img

Обзор методов безопасного хранения данных на сервере

Система хранения данных - это программно-аппаратное решение для надежного и безопасного хранения данных, а также предоставления гарантированного доступа к ним.

Так, под надежностью подразумевается обеспечение сохранности данных, хранящихся в системе. Такой комплекс мер, как резервное копирование, объединение накопителей в RAID массивы с последующим дублированием информации способны обеспечить хотя бы минимальный уровень надежности при относительно низких затратах. При этом также должна обеспечиваться доступность, т. е. возможность беспрепятственной и непрерывной работы с информацией для санкционированных пользователей. В зависимости от уровня привилегий самих пользователей, система предоставляет разрешение для выполнения операций чтения, записи, перезаписи, удаления и так далее.

Безопасность является, пожалуй, наиболее масштабным, важным и труднореализуемым аспектом системы хранения данных. Объясняется это тем, что требуется обеспечить комплекс мер, направленный на сведение риска доступа злоумышленников к данным к минимуму. Реализовать это можно использованием защиты данных как на этапе передачи, так и на этапе хранения. Также важно учитывать возможность самих пользователей неумышленно нанести вред не только своим, но и данным других пользователей.


Топологии построения систем хранения данных

Большинство функции, которые выполняют системы хранения данных, на сегодняшний день, не привязаны к конкретной технологии подключения. Описанные ниже методы используется при построении различных систем хранения данных. При построении системы хранения данных, необходимо четко продумывать архитектуру решения, и исходя из поставленных задач учитывать достоинства и недостатки, присущие конкретной технологии в конкретной ситуации. В большинстве случаев применяется один из трех видов систем хранения данных:

  • DAS;
  • NAS;
  • SAN.

DAS (Direct-attached storage) - система хранения данных с прямым подключением (рисунок ниже). Устройство хранения (обычно жесткий диск) подключается непосредственно к компьютеру через соответствующий контроллер. Отличительным признаком DAS является отсутствие какого-либо сетевого интерфейса между устройством хранения информации и вычислительной машиной. Система DAS предоставляет коллективный доступ к устройствам хранения, однако для это в системе должно быть несколько интерфейсов параллельного доступа.

Архитектура системы DAS

Главным и существенным недостатком DAS систем является невозможность организовать доступ к хранящимся данным другим серверам. Он был частично устранен в технологиях, описанных ниже, но каждая из них привносит свой новый список проблем в организацию хранения данных.

NAS (Network-attached storage) - это система, которая предоставляет доступ к дисковому пространству по локальной сети (рисунок выше). Архитектурно, в системе NAS промежуточным звеном между дисковым хранилищем и серверами является NAS-узел. С технической точки зрения, это обычный компьютер, часто поставляемый с довольно специфической операционной системой для экономии вычислительных ресурсов и концентрации на своих приоритетных задачах: работы с дисковым пространством и сетью.

Архитектура системы NAS

Дисковое пространство системы NAS обычно состоит из нескольких устройств хранения, объединенных в RAID - технологии объединения физических дисковых устройств в логический модуль, для повышения отказоустойчивости и производительности. Вариантов объединения довольно много, но чаще всего на практике используются RAID 5 и RAID 6 [3], в которых данные и контрольные суммы записываются на все диски одновременно, что позволяет вести параллельные операции записи и чтения.

Главными преимуществами системы NAS можно назвать:

  1. Масштабируемость - увеличение дискового пространства достигается за счет добавления новых устройств хранения в уже существующий кластер и не требует переконфигурации сервера;
  2. Легкость доступа к дисковому пространству - для получения доступа не нужно иметь каких-либо специальных устройств, так как все взаимодействие между системой NAS и пользователями происходит через сеть.

SAN (Storage area network) - система, образующая собственную дисковую сеть (рисунок ниже). Важным отличием является то, что с точки зрения пользователя, подключенные таким образом SAN-устройства являются обычными локальными дисками. Отсюда и вытекают основные преимущества системы SAN:

  1. Возможность использовать блочные методы хранения - базы данных, почтовые данные,
  2. Быстрый доступ к данным - достигается за счет использования соответствующих протоколов.
Архитектура системы SAN

Системы резервного копирования данных

Резервное копирование - процесс создания копии информации на носителе, предназначенном для восстановления данных в случае их повреждения или утраты. Существует несколько основных видов резервного копирования:

  • Полное резервное копирование;
  • Дифференциальное резервное копирование;
  • Инкрементное резервное копирование.

Рассмотрим их подробнее.

Полное резервное копирование. При его применении осуществляется копирование всей информации, включая системные и пользовательские данные, конфигурационные файлы и так далее (рисунок ниже).

Полное резервное копирование

Дифференциальное резервное копирование. При его применении сначала делается полное резервное копирование, а впоследствии каждый файл, который был изменен с момента первого полного резервного копирования, копируется каждый раз заново. На рисунке ниже представлена схема, поясняющая работу дифференциального резервного копирования.

Дифференциальное резервное копирование

Инкрементное резервное копирование. При его использовании сначала делается полное резервное копирование, затем каждый файл, который был изменен с момента последнего резервного копирования, копируется каждый раз заново (рисунок ниже).

