По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Разработчики программного обеспечения должны держать много информации у себя в голове. Существует множество вопросов, которые нужно задать, когда речь заходит о создании веб-сайта или приложения: Какие технологии использовать? Как будет настроена структура? Какой функционал нам нужен? Как будет выглядеть пользовательский интерфейс? Особенно на рынке программного обеспечения, где производство приложений больше похоже на гонку за репутацией, чем на хорошо обдуманный процесс, один из важнейших вопросов, который часто остается на дне “Списка важных”: Как наш продукт будет защищен? Если вы используете надежный, открытый фреймворк для создания своего продукта (и, если он доступен и пригоден, почему бы и нет?), тогда базовые проблемы безопасности, как атаки CSFR и кодирование пароля, могут быть уже решены за вас. Тем не менее, быстро развивающимся разработчикам будет полезно освежить свои знания о стандартных угрозах, дабы избежать ошибок новичка. Обычно самое слабое место в безопасности вашего программного обеспечения - это вы. А кто может заниматься взломом?. Есть этичный хакер – это тот, кто ищет возможные слабости в безопасности и приватно рассказывает их создателям проекта. А чёрный хакер, которого так же зовут “Взломщик (cracker)” – это тот, кто использует эти слабости для вымогательства или собственного блага. Эти два вида хакеров могут использовать одинаковый набор инструментов и, в общем, пытаются попасть в такие места, куда обычный пользователь не может попасть. Но белые хакеры делают это с разрешением, и в интересах усиления защиты, а не уничтожения её. Черные хакеры – плохие ребята. Вот некоторые примеры наиболее распространённых атаках, которые используют слабости в защите: Внедрение SQL-кода и межсайтовый скриптинг XXS. SQL атаки SQL-инъекция (SQLi) - это тип инъекционной атаки, которая позволяет выполнять вредоносные SQL команды, для получения данных или вывода из строя приложения. По сути, злоумышленники могут отправлять команды SQL, которые влияют на ваше приложение, через некоторые входные данные на вашем сайте, например, поле поиска, которое извлекает результаты из вашей базы данных. Сайты, закодированные на PHP, могут быть особенно восприимчивы к ним, и успешная SQL-атака может быть разрушительной для программного обеспечения, которое полагается на базу данных (например, ваша таблица пользователей теперь представляет собой пустое место). Вы можете проверить свой собственный сайт, чтобы увидеть, насколько он восприимчив к такого рода атакам. (Пожалуйста, тестируйте только те сайты, которыми вы владеете, так как запуск SQL-кодов там, где у вас нет разрешения на это, может быть незаконным в вашем регионе; и определенно, не очень смешно.) Следующие полезные нагрузки могут использоваться для тестов: ' OR 1='1 оценивается как константа true, и в случае успеха возвращает все строки в таблице ' AND 0='1 оценивается как константа false, и в случае успеха не возвращает строк. К счастью, есть способы ослабить атаки SQL-кода, и все они сводятся к одной основной концепции: не доверяйте вводимым пользователем данным. Смягчение последствий SQL-кодов. Чтобы эффективно сдержать атаки, разработчики должны запретить пользователям успешно отправлять необработанные SQL-команды в любую часть сайта. Некоторые фреймворки сделают большую часть тяжелой работы за вас. Например, Django реализует концепцию объектно-реляционного отображения, или ORM с использованием наборов запросов. Мы будем рассматривать их в качестве функций-оболочек, которые помогают вашему приложению запрашивать базу данных с помощью предопределенных методов, избегая использование необработанного SQL. Однако возможность использовать фреймворк никогда не является гарантией. Когда мы имеем дело непосредственно с базой данных, существуют и другие методы, которые мы можем использовать, чтобы безопасно абстрагировать наши SQL-запросы от пользовательского ввода, хотя они различаются по эффективности. Они представлены по порядку от более к менее важному: Подготовленные операторы с переменной привязкой (или параметризованные запросы) Хранимые процедуры Белый список или экранирование пользовательского ввода Если вы хотите реализовать вышеприведенные методы, то