По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, друг! В этой статье мы расскажем про подключение Third Party SIP телефонов (то есть телефонов и софтфонов от других вендоров, поддерживающих RFC3261) к Cisco Unified Communications Manager (CUCM) . В качестве примера будем подключать популярный и бесплатный софтфон X-Lite. Настройка Cisco Unified Communications Manager Первым делом создадим пользователя в CUCM. Для этого переходим во вкладку User Management → End User. Здесь указываем следующую информацию: User ID Password (не используется в X-Lite, но необходимо указать при создании пользователя) PIN (также не используется в X-Lite) Last Name Digest Credentials (это поле используется как пароль в X-Lite) Затем добавляем SIP Phone. Для этого переходим во вкладку Device – Phone и нажимаем Add. Здесь в поле Phone Type выбираем Third-party SIP Device. Basic поддерживает одну линию, Advanced поддерживает до восьми линий. Далее нужно заполнить следующие поля: MAC Address – нужно указать уникальный адрес, для X-Lite можно указать любой, т.к не используемся для авторизации; Device Pool – можно указать стандартный Default; Phone Button Template – Third-party SIP Device; Security Device Profile – стандартный профиль Third-party SIP Device; SIP Profile – Standard SIP Profile; Owner User ID и Digest User – End User которого мы создавали ранее; После этого нажимаем Save и переходим в окно настроек телефона. Здесь нажимаем Line [1] – Add a new DN и в поле Directory Number указываем номер, который будем использовать. После этого возвращаемся во вкладку User Management → End User, находим созданного пользователя, и проверяем находиться ли SIP Phone в Controlled Devices. Если нет, то нажимаем Device Association, и тут выбираем добавленный нами SIP Phone, после чего он должен появиться в поле Controlled Devices. Настройка софтфона Открываем программу X-Lite, переходим в меню Account Settings. Тут заполняем следующие поля: Display Name – указываем желаемое имя, которое будет отображаться в программе; User Name – указываем Directory Number (DN) в CUCM; Password – Digest Credentials в CUCM; Authorization user name – User ID в CUCM; Domain – адрес сервера CUCM; После этого нажимаем OK и наш софтфон должен зарегистрироваться.
img
Привет, дорогой читатель! Сегодня поговорим об установке Elastix 4. Сам по себе процесс достаточно прост и прямолинеен. Предварительно, скачайте актуальный дистрибутив с официального сайта в разделе downloads . На момент написания статьи использовался дистрибутив Elastix 4.0.0 Stable, который включает в себя операционную систему CentOS 7. Поехали! Пошаговое видео Установка В зависимости от среды установки (виртуальная или физическая), укажите загруженный образ в гипервизоре или, в случае использования аппаратного сервера произведите установка с физического носителя (USBDVD диск). Запускаем сервер. Первая опция — это выбор между траблшутингом имеющейся системы или установки новой системы: Нажимаем Enter, и запускается процесс установки. Запускаются различные сервисы, и, после этого появится следующее окно: Как видно, есть несколько опций, которые необходимо настроить для продолжения настройки, а именно: Дата и время (DATE & TIME) Настройки клавиатуры (KEYBOARD) Место установки (INSTALLATION DESTINATION) Сетевые настройки (NETWORK & HOSTNAME) – данная настройка не является обязательной, но желательно включить сетевой интерфейс перед началом установки (подробнее – ниже) На скриншоте выше, выбрана временная зона Москвы. Если предварительно настроить сетевой интерфейс, то можно использовать NTP сервер для временной синхронизации. При настройке клавиатуры и языков ввода, проще всего выбирать только английский язык, как показано на скриншоте ниже. Далее перейдем к настройке места установки АТС: необходимо кликнуть на диск для установки, что бы на нем появилась черная отметка(как на скриншоте ниже), и в случае установки на физическое оборудование необходимо выбрать требуемый диск. Остальные опции – Other Storage Options можно оставить по умолчанию. Приступаем к настройке сетевого интерфейса: Сперва включаем сетевой интерфейс (ползунок On) и затем настроим его: Во вкладке IPv4 Settings настраиваем сетевой адрес, указываем DNS - сервер и нажимаем Save. По окончанию указанных выше настроек начинаем инсталляцию нажатием на кнопку Begin Installation. Начинается процесс установки и предлагается установить пароль для root и создать пользователя: Все просто: настраиваем пароль и пользователя. Установка занимает около 30 минут – это напрямую зависит от используемого оборудования. Если вы хотите узнать подробнее о процессе настройки пользователей, предлагаем вам посмотреть пошаговое видео в начале статьи Далее произойдет перезагрузка, за которой последует автоматическая загрузка новой системы. Сразу после установки будет предложено установить пароль на MySQL: После подтверждения пароля необходимо установить пароль для пользователя администратор (admin) в веб-интерфейсе: Появляется консоль сервера, что означает окончание установки IP – АТС Elastix 4. Система готова к использованию!
