> Интервал записи в память. Определяет, с каким интервалом будут записаны в память промежуточные результаты. Параметр имеет только три предопределенных значения: 1 минута, 10 минут, 1 час. При относительно малом периоде измерений (15 минут), устанавливаем параметр <1 минута>. Тип измеряемых ошибок. Прибор позволяет измерять кодовые и бинарные ошибки. Необходимо выбрать <бинарные>. При проведении измерений без перерыва связи параллельным включением прибора необходимо установить Счет ошибок <кодовые>. Если в параметрах передачи задать формирование цикла, то появляется возможность измерять <цикловые> ошибки. Далее, необходимо настроить параметры передачи. Для этого в левой верхней части окна необходимо нажать кнопку "ПЕРЕДАЧА". После этого окно программы поменяет свой вид кнопка <Передача> поменяет название на <Общее>, окно примет следующий вид: Параметры частоты сигнала <2048> и <Номинал>, установленные по умолчанию, оставляют без изменений. Ниже выбирается код, который используется в оборудовании HDB-3 или AMI. Эти данные можно узнать из технического описания оборудования. Как правило, используется код HDB-3. Далее задается формирование цикла, установкой флага <цикл>. При этом появятся параметры цикла. Если ранее, в окне общих параметров, установлен переключатель, определяющий совместное изменение параметров приема/передачи, то в соседнем окне <ПРИЕМ> параметры приема будут изменяться автоматически, и изменить их в таком режиме невозможно. В данном режиме возможно заполнение сигналом любого количества канальных интервалов, передача синусоидального сигнала по любому выбранному каналу с заданной частотой и уровнем и другие параметры. Измерения можно проводить как с формированием цикла, так и без него. Проведение измерений После того, как все параметры настроены, можно приступить к началу измерений. Для этого необходимо нажать кнопку <Сброс> в области программы "РЕЗУЛЬТАТЫ", и затем нажать кнопку <СТАРТ> в верхней правой части окна программы, на вопрос программы "Начать измерения?" нажать кнопку "ОК". На приборе загорится зеленый светодиод, свидетельствующий о том, что процесс измерений запущен. Когда измерения не производятся, на приборе горит красный светодиод. В области "РЕЗУЛЬТАТЫ" в реальном времени отображаются результаты измерений, а так же аварийные сигналы, если такие есть в наличии. В нижней части окна отображается оставшееся до конца сеанса измерений время или, если сеанс уже окончен, сообщение "измерено" и время окончания последнего сеанса измерений. После окончания измерений результаты отображаются в нижней части программы в области "РЕЗУЛЬТАТЫ". Сохранение результатов Для более подробного отображения результатов измерений (с расшифровкой по минутам) для последующего анализа, для передачи по электронной почте или для распечатки на бумажном носителе протокол измерений необходимо передать и сохранить на ПК. Для этого необходимо проделать следующие действия: В окне программы выбрать меню "файл", далее пункт "протокол" (в верхней части скриншота ниже). В открывшемся окне установить флаги ("галочки") на всех параметрах, которые должны быть отображены в протоколе. Если отметить флаг "Комментарии", то в окне появляется дополнительное пустое поле, в котором можно указать краткий комментарий, например, условия проведения измерений, или участок. Внесенный текст также будет сохранен в протоколе измерений. Нажать кнопку <Сохранить>, в раскрывшемся окне указать путь к папке, где необходимо сохранить файл, и имя файла и нажать кнопку <Сохранить> еще раз. Папка для сохранения результатов по умолчанию C:Program FilesTIS Soft E1 Нажать кнопку "Выход" в нижней части диалогового окна. Окно сохранения результатов закроется автоматически. Протоколы измерений сохраняются в файле программы "Блокнот" (расширение .txt), который может быть открыт в любом текстовом редакторе на ПК. Протокол содержит информацию о дате и времени проведения измерений, при условии, что дата и время правильно установлены в приборе. Но рекомендуется указать в имени файла принадлежность потока и дату проведения измерений. После завершения измерений, программу TIS-Soft-E1 можно закрыть как любое приложение Windows. Сам прибор можно выключить тумблером на боковой панели. Пример протокола измерений, полученного с помощью прибора ТИС-Е1 ***** П Р О Т О К О Л И З М Е Р Е Н И Й ***** Создан: 06.11.2008 10:13:36 *** Р Е З У Л Ь Т А Т Ы И З М Е Р Е Н И Я *** Ошибки: 1 Коэффициент: 5,42E-10 Джиттер: 0,03 Джиттер ВЧ: 0,00 ==== АВАРИЙНЫЕ СЕКУНДЫ ==== Нет входа: 0 Прием СИАС: 0 Потеря цикла: 0 ==== РЕЗУЛЬТАТЫ ПО G826 ==== ES: 1 SES: 0 ESR: 1,11E-03 SESR: 0,00E+00 BBER: 1,11E-06 *** ТАБЛИЦА РЕЗУЛЬТАТОВ ПО ИНТЕРВАЛАМ ИЗМЕРЕНИЯ *** Измеряемые ошибки: Бинарные Количество интервалов: 15 Начало измерения: 06.11.2008 9:53:00 Окончание измерения: 06.11.08 10:08:00 N п/п Время Ошибки Коэфф. Джит. Джит.ВЧ Аварии 1 06-09:54 0 0,00E+00 0,04 0,00 2 06-09:55 0 0,00E+00 0,04 0,00 3 06-09:56 0 0,00E+00 0,04 0,00 4 06-09:57 0 0,00E+00 0,04 0,00 5 06-09:58 0 0,00E+00 0,04 0,00 6 06-09:59 0 0,00E+00 0,04 0,00 7 06-10:00 0 0,00E+00 0,04 0,00 8 06-10:01 0 0,00E+00 0,04 0,00 9 06-10:02 0 0,00E+00 0,04 0,00 10 06-10:03 0 0,00E+00 0,04 0,00 11 06-10:04 0 0,00E+00 0,04 0,00 12 06-10:05 0 0,00E+00 0,05 0,00 13 06-10:06 1 8,14E-09 0,04 0,00 14 06-10:07 0 0,00E+00 0,04 0,00 15 06-10:08 0 0,00E+00 0,05 0,00