эти шпаргалки - отличная отправная точка для более глубокого изучения. Достаточно сказать, что использование этих методов для получения данных вместо использования необработанных SQL-запросов помогает свести к минимуму вероятность того, что SQL будет обрабатываться любой частью вашего приложения, которая принимает входные данные от пользователей, тем самым смягчая атаки SQL-кодов. Межсайтовые скриптовые атаки (XSS) Если вы являетесь хакером, то JavaScript - это в значительной степени ваш лучший друг. Правильные команды будут делать все, что может сделать обычный пользователь (и даже некоторые вещи, которые он не должен делать) на веб-странице, иногда без какого-либо взаимодействия со стороны реального пользователя. Межсайтовые скриптовые атаки, или XSS, происходят, когда код JavaScript вводится на веб-страницу и изменяет ее поведение. Его последствия могут варьироваться от появления неприятных шуток до более серьезных обходов аутентификации или кражи учетных данных. XSS может происходить на сервере или на стороне клиента и, как правило, поставляется в трех вариантах: DOM (Document Object Model - объектная модель документа) на основе хранимых и отображаемых XSS. Различия сводятся к тому, где полезная нагрузка атаки вводится в приложение. XSS на основе DOM XSS на основе DOM возникает, когда полезная нагрузка JavaScript влияет на структуру, поведение или содержимое веб-страницы, загруженной пользователем в свой браузер. Они чаще всего выполняются через измененные URL-адреса, например, в фишинговых письмах. Чтобы увидеть, насколько легко было бы для введенного JavaScript манипулировать страницей, мы можем создать рабочий пример с веб-страницей HTML. Попробуйте создать файл в локальной системе под названием xss-test.html (или любым другим) со следующим кодом HTML и JavaScript: <html> <head> <title>My XSS Example</title> </head> <body> <h1 id="greeting">Hello there!</h1> <script> var name = new URLSearchParams(document.location.search).get('name'); if (name !== 'null') { document.getElementById('greeting').innerHTML = 'Hello ' + name + '!'; } </script> </h1> </html> На этой веб-странице будет отображаться заголовок "Hello!” если только он не получает параметр URL из строки запроса со значением name. Чтобы увидеть работу скрипта, откройте страницу в браузере с добавленным параметром URL, например: file:///path/to/file/xss-test.html?name=Victoria Наша небезопасная страница принимает значение параметра URL для имени и отображает его в DOM. Страница ожидает, что значение будет хорошей дружественной строкой, но что, если мы изменим его на что-то другое? Поскольку страница принадлежит нам и существует только в нашей локальной системе, мы можем тестировать ее сколько угодно. Что произойдет, если мы изменим параметр name, скажем, на: <img+src+onerror=alert("pwned")> Это всего лишь один пример, который демонстрирует, как может быть выполнена атака XSS. Смешные всплывающие оповещения могут быть забавными, но JavaScript может принести много вреда, в том числе помогая злоумышленникам украсть пароли и личную информацию. Хранимые и отраженные XSS Хранимые (stored) XSS возникают, когда полезная нагрузка атаки хранится на сервере, например, в базе данных. Атака влияет на жертву всякий раз, когда эти сохраненные данные извлекаются и отображаются в браузере. Например, вместо того чтобы использовать строку URL-запроса, злоумышленник может обновить свою страницу профиля на социальном сайте, чтобы внедрить скрытый сценарий, скажем, в раздел “Обо мне”. Сценарий, неправильно сохраненный на сервере сайта, будет успешно выполняться всё время, пока другой пользователь просматривает профиль злоумышленника. Одним из самых известных примеров этого является червь Samy, который практически захватил MySpace в 2005 году. Он распространялся путем отправки HTTP-запросов, которые копировали его на страницу профиля жертвы всякий раз, когда просматривался зараженный профиль. Всего за 20 часов он распространился на более чем миллион пользователей. Отраженные (reflected) XSS аналогично возникают, когда введенные данные перемещаются на сервер, однако вредоносный код не сохраняется в базе данных. Вместо этого он немедленно возвращается в браузер веб-приложением. Подобная атака может быть осуществлена путем