По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В современном мире технологий все изменяется с такой скоростью, что то, что вчера еще было небольшим стартапом, сегодня может оказаться стандартом для индустрии. А принятые стандарты сегодня настолько быстро перерабатываются и изменяются, что необходимо постоянно быть в курсе изменений, для того чтобы соответствовать им. Сейчас уже никого не удивляет видеоконференцсвязь, хотя несколько лет назад казалось, что это привилегия для топ-менеджеров больших компаний, но сейчас любой рядовой сотрудник может беспрепятственно воспользоваться ВКС для связи со своими коллегами. Отрасль ВКС продолжает активно расти и развиваться. Так какие же изменения нас ждут в мире видеоконференцсвязи? Видеосвязь где угодно Прошли времена когда для того чтобы связаться с коллегами из другого города нужно было набиваться большой кучей в комнату на другом конце офиса, оборудованную видеотерминалом, чтобы провести короткое совещание, где больше времени тратилось на подготовку, чем на само общение. Теперь у нас есть возможность участвовать в видеоконференциях не только из переговорных комнат и рабочих мест, а буквально, откуда угодно, благодаря мобильным устройствам. Собеседование в кафе с планшета и деловые переговоры в транспорте с телефона скоро станут обыденностью и позволят экономить кучу времени и всегда быть на связи, несмотря на все препятствия. И индустрия уделяет значительное внимание мобильным платформам, и появляются решения как от небольших компаний предлагающих свои приложения для мобильных, такие как Zoiper или Bria, так и гиганты вроде Cisco, с приложениями Jabber и WebEx или Polycom со своим RealPresence. Не отстают и мессенджеры, добавляющие поддержку видео в свои приложения. Сейчас для видеозвонков можно использовать Skype, Facebook Messenger, Google Duo, Google Hangouts, WhatsApp, Viber, Imo и этот список постоянно растет. Видеоконференции в облаках Сейчас все сильнее и сильнее развивается модель SaaS (Software as a Service), когда поставщик услуги размещает все на своих мощностях, и предоставляет пользователю удаленный доступ. Это удобно, потому что пользователю не нужно закупать оборудование для видеоконференций, создавать инфраструктуру и иметь специализированный персонал который будет следить за этим всем. Гораздо проще, особенно для небольших компаний, платить ежемесячную плату, которая будет в разы меньше, чем стоимость покупки и развертывания серверов для ВКС, и сразу получить готовый сервис с технической поддержкой. Например, сейчас популярны сервисы от компаний Zoom, Polycom, Cisco WebEx, но появляется все больше небольших компаний, которые способны представить достойную конкуренцию текущим участникам рынка. Одним из таких новых участников может стать набирающий популярность сервис appear.in, позволяющий совершать видеозвонки через браузер, использую технологию WebRTC. Рост видеотрафика Процент коммуникаций с использованием видеоконференций неуклонно растет с каждым годом. Растет число пользователей, передающих видеотрафик, увеличивается качество картинки и звука и поэтому при проектировании сетевых инфраструктур нужно учитывать что видеотрафик, который очень сильно чувствителен к задержкам и потерям, будет продолжать расти. Также нужно подстраиваться к изменениям и провайдерам – клиенты будут уходить, если на видеконференциях будет разваливаться картинка и пропадать звук. При этом есть еще видеохостиги, стриминговые площадки, онлайн-кинотеатры и прочие ресурсы, основным контентом у которых является видео, и их количество продолжает расти. В связи с этим вендоры разрабатывают оборудование, которое специально предназначено для обработки и передачи видео – такой, например, является линейка маршрутизаторов ISR (Integrated Services Router) от компании Cisco, архитектура которых предлагает мультимедийные сервисы унифицированных коммуникаций, давая возможность спроектировать сеть, готовую к росту видеотрафика. Унификация и интеграция Согласитесь, как было бы удобно, если бы все коммуникации мы могли бы осуществлять из одного приложения аудио- и видео-звонки, отправлять электронную почту клиенту, делиться изображением с экрана, обсуждать в чате новый проект с коллегами и чтобы все это еще было бы в CRM. Сейчас все стремится к тому, чтобы либо приложения сразу включали в себя все необходимые функции, либо чтобы все отдельные части бесшовно интегрировались, и у конечного пользователя и создавалось впечатление единой экосистемы, без необходимости приключаться между пятью разными приложениями и еще пятью другими, если появилась необходимость работать удаленно с мобильного устройства. Чем больше развивается технология, тем больше внимания уделяется удобству пользователей. Сейчас можно выделить решение Cisco WebEx, позволяющее делать видео и аудиозвонки, конференции, чаты и имеющее возможность интегрироваться с большим числом приложений, таких как Google Drive, Box, Slack, Twitter, Trello, Goolgle Calendar, IFTTT, Microsoft SharePoint и другими. Или решение Polycom предоставляющее аудио и видеоконференции и интегрирующееся с Microsoft 356 и Skype For Bussiness. Пока что все это работает не совсем бесшовно и интеграция есть не таким уж и большим числом сервисов, поэтому разработчикам есть куда стремиться, а на рынке есть место для новых игроков. Будущее видеоконференций А какое развитие может ждать нас дальше? Отрасль видеоконференцсвязи развивается очень динамично и следит за новыми разработками в различных областях. Например, новым трендом может стать активно развивающаяся виртуальная реальность (VR), которая может вывести видеоконференции на новый уровень, создав невиданный ранее эффект присутствия. Или это могут быть нейронные сети, позволяющие изменять окружение в кадре так, чтобы создавалось впечатление, что вы находитесь в тихой переговорной комнате, а не в шумном аэропорту, для более комфортного восприятия. И поскольку видеоконференций проводится все больше и больше, то большое внимание будет уделяться безопасности, ведь никто не хочет, чтобы их переговоры стали достоянием общественности. Нужно продолжать следить за тем, что происходит вокруг и всегда быть в курсе последних тенденций.
