img

Полный обзор RSTP (Rapid Spanning Tree)

21 ноября
20:00
Бесплатный вебинар
Введение в Docker
Ведущий — Филипп Игнатенко.
Руководитель центра разработки
Записаться
img
img

Классический стандарт связующего дерева работает нормально, но в настоящее время для современных сетей он слишком медленный 🐌

В настоящее время мы наблюдаем в наших сетях все больше и больше маршрутизации. Протоколы маршрутизации, такие как OSPF и EIGRP, намного быстрее адаптируются к изменениям в сети, чем spanning-tree. Чтобы не отставать от скорости этих протоколов маршрутизации, была создана еще одна разновидность связующего дерева... (rapid spanning tree) быстрое связующее дерево.

Rapid spanning tree - это не революция spanning tree, а его эволюция. Некоторые вещи были изменены для того, что бы ускорить процесс, но с точки зрения конфигурации - это то же самое, что классический spanning tree . Я называю оригинальное spanning tree "классическим spanning tree".


Азы Rapid spanning tree

Азы Rapid spanning tree

Помните состояние портов spanning tree? У нас есть блокирующее, прослушивающее, обучающее и пересылающее состояние порта. Это первое различие между spanning tree и rapid spanning tree. Rapid spanning tree имеет только три состояния портов:

  • Отбрасывание;
  • Обучение;
  • Пересылка.

Вы уже знакомы с состоянием порта в режиме обучения и пересылки, но отбрасывание - это новое состояние порта. В основном он объединяет в себе блокировку и прослушивание состояния порта.

блокировка и прослушивание состояния порта

Вот хороший обзор с различными состояниями портов для spanning tree и rapid spanning tree. В таблице отображено состояние портов: активны ли они и узнают ли они MAC-адреса или нет.

Помните ли вы все остальные роли портов, которые есть у spanning tree? Давайте сделаем небольшой обзор, и будет показано отличие от rapid spanning tree.

отличие от rapid spanning tree

Коммутатор с лучшим ID моста (priority + MAC -адрес) становится корневым мостом. Другие коммутаторы (non-root) должны найти кратчайший путь стоимости к корневому мосту. Это корневой порт. Здесь нет ничего нового, все это работает аналогично и в rapid spanning tree.

priority + MAC -адрес

На каждом сегменте может быть только один назначенный порт, иначе мы получим петлю. Порт станет назначенным портом, если он сможет отправить лучший BPDU. Коммутатор А, как корневой мост, всегда будет иметь лучшие порты, поэтому все интерфейсы будут назначены. Интерфейс fa0/16 на коммутаторе B будет назначенным портом в моем примере, потому что он имеет лучший идентификатор моста, чем коммутатор C. Здесь все еще нет ничего нового по сравнению с классическим связующим деревом.

лучший идентификатор мост

Коммутатор C получает лучшие BPDU на своем интерфейсе fa0/16 от коммутатора B, и таким образом он будет заблокирован. Это альтернативный порт, и это все еще то же самое, что и для rapid spanning tree.

BPDU

Вот вам новый порт, взгляните на интерфейс fa0/17 коммутатора B. Он называется резервным портом и является новым для rapid spanning tree. Однако вы вряд ли увидите этот порт в производственной сети. Между коммутатором B и коммутатором C был добавлен хаб. Обычно (без промежуточного концентратора) оба fa0/16 и fa0/17 будут назначены портами. Из-за хаба интерфейсы fa0/16 и fa0/17 коммутатора B теперь находятся в одном домене коллизий. Fa0/16 будет выбран в качестве назначенного порта, а fa0/17 станет резервным портом для интерфейса fa0/16. Причина, по которой коммутатор B видит интерфейс fa0/17 в качестве резервного порта, заключается в том, что он получает свои собственные BPDU на интерфейсах fa0/16 и fa0/17 и понимает, что у него есть два соединения с одним и тем же сегментом. Если вы удалите хаб, то fa0/16 и fa0/17 будут назначены портами точно так же, как classic spanning tree.

classic spanning tree

BPDU отличается для rapid spanning tree. В classic spanning tree поле flags использовало только два бита:

  • Topology change.;
  • Topology change acknowledgment.;

Теперь используются все биты поля flags. Роль порта, который создает BPDU, будет добавлена с помощью поля port role, оно имеет следующие параметры:

  • Unknown;
  • Alternate / Backup port;
  • Root port;
  • Designated port.

Эта BPDU называется BPDUv2. Коммутаторы, работающие со старой версией spanning tree, проигнорируют эту новую версию BPDU. Если вам интересно ... rapid spanning tree и старое spanning tree совместимы! Rapid spanning tree способно работать с коммутаторами, работающими под управлением более старой версии spanning tree.


