По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Восьмая часть тут. Формат Type Length Value (TLV) является еще одним широко используемым решением проблемы маршалинга данных. На рисунке 1 показан пример протокола маршрутизации от промежуточной системы к промежуточной системе IS-IS. На рисунке 1 пакет состоит из заголовка, который обычно имеет фиксированную длину, а затем из набора TLV. Каждый TLV форматируется на основе своего типа кода. В этом случае показаны два типа TLV (в IS-IS есть много других типов; два используются здесь для иллюстрации). Первый тип - 135, который несет информацию о версии 4 протокола IP (IPv4). Этот тип имеет несколько полей, некоторые из которых имеют фиксированную длину, например, метрика. Другие, однако, такие как префикс, имеют переменную длину; длина поля зависит от значения, размещенного в каком-либо другом поле в TLV. В этом случае поле длины префикса определяет длину поля префикса. Существуют также суб-TLV, которые имеют аналогичный формат и несут информацию, связанную с этой информацией IPv4. Тип 236 аналогичен 135, но он несет информацию по IPv6, а не IPv4. По существу, TLV можно рассматривать как полный набор автономной информации, переносимой в более крупном пакете. TLV состоит из трех частей: Тип кода, который описывает формат данных Длина, которая описывает общую длину данных Значение или сами данные Форматы на основе TLV менее компактны, чем форматы фиксированной длины, поскольку они содержат больше метаданных в самом пакете. Информация о типе и длине, содержащаяся в данных, предоставляет информацию о том, где искать в словаре информацию о форматировании, а также информацию о грамматике для использования (как каждое поле отформатировано и так далее). Форматы TLV компенсируют возможность изменять форматирование информации, передаваемой протоколом, не требуя обновления каждого устройства или позволяя некоторым реализациям выбирать не поддерживать все возможные TLV по сравнению с дополнительными метаданными, передаваемыми по проводам. TLV обычно считаются очень гибким способом маршалинга данных в протоколах. Словари общих объектов Одной из основных проблем с полями фиксированной длины является фиксированность определений полей; если вы хотите изменить протокол поля фиксированной длины, вам нужно увеличить номер версии и изменить пакет, или вы должны создать новый тип пакета с различными кодировками для полей. Форматирование TLV решает эту проблему путем включения встроенных метаданных с передаваемыми данными за счет передачи большего количества информации и уменьшения компактности. Общие скомпилированные словари пытаются решить эту проблему, помещая словарь в общий файл (или библиотеку), а не в спецификацию. Рисунок 2 иллюстрирует процесс. На рисунке 2 этот процесс начинается с того, что разработчик создает структуру данных для организации определенного набора данных, которые будут передаваться по сети. Как только структура данных построена, она компилируется в функцию или, возможно, копируется в библиотеку функций (1) и копируется в приемник (2). Затем приемник использует эту библиотеку для написания приложения для обработки этих данных (3). На стороне передатчика необработанные данные кодируются в формат (4), а затем передаются по протоколу через сеть к приемнику (5). Получатель использует свою общую копию формата данных (6) для декодирования данных и передачи декодированной информации принимающему приложению (7). Этот вид системы сочетает в себе гибкость модели на основе TLV с компактностью протокола фиксированного поля. Хотя поля имеют фиксированную длину, определения полей задаются таким образом, чтобы обеспечить быстрое и гибкое обновление при необходимости изменения формата маршалинга. Пока общая библиотека отделена от приложения, использующего данные, словарь и грамматика могут быть изменены путем распространения новой версии исходной структуры данных. Потребуется ли «День флага», если будет распространена новая версия структуры данных? Необязательно. Если номер версии включен в структуру данных, чтобы получатель мог сопоставить полученные данные с правильной структурой данных, то в системе одновременно может существовать несколько версий структуры данных. Как только отправитель не найден с использованием более старого формата данных, старая структура может быть безопасно отброшена по всей системе. Важно: в то время как системы фиксированного формата и TLV рассчитывают на то, что разработчики читают спецификации и пишут код как форму совместного использования грамматики и словаря, системы общей структуры данных, описанные в этих лекциях, рассчитывают на то, что общий словарь будет распространяться каким-то другим способом. Есть много различных способов сделать -это, например, новая версия программного обеспечения может быть распространена среди всех отправителей и получателей, или некоторая форма распределенной базы данных может использоваться для обеспечения того, чтобы все отправители и получатели получали обновленные словари данных, или некоторая часть приложения, которая специально управляет маршалингом данных, может быть распределена и сопряжена с приложением, которое генерирует и потребляет данные. Некоторые системы такого рода передают общий словарь как часть первоначальной настройки сеанса.