img
Почитать лекцию №20 про протоколы передачи данных нижнего уровня можно тут. Обычно называется и маркируется как Wi-Fi 802.11, который широко используется для передачи данных по беспроводной сети в радиочастотах 2,4 и 5 ГГц. Микроволновые печи, радиолокационные системы, Bluetooth, некоторые любительские радиосистемы и даже радионяня также используют радиочастоту 2,4 ГГц, поэтому WiFi может создавать помехи и мешать работе другим системам. Мультиплексирование Спецификации 802.11 обычно используют форму частотного мультиплексирования для передачи большого количества информации по одному каналу или набору частот. Частота сигнала-это просто скорость, с которой сигнал меняет полярность в течение одной секунды; следовательно, сигнал 2,4 ГГц-это электрический сигнал, передаваемый по проводу, оптическому волокну или воздуху, который меняет полярность с положительной на отрицательную (или отрицательную на положительную) 2,4 × 109 раз в секунду. Чтобы понять основы беспроводной передачи сигналов, лучше всего начать с рассмотрения идеи несущей и модуляции. Рисунок 1 иллюстрирует эти концепции. На рисунке 1 выбрана одна центральная частота; канал будет представлять собой диапазон частот по обе стороны от этой центральной частоты. В результирующем канале две несущие частоты выбираются таким образом, чтобы они были ортогональны друг другу-это означает, что сигналы, передаваемые на этих двух несущих частотах, не будут мешать друг другу. Они обозначены на рисунке как OSF 1 и OSF 2. Каждая из этих несущих частот, в свою очередь, фактически является более узким каналом, позволяя модулировать фактический сигнал "0" и "1" на канале. Модуляция, в данном случае, означает изменение фактической частоты сигнала вокруг каждой из частот. Модуляция просто означает изменение несущей таким образом, чтобы сигнал передавался так, чтобы приемник мог его надежно декодировать. Таким образом, в спецификации 802.11 используется схема мультиплексирования с ортогональным частотным разделением каналов (Orthogonal Frequency Division Multiplexing- OFDM), а фактические данные кодируются с использованием частотной модуляции (Frequency Modulation-FM). Важно Один из сбивающих с толку моментов мультиплексирования заключается в том, что оно имеет два значения, а не одно. Либо это означает размещение нескольких битов на одном носителе одновременно, либо возможность одновременного взаимодействия нескольких хостов с использованием одного и того же носителя. Какое из этих двух значений подразумевается, можно понять только в конкретном контексте. В этой лекции применяется первое значение мультиплексирования, разбиение одного носителя на каналы, чтобы можно было передавать несколько битов одновременно. Скорость, с которой данные могут передаваться в такой системе (полоса пропускания), напрямую зависит от ширины каждого канала и способности передатчика выбирать ортогональные частоты. Таким образом, для увеличения скорости 802.11 были применены два разных метода. Первый - просто увеличить ширину канала, чтобы можно было использовать больше несущих частот для передачи данных. Второй - найти более эффективные способы упаковки данных в один канал с помощью более сложных методов модуляции. Например, 802.11b может использовать канал шириной 40 МГц в диапазоне 2,4 ГГц, а 802.11ac может использовать канал шириной 80 или 160 МГц в диапазоне 5 ГГц. Пространственное мультиплексирование Другие формы мультиплексирования для увеличения пропускной способности между двумя устройствами также используются в серии спецификаций 802.11. Спецификация 802.11n представила Multiple Input Multiple Output (MIMO), которые позволяют сигналу проходить разными путями через единую среду (воздух). Это может показаться невозможным, поскольку в комнате только один "воздух", но беспроводные сигналы фактически отражаются от различных объектов в комнате, что заставляет их проходить через пространство разными путями. Рисунок 2 демонстрирует это. На рисунке 2, если предположить, что передатчик использует антенну, которая будет передавать во всех направлениях (всенаправленная антенна), есть три пути через одно пространство, помеченные 1, 2 и 3. Передатчик и приемник не могут "видеть" три отдельных пути, но они могут измерять силу сигнала между каждой парой антенн и пытаться посылать различные сигналы между внешне