Что поменялось

BPDU теперь отправляются каждый hello time. Только корневой мост генерирует BPDU в classic spanning tree, и они ретранслировались non-root, если они получали его на свой корневой порт. Rapid spanning tree работает по-разному...все коммутаторы генерируют BPDU каждые две секунды (hello time). Это hello timeпо умолчанию, но вы можете его изменить.

classic spanning tree использует максимального время жизни (20 секунд) для BPDU, прежде чем они будут отброшены. Rapid spanning работает по-другому! BPDU теперь используются в качестве механизма поддержания активности, аналогичного тому, что используют протоколы маршрутизации, такие как OSPF или EIGRP. Если коммутатор пропускает три BPDU от соседнего коммутатора, он будет считать, что подключение к этому коммутатору было потеряно, и он немедленно удалит все MAC-адреса.

Rapid spanning tree будет принимать низшие BPDU. Classic spanning tree игнорирует их. Скорость перехода (время сходимости) является наиболее важной характеристикой rapid spanning tree. Classic spanning tree должно было пройти через состояние прослушивания и обучения, прежде чем оно переведет интерфейс в forwarding состояние, это занимает 30 секунд (таймер по умолчанию). Classic spanning было основано на таймерах.

Rapid spanning не использует таймеры, чтобы решить, может ли интерфейс перейти в forwarding состояние или нет. Для этого он будет использовать переговорный (negotiation) механизм. Чуть позже я покажу вам, как это работает.

Помните ли вы понятие portfast? Если мы включим portfast во время запуска classic spanning tree, оно пропустит состояние прослушивания и обучения и сразу же переведет интерфейс в forwarding состояние. Помимо перевода интерфейса в forwarding состояние, он также не будет генерировать изменения топологии, когда интерфейс переходит в состояние UP или DOWN. Мы все еще используем portfast для rapid spanning tree, но теперь он называется пограничным портом (edge port).

Rapid spanning tree может только очень быстро переводить интерфейсы в forwarding состояние на edge ports (portfast) или интерфейсы типа point-to-point. Он будет смотреть на link type, и есть только два ink types:

  • Point-to-point (full duplex);
  • Shared (half duplex).

Обычно мы используем коммутаторы, и все наши интерфейсы настроены как full duplex, rapid spanning tree видит эти интерфейсы как point-to-point. Если мы введем концентратор в нашу сеть, то у нас будет half duplex, который рассматривается как shared interface к rapid spanning-tree.

введем концентратор в нашу сеть

Позвольте мне описать механизм быстрой синхронизации spanning tree, используя рисунок выше. Коммутатор А сверху - это корневой мост. Коммутатор B, C и D- некорневые мосты (non-root).

Как только появится связь между коммутатором А и коммутатором B, их интерфейсы будут находиться в режиме блокировки. Коммутатор B получит BPDU от коммутатора A, и теперь будет происходить согласование, называемое синхронизацией.

синхронизация

После того, как коммутатор B получил BPDU от корневого моста, он немедленно блокирует все свои порты, не обозначенные в списке non-edge. Non-edge порты - это интерфейсы для подключения к другим коммутаторам, пока edge порты- интерфейсы, настроены как portfast. Как только коммутатор B блокирует свои non-edge порты, связь между коммутатором A и коммутатором B переходит в forwarding состояние.

forwarding состояние

Коммутатор B также выполнит операцию синхронизации как с коммутатором C, так и с коммутатором D, чтобы они могли быстро перейти в forwarding состояние.

Главное, что следует усвоить здесь, заключается в том, что rapid spanning tree использует этот механизм синхронизации вместо механизма "таймера", который использует classic spanning tree (прослушиваниеобучениеforwarding).

механизм синхронизации

Давайте увеличим масштаб механизма синхронизации rapid spanning tree, подробно рассмотрев коммутатор A и коммутатор B. Сначала интерфейсы будут заблокированы до тех пор, пока они не получат BPDU друг от друга. В этот момент коммутатор B поймет, что коммутатор A является корневым мостом, потому что он имеет лучшую информацию BPDU. Механизм синхронизации начнется, потому что коммутатор А установит proposal bit в поле flag BPDU.

RSTP

Коммутатор B получает предложение от коммутатора A и понимает, что он должен что-то сделать. Он заблокирует все свои non-edge интерфейсы и запустит синхронизацию в направлении коммутатора C и коммутатора D.

non-edge интерфейсы

Как только коммутатор B перевед свои интерфейсы в режим синхронизации, это позволит коммутатору А узнать об этом, отправив соответствующее соглашение.

Это соглашение является копией proposal BPDU, где proposal bit, был switched off, а agreement bit - switched on. Интерфейс fa0/14 на коммутаторе B теперь перейдет в режим forwarding.

коммутатор B перейдет в режим forwarding

Как только коммутатор A получит соглашение от коммутатора B, он немедленно переведет свой интерфейс fa0/14 в режим пересылки. А как насчет интерфейса fa0 / 16 и fa0 / 19 на коммутаторе B?