заманивания жертвы для перехода по вредоносной ссылке, которая отправляет запрос на сервер уязвимого веб-сайта. Затем сервер отправит ответ злоумышленнику, а также жертве, что может привести к тому, что злоумышленник сможет получить пароли или совершить действия, которые якобы исходят от жертвы. Ослабление XSS Во всех этих случаях XSS могут быть сдержаны с помощью двух ключевых стратегий: проверка полей формы и предотвращение прямого ввода данных пользователем на веб-странице. Проверка полей формы Фреймворки снова могут нам помочь, когда речь заходит о том, чтобы убедиться, что представленные пользователем формы находятся в актуальном состоянии. Один из примеров - встроенные классы полей Django, которые предоставляют поля, проверяющие некоторые часто используемые типы, а также задают нормальные значения по умолчанию. Например, поле электронной почты Django использует набор правил, чтобы определить, является ли предоставленный ввод действительным письмом. Если отправленная строка содержит символы, которые обычно не присутствуют в адресах электронной почты, или если она не имитирует общий формат адреса электронной почты, то Django не будет считать это поле допустимым и форма не будет отправлена. Если вы не можете полагаться на фреймворк, можете реализовать вашу собственную проверку входных данных. Это можно сделать с помощью нескольких различных методов, включая преобразование типа, например, гарантируя, что число имеет тип int(); проверка минимальных и максимальных значений диапазона для чисел и длин строк; использование заранее определенного массива вариантов, который позволяет избежать произвольного ввода, например, месяцев года; и проверка данных на соответствие строгим регулярным формулировкам. К счастью, нам не нужно начинать все с нуля. Помогут доступные ресурсы с открытым исходным кодом, такой как валидация репозитория регулярных выражений OWASP, который предоставляет шаблоны для сопоставления их с некоторыми распространенными формами данных. Многие языки программирования предлагают библиотеки проверки, специфичные для их синтаксиса, и мы можем найти множество таких библиотек на GitHub. Хотя это и может показаться утомительным, правильно реализованная проверка ввода может защитить наше приложение от восприимчивости к XSS. Предотвращение прямого ввода данных Элементы приложения, которые непосредственно возвращают пользовательский ввод в браузер, при обычной проверке могут быть неочевидны. Мы можем определить области приложения, которые могут быть подвержены риску, изучив несколько вопросов: Как происходит поток данных через приложение? Что ожидает пользователь, когда он взаимодействует с этими входными данными? Где на нашей странице появляются данные? Становятся ли они встроенными в строку или атрибут? Вот некоторые примеры полезных нагрузок, с которыми мы можем поиграть, чтобы проверить входные данные на нашем сайте (опять же, только на нашем собственном сайте!). Успешное выполнение любого из этих образцов может указывать на возможную уязвимость к XSS из-за прямого ввода данных. "><h1>test</h1> '+alert(1)+' "onmouserover="alert(1) http://"onmouseover="alert(1) Как правило, если вы можете обойти прямой ввод данных, сделайте это. Кроме того, убедитесь, что вы полностью понимаете эффективность выбранных методов; например, использование innerText вместо innerHTML в JavaScript гарантирует, что содержимое будет задано как обычный текст вместо (потенциально уязвимого) HTML. Аккуратнее с вводом! Разработчики программного обеспечения явно находятся в невыгодном положении, когда речь заходит о конкуренции с черными хакерами. Несмотря на всю проделанную работу по защитите каждого ввода, который потенциально может скомпрометировать наше приложение, злоумышленнику достаточно только найти тот, который мы пропустили. Это все равно что установить засовы на всех дверях, но оставить окно открытым! Однако, научившись мыслить в том же ключе, что и злоумышленник, мы можем лучше подготовить наше программное обеспечение к противостоянию плохим парням. Как бы ни было интересно добавлять функции как можно быстрее, мы избежим большого количества долгов по кибербезопасности, если заранее продумаем поток нашего приложения, проследим за данными и обратим внимание на наши входные данные.