img
Графовые базы данных (Graph databases) – это нереляционные системы (NoSQL), которые определяют корреляции между сложно взаимосвязанными сущностями. Такая структура позволяет обойти ограничения реляционных БД и уделяет больше внимания отношениям между данными. Графовая база данных позволяет аккуратно определять взаимосвязи и дает ответы на сложные вопросы о том, как точки данных соотносятся друг с другом. В данной статье объясняется, что такое графовые базы данных, и как они работают. Но для начала можно быстро познакомиться с другими видами NoSQL. Что такое графовая база данных? Графовая база данных – это нереляционный тип баз данных, основанный на топографической структуре сети. Идея этой БД восходит к математической теории графов. Графы представляют наборы данных в виде узлов, ребер и свойств. Узлы, или точки (nodes) – это экземпляры или сущности данных; ими является любой объект, который вы планируете отслеживать. Например, люди, заказчики, подразделения и т.д. Ребра, или линии (edges) – это важнейшие концепции в графовых БД. Они отображают взаимосвязь между узлами. Эти связи имеют направление и могут быть одно- или двунаправленными. Свойства (properties) содержат описательную информацию, связанную с узлами. В некоторых случаях свойства бывают и у ребер. Узлы с пояснительными свойствами создают взаимосвязи, представленные через ребра. Графовые БД предлагают концептуальное представление данных, тесно связанных с реальным миром. Моделировать сложные связи гораздо проще, поскольку отношениям между точками данных уделяется такое же внимание, как и самим данным. Сравнение графовых и реляционных баз данных Графовые БД не создавались для замены реляционных БД. Стандартом отрасли на текущий момент считаются реляционные БД. Но перед этим важно понять, что может предложить та или иная разновидность систем. Реляционные базы данных обеспечивают структурированный подход к данным, а графовые БД считают более гибкими и ориентированы на быстрое понимание взаимосвязей между данными. Графовые и реляционные БД имеют свою область применения. Сложные взаимосвязи лучше реализовать через графовые БД, поскольку их возможности превосходят традиционные реляционные СУБД. При создании моделей баз данных в реляционных системах MySQL или PostgreSQL требуется тщательное планирование, а в графовых используется более естественный и гибкий подход к данным. В таблице ниже приведены ключевые отличия между графовыми и реляционными БД: Тип Графовые БД Реляционные БД Формат Узлы и ребра со свойствами Таблицы со строками и столбцами Связи Представлены в виде ребер между узлами Создаются с помощью внешних ключей между таблицами Гибкость Гибкие Жестко заданные Сложные запросы Быстрые и отзывчивые Необходимы сложные соединения Варианты использования Системы с взаимосвязанными зависимостями Системы с транзакциями и более простыми отношениями Как работают графовые базы данных? Графовые базы данных одинаково относятся к данным и взаимосвязям между ними. Связанные узлы физически связываются, и эта связь рассматривается как часть данных. При таком моделировании данных вы можете запрашивать взаимосвязи также, как и сами данные. Вместо вычисления и запросов на подключение, графовые БД считывают взаимосвязи напрямую из хранилища. По гибкости, производительности и адаптивности графовые БД близки к другим нереляционным моделям данных. В них, как и в других нереляционных БД, отсутствуют схемы, что делает данную модель гибкой и легко изменяемой. Примеры использования графовых баз данных Есть много примеров, когда графовые БД превосходят все прочие методы моделирования данных. Среди таких примеров можно выделить: Рекомендательные сервисы в режиме реального времени. Динамичные рекомендации по продуктам и электронным товарам улучшают пользовательский опыт и максимизируют прибыль. Из известных компаний можно упомянуть Netflix, eBay и Walmart. Управление основными данными. Привязка всех данных к одной общей точке обеспечивает постоянство и точность данных. Управление основными данными крайне важно для крупномасштабных компаний мирового уровня. GDPR и соблюдение нормативных требований. С графами гораздо проще управлять безопасностью и отслеживать перемещение данных. Базы данных снижают вероятность утечки информации и обеспечивают большую согласованность при удалении данных, чем повышается общее доверие к конфиденциальной информации. Управление цифровыми ресурсами. Объем цифрового контента просто огромен и постоянно растет. Графовые БД предлагают масштабируемую и простую модель данных, позволяющую отслеживать цифровые ресурсы: документы, расчеты, контракты и т.