img
Продолжаем говорить про модули FreePBX. Сегодня спешим рассказать про очень важный модуль - Asterisk Sip Settings. Корректная настройка этого модуля имеет сильно влияет на параметры прохождения голосового трафика и проблем односторонней слышимости. От слов к делу. Вкладка General SIP Settings Перейдем к настройке. Для этого, открываем Settings → Asterisk Sip Settings. Пробежимся по опциям, которые доступны для настройки: Allow Anonymous inbound SIP Calls - если данная опция переключена в позицию Yes, ваша IP – АТС Asterisk будет обрабатывать звонки, поступающие с неизвестных IP –адресов в контексте from – pstn. Обычно, выбор данной опции в положение Yes связан с включением набора по SIP URI. Учтите, что включенная опция значительно увеличивает риски связанные с безопасностью системы; External Address - в данном поле необходимо указать ваш внешний IP – адрес. Помимо прочего, нажав на Detect Network Settings АТС автоматически определит параметры внешнего IP – адреса и внутренних локальных подсетей; Local Networks - локальные подсети, из которых будут подключаться ваши SIP – устройства. Синтаксис прост: сетевой IP – адрес/маска. Например, 192.168.1.0/255.255.255.0. Есть возможность добавить несколько подсетей нажав на кнопку Add Local Network; RTP Settings RTP Ranges -начальный и конечный UDP порты для RTP трафика. В целом, данный диапазон можно посчитать. Знайте, что для каждого звонка нужно иметь по крайне мере 4 порта; RTP Checksums - подсчитывать ли контрольную сумму для UDP, который переносит RTP трафик (голос); Strict RTP - данная опция будет отбрасывать RTP пакеты, который приходят не от источника RTP – потока в рамках сессии; Codecs - выберите нужные кодеки. Важно учесть порядок кодеков – он влияет на приоритет установления кодека в рамках SDP сообщений; STUN Servers - указать IP – адрес STUN сервера. Если кратко, STUN помогает преодолеть проблемы с NAT – он помогает SIP – клиентам внутри локальной сети определять свой публичный адрес; Вкладка Chan SIP Settings Переходим к настройке chan_sip. NAT Settings NAT - настройка NAT (Network Address Translation) для Asterisk. yes - использовать NAT; no - использовать трансляцию согласно RFC3581. Если кратко, то данный RFC позволяет отправлять ответа на порт, с которого запрос был получен, вместо порта, взятого из заголовка Via в SIP пакете; never - не использовать NAT согласно RFC3581; route - данная опция подойдет для клиентов, которые не отрабатывают поле rport в заголовках SIP сообщений (согласно RFC3581 ); IP Configuration - в данном поле вы можете указать параметры внешнего IP. Вы можете указать вручную ваш внешний IP – адрес, а также использовать DDNS (Dynamic DNS); Audio Codecs Non-Standard g726 - порой пир устанавливает порядок инициации параметров аудио потока (характерно для некоторых моделей Sipura и Grandstream) для кодека G726 с полосой пропускания 6, 24, 32, и 40 килобит/сек. Если требуется, установите эту опцию в положение Yes; T38 Pass-Through - позволяет сквозное пропускание факсов через Asterisk без дополнительной обработки и внесения изменений по протоколу T38; No - выключить сквозной режим; Yes - включает T38 в режиме коррекции ошибок FEC (Forward Error Correction), а так же переписывает значение, предоставленное оконечным устройством, согласно которому мы можем отправить факс – пакеты размером 400 байт по протоколу T38; Yes with FEC - включает T38 в режиме коррекции ошибок FEC; Yes with Redundancy - включает T38 в режиме отказоустойчивой коррекции ошибок FEC; Yes with no error correction - включает T38 без коррекции ошибок; Video Codecs Video Support - включив эту опцию в переключатель Enabled, вам будет предложено настроить кодеки для видео – звонков.; TLS/SSL/SRTP Settings Enable TLS -включить поддержку защищенных подключений по TLS; Certificate Manager - включить сертификат для поддержки TLS. Его можно легко настроить в модуле Certificate Manager; SSL Method - метод передачи SSL транспорта (только для TLS). По умолчанию используется sslv2; Don't Verify Server - не запрашивать проверку сертификата сервере (настройка влияет только на TLS).; MEDIA & RTP Settings Reinvite Behavior - опция, которая позволяет перенаправить поток данных RTP в случае, если пир находится не за NAT (средствами RTP это можно детектировать по IP – адресам); RTP Timeout - сброс канала, на котором отсутствует голосовые потоки (пакеты) RTP/RTCP в течение указанного времени. Важно отметить, что постановка вызова на hold не является триггером для данного поля настройки.; RTP Hold Timeout -сбросить звонок, поставленный на удержание после истечения таймера (в секундах) этого поля; RTP Keep Alive - отправлять Keep Alive сообщения (проверки жизнеспособности сервиса) для поддержки NAT – сессии (в случае постановки вызова на удержание особенно