img
Микросервисы – это шаблон сервис-ориентированной архитектуры, в котором приложения создаются в виде наборов небольших и независимых сервисных единиц. Такой подход к проектированию сводится к разделению приложения на однофункциональные модули с четко прописанными интерфейсами. Небольшие команды, управляющие всем жизненным циклом сервиса могут независимо развертывать и обслуживать микросервисы. Термин «микро» относится к размеру микросервиса – он должен быть удобным в управлении одной командой разработчиков (5-10 специалистов). В данной методологии большие приложения делятся на крошечные независимые блоки. Что такое монолитная архитектура? Если говорить простым языком, то монолитная архитектура – это как бы большой контейнер, в котором все компоненты приложения соединяются в единый пакет. В качестве примера монолитной архитектуры давайте рассмотрим сайт для электронной торговли. Например, онлайн-магазин. В любом таком приложении есть ряд типовых опций: поиск, рейтинг и отзывы, а также оплаты. Данные опции доступны клиентам через браузер или приложение. Когда разработчик сайта онлайн-магазина развертывает приложение, это считается одной монолитной (неделимой) единицей. Код различных опций (поиска, отзывов, рейтинга и оплаты) находится на одном и том же сервере. Чтобы масштабировать приложение, вам нужно запустить несколько экземпляров (серверов) этих приложений. Что такое микросервисная архитектура? Микросервисной архитектурой называется методика разработки архитектуры, позволяющая создавать приложения в виде набора небольших автономных сервисов для работы с конкретными предметными областями. Такой вариант структурированной архитектуры позволяет организовать приложения в множество слабосвязанных сервисов. Микросервисная архитектура содержит мелкомодульные сервисы и упрощенные протоколы. Давайте рассмотрим пример приложения для онлайн-торговли с микросервисной архитектурой. В данном примере каждый микросервис отвечает за одну бизнес-возможность. У «Поиска», «Оплаты», «Рейтинга и Отзывов» есть свои экземпляры (сервер), которые взаимодействуют между собой. В монолитной архитектуре все компоненты сливаются в одну модель, тогда как в микросервисной архитектуре они распределяются по отдельным модулям (микросервисам), которые взаимодействуют между собой (см. пример выше). Коммуникация между микросервисами – это взаимодействие без сохранения состояния. Каждая пара запросов и ответов независима, поэтому микросервисы легко взаимодействуют друг с другом. Микросервисная архитектура использует федеративные данные. Каждый микросервис имеет свой отдельный массив данных. Микросервисы и монолитная архитектура: сравнение Микросервисы Монолитная архитектура Каждый блок данных создается для решения определенной задачи; его размер должен быть предельно малым Единая база кода для всех бизнес-целей Запуск сервиса происходит сравнительно быстро На запуск сервиса требуется больше времени Локализовать ошибки довольно просто. Даже если один сервис сломается, другой – продолжит свою работу Локализовать ошибки сложно. Если какая-то определенная функция не перестает работать, то ломается вся система. Чтобы решить проблему, придется заново собирать, тестировать и развертывать приложение. Все микросервисы должны быть слабо связанными, чтобы изменения в одном модуле никак не влияли на другой. Монолитная архитектура тесно связана. Изменения в одному модуле кода влияет на другой Компании могут выделять больше ресурсов на самые рентабельные сервисы Сервисы не изолированы; выделение ресурсов на отдельные сервисы невозможно Можно выделить больше аппаратных ресурсов на самые популярные сервисы. В примере выше посетители чаще обращаются к каталогу товаров и поиску, а не к разделу оплат. Таким образом, будет разумнее выделить дополнительные ресурсы на микросервисы каталога товаров и поиска Масштабирование приложения – задача сложная и экономически не выгодная Микросервисы всегда остаются постоянными и доступными Большая нагрузка на инструменты для разработки, поскольку процесс необходимо запускать с нуля Федеративный доступ к данным, благодаря чему под отдельные микросервисы можно подбирать наиболее подходящую модель данных Данные централизованы Небольшие целевые команды. Параллельная и ускоренная разработка Большая команда; требуется серьезная работа по управлению командой Изменения в модели данных одного микросервиса никак не сказывается на других микросервисах Изменения в модели данных влияют на всю базу данных Четко прописанный интерфейс позволяет микросервисам эффективно взаимодействовать между собой Не предусмотрено Микросервисы делают акцент на продуктах (модулях), а не проектах Сосредоточены на проекте в целом Отсутствие перекрестных зависимостей между базами кода. Для разных микросервисов можно использовать разные технологии Одна функция или программа зависит от другой Сложности в работе с микросервисами Микросервисы полагаются друг на друга, поэтому необходимо выстроить коммуникацию между ними. В микросервисах создается больше модулей, чем в монолитных системах. Эти модули пишутся на разных языках, и их необходимо поддерживать. Микросервисы – это распределенная система, так что, по сути, мы