img
В этой статье мы рассмотрим переменные, которые отвечают за локализацию и кодировку операционной системы. Данная тема достаточно важна, т.к. некоторые прикладные сервисы требуют нестандартной кодировки или региональной локализации. В Linux системах есть основная переменная $LANG – которая задает основной язык системы. Есть и другие переменные, но они берут изначально настройки с этой основной переменной $LANG. Можно настроить отдельные какие-то переменные, но можно все же давать значение основной переменной $LANG и она будет давать значение всем остальным. Есть так же переменная LC_ALL – которая позволяет нам разом перезаписать все языковые настройки. Есть также утилита locale которая показывает кучу переменных, которые относятся к языковым настройкам. $LANG= – данную переменную обычно используют для написания скриптов, чтобы те или иные настройки установить по умолчанию для выполнения скрипта. В большинстве случаев данная настройка включает английский язык по умолчанию. Есть такая команда env, которая выводит заданные переменные в системе. И тут в частности, есть переменная которая отвечает за языковые настройки. В нашем случае LANG=en_US.UTF-8, т.к скриншот делался на операционной системе с английской локализацией по умолчанию. Мы видим en_US в кодировке UTF-8. En_US – говорит о том, что у нас используется американский английский язык. Посмотреть все переменные относящиеся к данной локализации мы можем с помощью утилиты locale. Как вы видите все остальные переменные на данной установленной операционной системе тоже американские. Почему это важно? Во-первых, это важно для логгирования. С такими настройками система будет писать файлы системных и других логов в американском формате yyyy-mm-dd (год-месяц-день: 2006-12-31), в русском формате же правильно будет dd-mm-yyyy. И при передаче логов из одной системы в другую возникнут ошибки. Другой пример - бывают нестандартные решения, допустим хранение базы данных 1С в postgre. Для того чтобы сервер приложений корректно работал с базой опять же необходима русская локализация. И таких примеров взаимодействия можно привести достаточно много. Теперь, если у нас появилась необходимость поменять какую-нибудь, переменную, например, LC_TIME то делаем следующее: LC_TIME=ru_RU.UTF-8 – задаем переменную. export LC_TIME – загружаем переменную. Мы можем сразу все настройки изменить - LC_ALL=ru_RU.UTF-8 Далее export LC_ALL. Если мы ошибемся с вводом локали (языковой пакет настроек) или в системе не загружена такая локаль, то система нам выдаст ошибку: Надо выполнить инсталляцию языкового пакета sudo apt-get install language-pack-ru Генерация файла с обновленной информацией о добавленных пакетах в систему: sudo locale-gen И после этого опять попробовать сменить. Для возврата в исходное состояние настроек мы можем выполнить команду unset LC_ALL. После выполнения данной команды все настройки языковые системы вернутся в исходное состояние. Немного о кодировке. Кодировка - это представление символов в определенном виде. Самые распространенные кодировки, используемые в Linux: ASCII – 128 основных символов; ISO-8859 – большинство латинских символов; UTF-8 -символы Unicode. Для конвертации используется утилита iconv, но есть более практический инструмент. Если нам необходимо конвертировать какой-то файл в другой, то проще всего использовать Notepad++. Открываем файл, в меню выбираем пункт кодировка. Программа покажет текущую и меняем на интересующую нас. Затем сохраняем. В случае если у нас только консольное подключение, делаем это с помощью iconv. Общий вид команды: iconv [опция] [-f кодировка 1] [-t кодировка 2] [исходный файл] [целевой файл] Установка и настройка часовых зон. Утилита tzselect позволяет осуществить поиск нужной временной зоны. Появляется мастер пошаговый, который позволяет сделать свой выбор и в конце дает инструкцию, как сделать, чтобы выбор сохранился. Вторая утилита это date, которая выводит текущую дату и время, если запустить ее без параметров, а также позволяет установить их. Опции и форматы можно посмотреть при помощи команды man date Для установки даты и времени необходимы права суперпользователя. sudo date -s “yyyymmdd hh:mm” – обратите на формат вводимых данных.