д. Контекстно-зависимые сервисы. Графы помогают в предоставлении сервисов, приближенных к актуальным характеристиками мира. Будь то предупреждения о стихийных бедствиях, информация о пробках или рекомендации по товарам для конкретного местоположения, – графовые базы данных предлагают логическое решение для реальных обстоятельств. Выявление мошенничества. Поиск подозрительных закономерностей и раскрытие мошеннических платежных схем выполняется в режиме реального времени. Выявление и изоляция частей графа позволяет быстрее обнаружить мошенническое поведение. Семантический поиск. Обработка естественного языка бывает неоднозначной. Семантический поиск помогает определить значение ключевых слов и выдает более подходящие варианты, которые, в свою очередь проще отобразить с помощью графовых БД. Сетевое управление. Сети – это не что иное, как связанные графы. Графовые БД снижают время, необходимое для оповещения сетевого администратора о проблемах в сети. Маршрутизация. Информация передается по сети за счет поиска оптимальных маршрутов, и это делает графовые БД идеальным вариантом для маршрутизации. Какие есть известные графовые базы данных? С ростом больших данных и аналитики в соцсетях популярность графовых БД возрастает. Моделирование графов поддерживает множество многомодельных БД. Кроме того, доступно много нативных графовых БД. JanusGraph JanusGraph – это распределенная, масштабируемая система графовых БД с открытым кодом и широким набором возможностей по интеграции и аналитике больших данных. Ниже приведен перечень основных функций JanusGraph: Поддержка ACID-транзакций с возможностью одновременного обслуживания тысяч пользователей Несколько вариантов хранения графических данных, включая Cassandra и HBase Встроенный сложный поиск, а также дополнительная (опциональная) поддержка Elasticsearch Полная интеграция Apache Spark для расширенной аналитики данных JanusGraph использует полный по Тьюрингу язык запросов для обхода графов Neo4j Neo4j (Network Exploration and Optimization 4 Java, что переводится как «исследование сети и оптимизация для Java») – это графовая база данных, написанная на Java с нативным хранением и обработкой графов. Основные возможности: Масштабируемость БД за счет разделения данных на части – сегменты Высокая доступность благодаря непрерывному резервному копированию и последовательным обновлениям Высокий уровень безопасности: несколько экземпляров баз данных можно разделить, оставив их на одном выделенном сервере Neo4j использует Cypher – язык запросов для графовых БД, который очень удобен для программирования DGraph DGraph (Distributed graph, что переводится как «распределенный граф») – это распределенная система графовых БД с открытым исходным кодом и хорошей масштабируемостью. Вот несколько интересных возможностей DGraph: Горизонтальная масштабируемость для работы в реальной среде с ACID-транзакциями DGraph – это свободно распространяемая система с поддержкой множества открытых стандартов Язык запросов – GraphQL, который был разработан для API DataStax Enterprise Graph DataStax Enterprise Graph – это распределенная графовая БД на базе Cassandra. Она оптимизирована под предприятия. Несколько функций: DataStax обеспечивает постоянную доступность для корпоративных нужд База данных легко интегрируется с автономной платформой Apache Spark Полная интеграция аналитики и поиска в реальном времени Масштабируемость за счет наличия нескольких центров обработки данных Поддержка Gremlin и CQL для запросов Плюсы и минусы графовых баз данных В каждом типе баз данных есть свои плюсы и минусы. Именно поэтому так важно понимать отличия между моделями и доступные возможности для решения конкретных проблем. Графовые БД – это развивающаяся технология с целями, отличными от других типов БД. Плюсы Вот несколько плюсов графовых баз данных: Гибкая и адаптивная структура Четкое представление взаимосвязей между сущностями Запросы выводят результаты в реальном времени. Скорость зависит от количества связей Минусы Ниже перечислены основные минусы системы: Отсутствует стандартизированный язык запросов. Язык зависит от используемой платформы Графы не подходят для систем на основе транзакций Небольшая база пользователей; при возникновении проблема сложно получить поддержку Заключение Графовые базы данных – это отличный подход для анализа сложных отношений между объектами данных. Быстрота запросов и результаты в режиме реального времени хорошо вписываются в требования современных и стремительно растущих исследований данных. Графы – это развивающаяся технология, которую ждет еще много улучшений.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59