актуально); Notification & MWI MWI Polling Freq - частота в секундах, в рамках которой будет производиться проверка смены статуса MWI (световая индикация, Message Waiting Indication) и отправка статуса пирам; Notify Ringing - опция позволяет контролировать состояние абонента, понимая, что его телефон используется (INUSE) получением пакета SIP 180 RINGING. Удобно при использовании BLF функционала; Notify Hold - контроль абонента и перевод в состояние INUSE, если звонок поставлен на удержание (событие ONHOLD).; Registration Settings Registration Timeout - таймаут регистрации. По умолчанию, равен 20 секунд. Иными словами, каждые 20 секунд будет отправляться запрос на регистрацию, пока не будет превышено максимальное количество попыток; Registration Attempts - количество попыток регистрации, после которого сервер примет решение перестать отправлять запросы. Если выставлено как 0, то количество запросов ограничено не будет. В нормальной ситуации, значение 0 является вполне рабочим – Asterisk будет продолжать посылать запросы на регистрацию до тех пор, пока очередная попытка не увенчается успехом; Registration Minimum Expiry - минимальное время, в течение которого сессия регистрации будет считаться просроченной; Registration Maximum Expiry - максимальное время, в течение которого сессия регистрации будет считаться просроченной (для входящих регистраций); Registration Default Expiry - длительность входящих и исходящих регистраций по умолчанию; Jitter Buffer Settings Enable Jitter Buffer - данная опция активирует использование джиттер буффера на принимающей стороне в рамках одного SIP – канала; Advanced General Settings Default Context - контекст обработки вызова по умолчанию, если не указан иной контекст. Сам по себе FreePBX назначает данную опцию как from-sip-external. Вносите изменения только в том случае, если полностью понимаете, что делаете; Bind Address - в данном поле указывается IP – адрес, на котором Asterisk будет ожидать запросы на телефонный процессинг, на порту, указанном в опции Bind Port. Если указано как 0.0.0.0, Asterisk будет принимать запросы на всех адресах, указанных в настройках ОС. Рекомендуем оставить эту опцию без изменений. Кстати, chan_sip не поддерживает IPv6 для транспорта UDP. Если укажите [::], Asterisk будет слушать все IPv4 и все IPv6 адреса. Если вы настолько круты, что используйте PJSip, то смело используйте IPv6 :) Bind Port - локальный UDP (и TCP, если включено в опции Enable TCP) порт, на котором Asterisk слушает обращения к chan_SIP. Если оставить поле пустым, то по умолчанию будет использован порт 5060 (5160); В более старых версиях FreePBX, использовался порт 5060 (когда только 1 SIP драйвер был в наличии). В более новых, используется 5160); TLS Bind Address - TCP порт на котором Asterisk слушает TLS (защищенные) обращения. Конфигурация вида[::], слушает IPv4 и IPv6 на всех интерфейсах; Важно: мы рекомендуем использовать PJSip для всех коммункаци на базе протокола IPv6; TLS Bind Port - локальной порт для входящих TCP обращений в рамках TLS SIP пакетов; Allow SIP Guests - если установлено в положение Yes, то Asterisk разрешит гостевые SIP звонки и обработает их в контексте from-sip-exernal (или значение дефолтного контекста, если меняли). Переключение в положение No позволит запретить так же и анонимные звонки; Enable SRV Lookup - данная опция сильно зависит от используемой версии Asterisk. В корреляции с версией, SRV функционал имеет свои ограничения; Enable TCP - включить TCP; Call Events - важная опция если вы работаете с AMI (Asterisk Manager Interface). При включенной опции, вы сможете мониторить различных события в AMI, которые генерирует SIP UA (user agent). Данный функционал полезен при разработке собственных приложений. ; Other SIP Settings - прочие SIP – настройки, которые вы можете указать вручную (добавить соответствующее поле и его значение);
img
Предыдущий материал из цикла про ARP в IPv4. Ждет вас по ссылке. Как хост может узнать, следует ли пытаться отправить пакет хосту через сегмент, к которому он подключен, или отправить пакет на маршрутизатор для дальнейшей обработки? Если хост должен отправлять пакеты на маршрутизатор для дальнейшей обработки, как он может узнать, на какой маршрутизатор (если их несколько) отправлять трафик? Эти две проблемы вместе составляют проблему шлюза по умолчанию. Для IPv4 проблему довольно легко решить, используя префикс и длину префикса. Рисунок ниже демонстрирует нам это. Реализации IPv4 предполагают, что любой хост в пределах одной подсети IPv4 должен быть физически подключен к одному проводу. Как реализация может определить разницу? Маска подсети - это еще одна форма длины префикса, которая указывает, где заканчивается сетевой адрес и начинается адрес хоста. В этом случае предположим, что длина префикса равна 24 битам, или сетевой адрес равен /24. 