разделенными парами, пока не найдут несколько путей, по которым могут быть отправлены различные наборы данных. Второй способ использования нескольких антенн - это формирование луча. Обычно беспроводной сигнал, передаваемый от антенны, охватывает круг (3D-шар). При формировании луча, он формируется с помощью одного из различных методов, чтобы сделать его более продолговатым. Рисунок 3 иллюстрирует эти концепции. В несформированном узоре сигнал представляет собой шар или шар вокруг кончика антенны- нарисованный сверху, он выглядит как простой круг, простирающийся до самой дальней точки в форме шара. С помощью отражателя луч может быть сформирован или сформирован в более продолговатую форму. Пространство позади отражателя и по бокам луча будет получать меньше (или вообще не получать, для очень плотных лучей) мощности передачи. Как можно построить такой отражатель? Самый простой способ - это физический барьер, настроенный на отражение силы сигнала, подобно тому, как зеркало отражает свет или стена отражает звук. Ключ - это точка в сигнале передачи, в которой устанавливается физический барьер. Рисунок 4 будет использоваться для объяснения ключевых моментов в форме сигнала, отражении и гашении. Типичная форма волны следует за синусоидальной волной, которая начинается с нулевой мощности, увеличивается до максимальной положительной мощности, затем возвращается к нулевой мощности, а затем проходит цикл положительной и отрицательной мощности. Каждый из них представляет собой цикл- частота относится к числу повторений этого цикла в секунду. Вся длина волны в пространстве вдоль провода или оптического волокна называется длиной волны. Длина волны обратно пропорциональна частоте- чем выше частота, тем короче длина волны. Ключевой момент, который следует отметить на этой диаграмме, - это состояние сигнала в точках четверти и половины длины волны. В четвертьволновой точке сигнал достигает наивысшей мощности; если объект или другой сигнал интерферирует в этой точке, сигнал будет либо поглощен, либо отражен. В точке полуволны сигнал находится на минимальной мощности; если нет смещения или постоянного напряжения на сигнале, сигнал достигнет нулевой мощности. Чтобы отразить сигнал, вы можете расположить физический объект так, чтобы он отражал мощность только в точке четверти волны. Физическое расстояние, необходимое для этого, будет, конечно, зависеть от частоты, так же как длина волны зависит от частоты. Физические отражатели просты. Что делать, если вы хотите иметь возможность динамически формировать луч без использования физического отражателя? Рисунок 5 иллюстрирует принципы, которые вы можете использовать для этого. Светло-серые пунктирные линии на рисунке 5 представляют собой маркер фазы; два сигнала находятся в фазе, если их пики выровнены, как показано слева. Два сигнала, показанные в середине, находятся на четверть вне фазы, так как пик одного сигнала совпадает с нулевой точкой или минимумом второго сигнала. Третья пара сигналов, показанная в крайнем правом углу, является комплементарной, или на 180 градусов вне фазы, так как положительный пик одного сигнала совпадает с отрицательным пиком второго сигнала. Первая пара сигналов будет складываться вместе; третья пара сигналов будет погашена. Вторая пара может, если она правильно составлена, отражать друг друга. Эти три эффекта позволяют сформировать пучок, как показано на рисунке 6. Одна система формирования луча может использовать или не использовать все эти компоненты, но общая идея состоит в том, чтобы ограничить луч в пределах физического пространства в среде - как правило, свободное распространение в воздухе. Формирование луча позволяет использовать общую физическую среду в качестве нескольких различных каналов связи, как показано на рисунке 7. На рисунке 7 беспроводной маршрутизатор использовал свои возможности формирования луча для формирования трех разных лучей, каждый из которых направлен на другой хост. Маршрутизатор теперь может отправлять трафик по всем трем из этих сформированных лучей с более высокой скоростью, чем если бы он обрабатывал все пространство как единую совместно используемую среду, потому что сигналы для A не будут мешать или перекрываться с информацией, передаваемой в B или C. Совместное использование канала Проблема мультиплексирования в беспроводных сигналах