имеем дело со сложной системой. В разных сервисах используются свои механизмы; для неструктурированных данных требуется больший объем памяти. Для предотвращения каскадных сбоев необходимо эффективное управление и слаженная командная работа. Трудно воспроизвести ошибку, если она пропадает в одной версии и вновь появляется в другой. Независимое развертывание и микросервисы – вещи слабо совместимые. Микросервисная архитектура требует большего количества операций. Сложно управлять приложением, когда в систему добавляются новые сервисы. Для поддержки всевозможных распределенных сервисов требуется большая команда опытных специалистов. Микросервисы считаются дорогостоящими решениями, поскольку для разных задач создаются и поддерживаются разные серверные пространства. Сервис-ориентированная архитектура (СОА) или микросервисы СОА-сервисы (SOA - Service-oriented architecture) поддерживаются через реестр, который считается перечнем файлов каталога. Приложения должны найти сервис в реестре и вызвать его. Иначе говоря, СОА похож оркестр: каждый музыкант играет на своем инструменте, а всеми артистами управляет дирижер. Микросервисы – это разновидность СОА-стиля. Приложения создаются в виде набора небольших сервисов, а не цельной программы. Микросервисы похожи на труппу артистов: каждый танцор знает свою программу и не зависит от других. Даже если кто-то забудет какое-то движение, вся труппа не собьется с ритма. Теперь давайте поговорим о различиях между СОА и микросервисах. Параметр СОА Микросервисы Тип проектирования В СОА компоненты приложения открыты для внешнего мира; они доступны в виде сервисов Микросервисы – это часть СОА. Такая архитектура считается реализацией СОА Зависимость Подразделения – зависимы Они не зависят друг от друга Размер приложения Размер приложения больше, чем у обычных программ Размер приложения всегда небольшой Стек технологий Стек технологий ниже, чем у микросервисов Стек технологий очень большой Сущность приложения Монолитная Полностековая Независимость и ориентированность СОА-приложения создаются для выполнения множества бизнес-задач Создаются для выполнения одной бизнес-задачи Развертывание Процесс развертывания растянут по времени Несложное развертывание, на которое тратится меньше времени Рентабельность Более рентабельно Менее рентабельно Масштабируемость Меньше, чем у микросервисов Высокая масштабируемость Бизнес-логика Компоненты бизнес-логики хранятся внутри одного сервисного домена. Простые проводные протоколы (HTTP с XML JSON). API управляется с помощью SDK/клиентов Бизнес-логика распределена между разными корпоративными доменами Микросервисные инструменты Wiremock – тестирование микросервисов WireMock – это гибкая библиотека для создания заглушек и сервисов-имитаций. В ней можно настроить ответ, который HTTP API вернет при получении определенного запроса. Также может использоваться для тестирования микросервисов. Docker Docker – это проект с открытым кодом для создания, развертывания и запуска приложений с помощью контейнеров. Использование такого рода контейнеров позволяет разработчикам запускать приложение в виде одного пакета. Кроме того, в одном пакете могут поставляться библиотеки и другие зависимости. Hystrix Hystrix – это отказоустойчивая Java-библиотека. Данный инструмент предназначен для разделения точек доступа к удаленным сервисам, системам и сторонним библиотекам в распределенной среде (микросервисах). Библиотека улучшает всю систему в целом, изолируя неисправные сервисы и предотвращая каскадный эффект от сбоев. Лучшие примеры использования микросервисной архитектуры Отдельное хранение данных для каждого микросервиса. Поддержание кода на едином уровне зрелости Отдельная сборка для каждого микросервиса. Заключение Микросервисы – это СОА-шаблон, в котором приложения создаются как набор малых и независимых серверных единиц. Микросервисная архитектура относится к стилям разработки архитектуры, позволяющим создавать приложение в виде небольших и автономных сервисов для определенных предметных областей. Монолитная архитектура похожа на большой контейнер, в котором все компоненты приложения собраны в один пакет. Каждый блок приложения в микросервисе имеет предельно малый размер и выполняет определенную функцию. Большая база кода в монолитной архитектуре замедляет процесс разработки. Выход новых версий может растянуться на месяцы. Поддерживать такую базу кода довольно сложно. Существует 2 типа микросервисов: Stateless (без сохранения состояния) и Stateful (с отслеживанием состояния) Микросервисы на Java полагаются друг на друга; они должны взаимодействовать между собой. Микросервисы позволяют в большей степени сконцентрироваться на определенных функциях или потребностях бизнеса. Сервисно-ориентированная архитектура, или СОА, – это усовершенствованные распределенные вычисления, основанные на проектной модели запроса/ответа в синхронных или асинхронных приложениях. Компоненты приложения в СОА открыты для внешнего мира и представлены в виде сервисов; микросервисы считаются частью СОА. Это реализация СОА. К популярным микросервисным инструментам относятся Wiremock, Docker и Hystrix.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59