24 указывает вам, сколько битов задано в маске подсети: 24 bits = 11111111.11111111.11111111.0000000 Поскольку в IPv4 используется десятичная запись маски, это также можно записать как 255.255.255.0. Чтобы определить, находится ли C на том же проводе, что и A, A будет: Логическое умножение маски подсети с адресом локального интерфейса Логическое умножение маски подсети с адресом назначения Сравните два результата; если они совпадают, целевой хост находится на том же канале связи, что и локальный интерфейс На рисунке ниже это продемонстрировано. На рисунке выше показано четыре IPv4-адреса; предположим, что A должен отправлять пакеты в C, D и E. Если A знает, что длина префикса локального сегмента составляет 24 бита либо с помощью ручной настройки, либо с помощью DHCPv4, то он может просто посмотреть на 24 наиболее значимых бита каждого адреса, сравнить его с 24 наиболее значимыми битами своего собственного адреса и определить, находится ли пункт назначения на сегменте или нет. Двадцать четыре бита IPv4-адреса создают хороший разрыв между третьей и четвертой секциями адреса (каждая секция IPv4-адреса представляет собой 8 бит адресного пространства, в общей сложности 32 бита адресного пространства). Любые два адреса с такими же левыми тремя секциями, что и у A, называемые сетевым адресом, находятся в одном сегменте; любой адрес, которого нет в сегменте. В этом случае сетевой адрес для A и C совпадает, поэтому A будет считать, что C находится в одном сегменте, и, следовательно, будет отправлять пакеты C напрямую, а не отправлять их на маршрутизатор. Для любого пункта назначения, который A считает вне сегмента, он будет отправлять пакеты на IPv4-адрес конечного пункта назначения, но на MAC-адрес шлюза по умолчанию. Это означает, что маршрутизатор, выступающий в качестве шлюза по умолчанию, примет пакет и переключит его на основе IPv4-адреса назначения. Как выбирается шлюз по умолчанию? Он либо настраивается вручную, либо включается в параметр DHCPv4. А что насчет D? Поскольку сетевые части адресов не совпадают, A будет считать, что D находится вне сегмента. В этом случае A отправит любой трафик для D на свой шлюз по умолчанию, которым является B. Когда B получит эти пакеты, он поймет, что A и D достижимы через один и тот же интерфейс (на основе своей таблицы маршрутизации), поэтому он будет отправлять ICMP-перенаправление на A, говоря ему, что нужно отправлять трафик на D напрямую, а не через B. IPv6 представляет собой более сложный набор проблем, которые необходимо решить при выборе шлюза по умолчанию, потому что IPv6 предполагает, что одно устройство может иметь много адресов IPv6, назначенных конкретному интерфейсу. Рисунок ниже демонстрирует это. На рисунке выше предположим, что администратор сети настроил следующие политики: Ни один хост не может подключаться к A, если у него нет адреса в диапазоне адресов 2001: db8: 3e8: 110 ::/64. Ни один хост не может подключиться к D, если у него нет адреса в диапазоне адресов 2001: db8: 3e8: 112 ::/64. Примечание: В реальном мире вы никогда не построили бы такую политику; это надуманная ситуация, чтобы проиллюстрировать проблему, поставленную в сети минимального размера. Гораздо более реальной проблемой такого же типа была бы одноадресная переадресация обратного пути (uRPF). Чтобы эти политики работали, администратор назначил 110::3 и 112::12 хосту C и 111::120 хосту F. Это может показаться странным, но совершенно законно для одного сегмента иметь несколько подсетей IPv6, назначенных в IPv6; также совершенно законно иметь одно устройство с несколькими адресами. На самом деле, в IPv6 существует множество ситуаций, когда одному устройству может быть назначен диапазон адресов. Однако с точки зрения длины префикса нет двух адресов, назначенных C или F, в одной подсети. Из-за этого IPv6 не полагается на длину префикса, чтобы определить, что находится в сегменте, а что нет. Вместо этого реализации IPv6 ведут таблицу всех подключенных хостов, используя запросы соседей, чтобы определить, что находится в сегменте, а что нет. Когда хост хочет отправить трафик из локального сегмента, он отправляет трафик на один из маршрутизаторов, о котором он узнал из объявлений маршрутизатора. Если маршрутизатор получает пакет, к которому, как он знает, другой маршрутизатор в сегменте имеет лучший маршрут (поскольку у маршрутизаторов есть таблицы маршрутизации, которые говорят им, какой путь выбрать к какому-либо конкретному месту назначения), маршрутизатор отправит сообщение перенаправления ICMPv6, сообщающее хосту использовать какой-либо другой маршрутизатор первого перехода для достижения пункта назначения. В следующей статьей мы поговорим про пакетную коммутацию.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59