связана с совместным использованием одного канала, как в системах проводных сетей. В решениях, разработанных для совместного использования единой беспроводной среды, преобладают две специфические проблемы: проблема скрытого узла и проблема мощности передачи / приема (которую также иногда называют перегрузкой приемника). На рисунке 8 показана проблема со скрытым узлом. Три круга на рисунке 8 представляют три перекрывающихся диапазона беспроводных передатчиков в точках A, B и C. Если A передает в сторону B, C не может слышать передачу. Даже если C прослушивает свободный канал, A и C могут передавать одновременно, что вызывает конфликт в B. Проблема скрытого узла усугубляется из-за того, что мощность передачи по сравнению с мощностью принятого сигнала, и реальность воздуха как среды. Главное практическое правило для определения мощности радиосигнала в воздухе - сигнал теряет половину своей мощности на каждой длине волны в пространстве, которое он проходит. На высоких частотах сигналы очень быстро теряют свою силу, что означает, что передатчик должен послать сигнал с мощностью на несколько порядков больше, чем его приемник способен принять. Очень сложно создать приемник, способный "слушать" локальный передаваемый сигнал в полную силу, не разрушая приемную схему, а также способный "слышать" сигналы очень низкой мощности, необходимые для расширения диапазона действия устройства. Другими словами, передатчик насыщает приемник достаточной мощностью, чтобы во многих ситуациях "уничтожить" его. Это делает невозможным в беспроводной сети для передатчика прослушивать сигнал во время его передачи и, следовательно, делает невозможным реализацию механизма обнаружения коллизий, используемого в Ethernet (как пример). Механизм, используемый 802.11 для совместного использования одного канала несколькими передатчиками, должен избегать проблем со скрытым каналом и приемником. 802.11 WiFi использует множественный доступ с контролем несущей / предотвращение конфликтов (Carrier Sense Multiple Access/Collision Avoidance -CSMA/CA) для согласования использования канала. CSMA/CA похож на CSMA/CD: Перед передачей отправитель прослушивает сообщение, чтобы определить, передает ли его другое устройство. Если слышна другая передача, отправитель "замирает" на определенный случайный период времени перед повторной попыткой- эта отсрочка предназначена для предотвращения того, чтобы несколько устройств, слышащие одну и ту же передачу, не пытались передать данные одновременно. Если никакой другой передачи не слышно, отправитель передает весь кадр- отправитель не может принять сигнал, который он передает, поэтому в этой точке нет способа обнаружить коллизию. Получатель отправляет подтверждение кадра при получении; если отправитель не получает подтверждения, он предполагает, что произошла коллизия, отключается на случайное количество времени и повторно отправляет кадр. Некоторые системы WiFi также могут использовать Request to Send/Clear to Send (RTS / CTS). В таком случае: Отправитель передает RTS. Когда канал свободен, и никакая другая передача не запланирована, получатель отправляет CTS. Получив CTS, отправитель передает данные Какая система будет обеспечивать более высокую пропускную способность, зависит от количества отправителей и получателей, использующих канал, длины кадров и других факторов. Маршалинг данных, контроль ошибок и управление потоком данных Маршалинг данных в 802.11 аналогичен Ethernet; в каждом пакете есть набор полей заголовка фиксированной длины, за которыми следуют транспортируемые данные и, наконец, четыре октетная Frame Check Sequence (FCS), которая содержит CRC для содержимого пакета. Если получатель может исправить ошибку на основе информации CRC, он это сделает, в противном случае получатель просто не подтверждает получение кадра, что приведет к повторной передаче кадра отправителем. Порядковый номер также включен в каждый кадр, чтобы гарантировать, что пакеты принимаются и обрабатываются в том порядке, в котором они были переданы. Управление потоком обеспечивается в системе RTS / CTS приемником, ожидающим отправки CTS, пока у него не будет достаточно свободного места в буфере для приема нового пакета, чтобы промежуточные системы могли обнаруживать конечные системы; это называется протоколом End System to Intermediate System (ES-IS).