Инкрементное резервное копирование

К системам резервного копирования данных выдвигаются следующие требования:

  1. Надежность - обеспечивается использованием отказоустойчивого оборудования для хранения данных, дублированием информации на нескольких независимых устройствах, а также своевременным восстановлением утерянной информации в случае повреждения или утери;
  2. Кроссплатформенность - серверная часть системы резервного копирования данных должна работать одинаково с клиентскими приложениями на различных аппаратно-программных платформах;
  3. Автоматизация - сведение участие человека в процессе резервного копирования к минимуму.

Обзор методов защиты данных

Криптография - совокупность методов и средств, позволяющих преобразовывать данные для защиты посредством соответствующих алгоритмов.

Шифрование - обратимое преобразование информации в целях ее сокрытия от неавторизованных лиц. Признаком авторизации является наличие соответствующего ключа или набора ключей, которыми информация шифруется и дешифруется. Криптографические алгоритмы можно разделить на две группы:

  • Симметричное шифрование;
  • Асимметричное шифрование.

Под симметричным шифрованием понимаются такие алгоритмы, при использовании которых информация шифруется и дешифруется одним и тем же ключом. Схема работы таких систем представлена на рисунке ниже.

Симметричная криптосистема

Главным проблемным местом данной схемы является способ распределения ключа. Чтобы собеседник смог расшифровать полученные данные, он должен знать ключ, которым данные шифровались. Так, при реализации подобной системы становится необходимым учитывать безопасность распределения ключевой информации для того, чтобы на допустить перехвата ключа шифрования.

К преимуществам симметричных криптосистем можно отнести:

  1. Высокая скорость работы за счет, как правило, меньшего числа математических операций и более простых вычислений;
  2. Меньшее потребление вычислительной мощности, в сравнении с асимметричными криптосистемами;
  3. Достижение сопоставимой криптостойкости при меньшей длине ключа, относительно асимметричных алгоритмов.

Под асимметричным шифрованием понимаются алгоритмы, при использовании которых информация шифруется и дешифруется разными, но математически связанными ключами - открытым и секретным соответственно. Открытый ключ может находится в публичном доступе и при шифровании им информации всегда можно получить исходные данные путем применения секретного ключа. Секретный ключ, необходимый для дешифрования информации, известен только его владельцу и вся ответственность за его сохранность кладется именно на него. Структурная схема работы асимметричных криптосистем представлена на рисунке ниже.

Асимметричная криптосистема

Ассиметричные криптосистемы архитектурно решают проблему распределения ключей по незащищенным каналам связи. Так, если злоумышленник перехватит ключ, применяемый при симметричном шифровании, он получит доступ ко всей информации. Такая ситуация исключена при использовании асимметричных алгоритмов, так как по каналу связи передается лишь открытый ключ, который в свою очередь не используется при дешифровании данных.

Другим местом применения асимметричных криптосистем является создание электронной подписи, позволяющая подтвердить авторство на какой-либо электронный ресурс.

Достоинства асимметричных алгоритмов:

  1. Отсутствует необходимость передачи закрытого ключа по незащищенного каналу связи, что исключает возможность дешифровки передаваемых данных третьими лицами,
  2. В отличии от симметричных криптосистем, в которых ключи шифрования рекомендуется генерировать каждый раз при новой передаче, в асимметричной их можно не менять продолжительное время.

Подведём итоги

При проектировании таких систем крайне важно изначально понимать какой должен получиться результат, и исходя из потребностей тщательно продумывать физическую топологию сети хранения, систему защиты данных и программную архитектуру решения. Также необходимо обеспечить резервное копирование данных для своевременного восстановления в случае частичной или полной утери информации. Выбор технологий на каждом последующем этапе проектирования, зачастую, зависит от принятых ранее решений, поэтому корректировка разработанной системы в таких случаях, нередко, затруднительна, а часто даже может быть невозможно.

Ссылка
скопирована
Сети
Скидка 25%
Основы сетевых технологий
Стань сетевиком с нуля за 2 месяца. Веселая и дружелюбная подача информации с эмуляцией реальных задач.
Получи бесплатный
вводный урок!
Пожалуйста, укажите корректный e-mail
отправили вводный урок на твой e-mail!
Получи все материалы в telegram и ускорь обучение!
img
Еще по теме:
img
Система доменных имен (DNS – Domain Name System) обеспечивает сетевую коммуникацию. DNS может показаться какой-то невидимой сило
img
Wi-Fi это технология, которая использует радиоволны для отправки и получения сигналов от находящихся поблизо
img
BGP (Border Gateway Protocol) - это протокол граничного шлюза, предназначенный для обмена информацией о маршрутизации и доступно
img
Когда читаете данную статью, браузер подключается к провайдеру (или ISP) а пакеты, отправленные с компьютера, находят путь до се
img
Современные веб-сайты и приложения генерируют большой трафик и одновременно обслуживают многочисленные запросы клиентов. Баланси
img
Первоначально BGP был разработан как протокол Внешнего шлюза (Exterior Gateway Protocol - EGP), что означает, что он предназнача
Комментарии
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59