Rapid Spanning Tree

Точно такой же механизм синхронизации будет иметь место и сейчас на этих интерфейсах. Коммутатор B направит предложение по своим интерфейсам fa0/16 и fa0/19 в сторону коммутатора C и коммутатора D.

Rapid Spanning Tree обмен

Коммутатор C и коммутатор D не имеют никаких других интерфейсов, поэтому они отправят соглашение обратно на коммутатор B.

соглашение на обмен

Коммутатор B переведет свои интерфейсы fa0/16 и fa0/19 в режим forwarding, и на этом мы закончим. Этот механизм синхронизации - всего лишь пара сообщений, летающих туда-сюда, и очень быстро, это намного быстрее, чем механизм на основе таймера classic spanning tree!


Что еще нового в rapid spanning tree?

Есть еще три вещи:

  • UplinkFast;
  • Механизм изменения топологии;
  • Совместимость с классическим связующим деревом.

Когда вы настраиваете classic spanning tree, вы должны включить UplinkFast самостоятельно. Rapid spanning tree использует UpLinkFast по умолчанию, вам не нужно настраивать его самостоятельно. Когда коммутатор теряет свой корневой порт, он немедленно переводит свой альтернативный порт в forwarding.

Разница заключается в том, что classic spanning tree нуждалось в multicast кадрах для обновления таблиц MAC-адресов всех коммутаторов.

Нам это больше не нужно, потому что механизм изменения топологии для rapid spanning tree отличается. Так что же изменилось в механизме изменения топологии?

С classic spanning tree сбой связи вызвал бы изменение топологии. При использовании rapid spanning tree сбой связи не влияет на изменение топологии. Только non-edge интерфейсы (ведущие к другим коммутаторам), которые переходят в forwarding состояние, рассматриваются как изменение топологии. Как только коммутатор обнаружит изменение топологии это произойдет:

  • Он начнет изменение топологии при значении таймера, которое в два раза превышает hello time. Это будет сделано для всех назначенных non-edge и корневых портов.;
  • Он будет очищать MAC-адреса, которые изучаются на этих портах.;
  • До тех пор, пока происходит изменение топологии, во время активности таймера, он будет устанавливать бит изменения топологии в BPDU, которые отправляются из этих портов. BPDU также будет отправлен из своего корневого порта.;

Когда соседний коммутатор получит этот BPDU с установленным битом изменения топологии, произойдет следующее:

  • Он очистит все свои MAC-адреса на всех интерфейсах, кроме того, на котором он получил BPDU с включенным изменением топологии.;
  • Он запустит изменение топологии во время самого таймера и отправит BPDU на все назначенные порты и корневой порт, установив бит изменения топологии.;
изменение топологии

Вместо того, чтобы отправлять изменения топологии вплоть до корневого моста, как это делает classic spanning tree, изменение топологии теперь быстро распространяется по всей сети.

изменение быстро распространяется по всей сети

И последнее, но не менее важное, давайте поговорим о совместимости. Rapid spanning tree и classic spanning tree совместимы. Однако, когда коммутатор, на котором работает Rapid spanning tree, связывается с коммутатором, на котором работает classic spanning tree, все функции скоростной передачи данных не будут работать!

В приведенном выше примере у меня есть три коммутатора. Между коммутатором A и коммутатором B мы запустим rapid spanning tree. Между коммутатором B и коммутатором C мы вернемся к classic spanning tree.

Ссылка
скопирована
Получите бесплатные уроки на наших курсах
Все курсы
Сети
Скидка 25%
Основы сетевых технологий
Стань сетевиком с нуля за 2 месяца. Веселая и дружелюбная подача информации с эмуляцией реальных задач.
Получи бесплатный
вводный урок!
Пожалуйста, укажите корректный e-mail
отправили вводный урок на твой e-mail!
Получи все материалы в telegram и ускорь обучение!
img
Еще по теме:
img
В начале 2000-х, когда идея мессенджеров только формировалась, расширяемый протокол обмена сообщениями и информацией о присутств
img
Задержка в сети, или сетевая задержка, - это временная задержка при передаче запросов или данных от источника к адресату в сетев
img
Система доменных имен (DNS – Domain Name System) обеспечивает сетевую коммуникацию. DNS может показаться какой-то невидимой сило
img
Wi-Fi это технология, которая использует радиоволны для отправки и получения сигналов от находящихся поблизости устройств, чтобы
img
BGP (Border Gateway Protocol) - это протокол граничного шлюза, предназначенный для обмена информацией о маршрутизации и доступно
img
Когда читаете данную статью, браузер подключается к провайдеру (или ISP) а пакеты, отправленные с компьютера, находят путь до се
21 ноября
20:00
Бесплатный вебинар
Введение в Docker