img
В данной статье, разберем, как управлять файлами настройки оболочки пользователя. Псевдонимы и функции определяются в файлах с окончанием RC - Bash.bashrc, bashrc, ~/.bashrc. В зависимости от того в каком файле мы употребим псевдоним или функцию он будет использоваться для конкретного пользователя или для всех пользователей. Посмотрим на конкретном примере пользователя, поэтому будет использоваться файл ~/.bashrc , который находится в домашней директории пользователя и определят настройки конкретного пользователя. Псевдоним (alias) – текст для вызова команды с ключами. Например: la = ‘ls -A’. Функция – текст для вызова скрипта, из нескольких команд. Например: function Hello (){echo “Hello,dear,I am awake for:”; uptime –p;} Заходим в Ubuntu и попадаем в домашнюю директорию. Следовательно в этой домашней папке есть файл .profile, который является ссылкой на файл bashrc. И в этом файле есть много чего, но в частности есть псевдонимы. Можно увидеть псевдоним для команды ls, который вызывает команду ls, но с автоматической настройкой цвета. Мы знаем, что у команды ls. Которая выводит список файлов и папок, есть куча различных опций и ключей и в Ubuntu, когда мы вызываем данную команду он по-разному подсвечивает разные файлы в зависимости от того, какие на них установлены биты или это файл скрытый, или это папка. Он все это отображает цветом и шрифтом потому, что установлен параметр --color-auto. Есть часть параметров закомментированные. Это когда ставится значок # и интерпретатор скрипта понимает, что данная строчка является комментарием. Если ниже посмотреть можно найти еще несколько алиасов для разных версий операционных систем семейства Linux. Можно видеть, что данные алиасы позволяют запустить одну и ту же команду листинга с различными ключами. Попробуем вызвать эти алиасы. Команда ll дает вот такой вывод: Алиас la выводит вот такой вид: Хотя такой команды в linux нет – это просто записанный алиас вызывает команду ls с ключами. Для лучшего понимания можно создать свой псевдоним. Есть такая команда uptime. Данная команда выводит сколько работает данная система, показывает сколько пользователей в системе. Ключи данной команды может каждый посмотреть самостоятельно - man uptime. В рамках задачи по созданию алиаса нам интересен ключ pretty. Хорошо, можно создать алиас, который будет запускать команду uptime –p, т.е непосредственно саму команду с ключом –p. Алиас будет называться forhowlong, такой команды точно в установке по умолчанию операционной системы Ubuntu нет. Создадим такую команду. Для этого необходимо отредактировать файл nano .bashrc. Спускаемся в конец файла и добавляем комментарий #some aliases for uptime. Строчка закомментирована, она не будет считываться интерпретатором, создание комментариев хороший тон для написания скриптов и модификации конфигурационных файлов. А далее добавляем строчку alias forhowlong=’uptime -p’. т.е название алиаса, его имя и через знак равно, то что он будет делать. Сохраняем и выходим. Если мы попробуем использовать алиас, то мы получим, что такой команды не существует. Это логичное поведение потому, что bashrc применяется при инициализации оболочки. Выйдем из терминала и зайдем. Попробуем еще раз. Все работает! Или можно было еще раз командой bash перезапустить оболочку. Можно так же перезаписать действующую команду, чтобы она сразу запускалась, как это необходимо. Например, alias uptime=’uptime -p’ мы добавляем в .bashrc и перезапускаем оболочку командой bash. Теперь команда uptime будет сразу запускаться с ключем –p. Для чего это может понадобится? Например, если вы перешли с другого дистрибутива и там вывод команды делался такой же, как в данном дистрибутиве с ключем. Или вы хотите пользователю облегчить работу и пропишите псевдонимы заранее. Немного о функциях. Например, мы хотим придумать команду FTW. Естественно такой команды нету и при попытке ввода нам выдаст ошибку. Следовательно, ее необходимо написать и это будет функция. Функция от алиаса отличается тем, что можно последовательность команд написать некий скрипт. И этот скрипт будет отрабатывать как функция. Для этого нам понадобится тот же файл .bashrc. Напоминаю, что мы работаем с файлом из профиля и, следовательно, все эти функции и алиасы будут работать только для данного пользователя. Если мы хотим, чтобы действие распространялось на всех пользователей, но нам нужен одноименный глобальный файл. Заходим в файл nano .bashrc профиле. И так же внизу добавляем комментарий и новую функцию. function FTW() { echo “you name is:”; whoami; echo “today is:”; date; echo “you are there:”; pwd; } Функция, далее имя функции, затем скобки, пустые чтобы показать, что она работает без аргумента, а вообще можем применить аргумент – например имя пользователя тем самым привязать к пользователю. Но в данном примере – это и не требуется, мы сейчас рассматриваем функцию, не зависящую от каких-либо аргументов и просто выполняющую последовательность команд. Ну из команд думаю понятно, что будет выполнять данная функция.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59