img
Перед использованием раздел диска необходимо отформатировать и смонтировать. Процесс форматирования также может быть выполнен по ряду других причин, таких как изменение файловой системы, исправление ошибок или удаление всех данных. В этом руководстве вы узнаете, как форматировать и монтировать разделы диска в Linux с использованием файловой системы ext4, FAT32 или NTFS. Проверка разделов Перед форматированием найдите раздел, который хотите отформатировать. Для этого запустите команду lsblk, которая отображает блочные устройства. Блочные устройства - это файлы, которые представляют такие устройства, как жесткие диски, RAM-диски, USB-накопители и CD/ROM. lsblk Терминал покажет список всех блочных устройств, а также информацию о них: NAME - имена устройств MAJ:MIN - старший или младший номер устройства RM - является ли устройство съемным (1, если да, 0, если нет) SIZE - размер устройства RO - доступно ли устройство только для чтения TYPE - тип устройства MOUNTPOINT - точка монтирования устройства В качестве примера мы будем использовать раздел /dev/sdb1. Команда lsblk без дополнительных параметров не отображает информацию о файловых системах устройств. Чтобы отобразить список, содержащий информацию о файловой системе, добавьте параметр -f: lsblk -f Терминал покажет список всех блочных устройств. Разделы, не содержащие информации об используемой файловой системе, являются неформатированными разделами. Форматирование раздела диска в Linux В зависимости от типа файловой системы существует три способа форматирования разделов диска с помощью команды mkfs: ext4 FAT32 NTFS Общий синтаксис форматирования разделов диска в Linux: mkfs [options] [-t type fs-options] device [size] Форматирование раздела диска с файловой системой ext4 1. Отформатируйте раздел диска с файловой системой ext4, используя следующую команду: sudo mkfs -t ext4 /dev/sdb1 2. Затем проверьте изменение файловой системы с помощью команды: lsblk -f Терминал покажет список блочных устройств. 3. Найдите нужный раздел и убедитесь, что он использует файловую систему ext4. Форматирование раздела диска с файловой системой FAT32 1. Чтобы отформатировать диск в файловой системе FAT32, используйте: sudo mkfs -t vfat /dev/sdb1 2. Снова запустите команду lsblk, чтобы проверить изменение файловой системы и найти нужный раздел в списке. lsblk -f Ожидаемый результат: Форматирование раздела диска с файловой системой NTFS 1. Запустите команду mkfs и укажите файловую систему NTFS для форматирования диска: sudo mkfs -t ntfs /dev/sdb1 Терминал покажет подтверждающее сообщение, когда процесс форматирования завершится. 2. Затем проверьте изменение файловой системы, используя: lsblk -f 3. Найдите нужный раздел и убедитесь, что он использует файловую систему NFTS. Монтирование раздела диска в Linux Перед использованием диска создайте точку монтирования и смонтируйте к ней раздел. Точка монтирования - это каталог, используемый для доступа к данным, хранящимся на дисках. 1. Создайте точку монтирования, введя: sudo mkdir -p [mountpoint] 2. После этого смонтируйте раздел с помощью следующей команды: sudo mount -t auto /dev/sdb1 [mountpoint] Примечание. Замените [mountpoint] предпочтительной точкой монтирования (пример: /usr/media). Если процесс завершился успешно, вывода нет. 3. Убедитесь, что раздел смонтирован, используя следующую команду: lsblk -f Ожидаемый результат: Понимание файловой системы Linux Выбор правильной файловой системы перед форматированием диска для хранения имеет решающее значение. Каждый тип файловой системы имеет разные ограничения размера файла или разную совместимость с операционной системой. Наиболее часто используемые файловые системы: FAT32, NTFS и ext4 Их основные особенности и отличия: Файловая система Поддерживаемый размер файла Совместимость Идеальное использование FAT32 до 4 ГБ Windows, Mac, Linux Для максимальной совместимости NTFS 16 EiB - 1 КB Windows, Mac (только для чтения), большинство дистрибутивов Linux Для внутренних дисков и системного файла Windows Ext4 16 GiB - 16 TiB Windows, Mac, Linux (для доступа требуются дополнительные драйверы) Для файлов размером более 4 ГБ
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59