По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В предыдущей части нашей серии OSPF мы рассмотрели варианты ручной фильтрации маршрутов. Теперь мы обсудим маршруты по умолчанию и сравним OSPFv2 с OSPFv3. Предыдущие статьи: Расширенные возможности OSPF: Области OSPF: создание конкретных типов областей Ручная фильтрация маршрутов OSPF Маршрут по умолчанию (Default Routes) Мы изучили с вами, что OSPF может автоматически генерировать маршрут по умолчанию, когда это необходимо. Это происходит с некоторыми специальными типами областей. Например, если вы настраиваете totally stubby area, требуется маршрут по умолчанию, и OSPF генерирует этот маршрут автоматически из ABR. Чтобы повысить гибкость ваших проектов, маршруты по умолчанию, вводимые в нормальную область, могут быть созданы любым роутером OSPF. Для создания маршрута по умолчанию используется команда default-information originate. Эта команда содержит два варианта: Вы можете объявлять 0.0.0.0 в домен OSPF, при условии, что объявляемый роутер уже имеет маршрут по умолчанию. Вы можете объявлять 0.0.0.0 независимо от того, имеет ли объявляемый роутер уже маршрут по умолчанию. Этот второй метод выполняется путем добавления ключевого слова always к default-information originate Рисунок 1 - топология OSPF Используя нашу простую топологию из рисунка 1 еще раз, давайте настроим ATL2 для введения маршрута по умолчанию в нормальную, не магистральную область 1. ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z . ATL2 (config)#router ospf 1 ATL2 (config-router)#default-information originate always ATL2 (config-router)#end ATL2# Обратите внимание, что в этом примере мы используем ключевое слово always, чтобы убедиться, что ATL2 генерирует маршрут по умолчанию независимо от того, есть ли у устройства уже маршрут по умолчанию в его таблице маршрутизации. Вот проверка на ORL: show ip route Сравнение OSPFv2 и OSPFv3 Каким бы удивительным ни был OSPFv2, он не может маршрутизировать префиксы IPv6 для нас. Это работу выполняет OSPFv3. Хорошей новостью для вас является тот факт, что вы можете использовать почти все, что вы узнали о OSPFv2 при переходе на протокол OSPFv3. Полная перестройка протокола не проводилась, и было сохранено как можно больше функциональных возможностей и этапов настройки. Как вы узнаете далее, OSPFv3 предлагает использование семейств адресов в конфигурации, что делает этот протокол подходящим для переноса префиксов IPv6 или даже префиксов IPv4 с соответствующим семейством адресов. В конце этой статьи демонстрируется «стандартная» конфигурация OSPFv3, а также конфигурация семейства адресов. Важно иметь представление о ключевых сходствах и различиях между v2 и v3 протоколов OSPF. Вот сходства, которые описаны ниже: В OSPFv3 процесс маршрутизации не создается явно. Включение OSPFv3 на интерфейсе приведет к созданию процесса маршрутизации и связанной с ним конфигурации. Идентификатор маршрутизатора по-прежнему является 32-разрядным значением в OSPFv3, и процесс выбора идентификатора маршрутизатора остается таким же. OSPF автоматически предпочитает loopback интерфейс любому другому виду, и он выбирает самый высокий IP-адрес среди всех loopback интерфейсов. Если никаких loopback интерфейсов нет, то выбирается самый высокий IP-адрес в устройстве. Вот некоторые ключевые отличия: Эта функция отличается от OSPF версии 2, в которой интерфейсы косвенно включены с помощью режима конфигурации устройства. При использовании nonbroadcast multiaccess интерфейса в OSPFv3 необходимо вручную настроить устройство со списком соседей. Соседние устройства идентифицируются по их идентификатору устройства. В IPv6 можно настроить множество префиксов адресов на интерфейсе. В OSPFv3 все префиксы адресов на интерфейсе включены по умолчанию. Вы не можете выбрать определенные префиксы адресов для импорта в OSPFv3; либо импортируются все префиксы адресов в интерфейсе, либо никакие префиксы адресов в интерфейсе не импортируются. В отличие от OSPF версии 2, несколько экземпляров OSPFv3 могут быть запущены на линии. Традиционная (стандартная) настройка OSPFv3 Чтобы продемонстрировать (и попрактиковать) конфигурацию OSPFv3 часть настроек мы отбросили. Вот конфигурация нашей магистральной области (область 0) и не магистральной области (область 1) с использованием «традиционного» подхода OSPFv3. ATL# configuration terminal Enter configuration commands, one per line . End with CNTL/Z . ATL(config)#ipv6 unicast-routing ATL(config)#interface fa0/0 ATL(config-if)#ipv6 address 2001:1212:1212::1/64 ATL(config-if)#ipv6 ospf 1 area 0 ATL(config-if)#interface loopback0 ATL(config-if)#ipv6 address 2001:1111:1111::1/64 ATL(config-if)#ipv6 ospf 1 area 0 ATL(config-if)#end ATL# Обратите внимание, насколько знакомым кажется этот подход к настройке, он аналогичен настройке OSPFv2. Обратите внимание также, что мы должны глобально включить возможность одноадресной маршрутизации IPv6 на устройстве. Это не является действием по умолчанию. Вы также должны понять, что это не требуется для запуска IPv6 на интерфейсах, это просто требование сделать маршрутизацию трафика IPv6 на роутере. Вот конфигурация наших двух других устройств: ATL2#conf t Enter configuration commands, one per line. End with CNTL/Z . ATL2 (config)#ipv6 unicast-routing ATL2 (config)#int fa0/0 ATL2 (config-if)#ipv6 address 2001:1212:1212::2/64 ATL2 (config-if)#ipv6 ospf 1 area 0 ATL2 (config-if)# *Mar 28 09:23 :25 .563 : %0SPFv3-5-ADJCHG: Process 1, Nbr 192.168.20.1 on FastEthernet0/0 from LOADING to FULL, Loading Done ATL2 (config-if)#int fa1/0 ATL2 (config-if)#ipv6 address 2001:2323:2323::2/64 ATL2 (config-if)#ipv6 ospf 1 area 1 ATL2 (config-if)#end ATL2# ORL#conf t Enter configuration commands, one per line . End with CNTL/Z . ORL(config)#ipv6 unicast-routing ORL(config)#int fa1/0 ORL(config-if)#ipvб address 2001:2323:2323::3/64 ORL(config-if)#ipvб ospf 1 area 1 ORL(config-if)#end ORL# Теперь настало время для проверки. Обратите внимание, что я выполню все это на устройстве ORL для краткости. Обратите внимание еще раз на все замечательные сходства с OSPFv2: show ipv6 route show ipv6 ospf neighbor show ipv6 ospf database Конфигурация Семейства Адресов OSPFv3 Давайте завершим эту статью изучением стиля конфигурации семейства адресов OSPFv3. Помните, что это позволит нам использовать этот единый протокол для передачи префиксов IPv4 и IPv6. Вот пример подхода к конфигурации семейства адресов OSPFv3: BOS (config)#ipv6 unicast-routing BOS (config)#router ospfv3 1 BOS (config-router)#address-family ipv6 unicast BOS (config-router-af)#area 1 range 2001:DB8:0:0::0/128 BOS (config-router-af)#end BOS#conf t BOS (config)#interface fa1/0 BOS (config-if)#ipv6 ospf 1 area 1 Важно то, что если вы уже знакомы с семействами адресов из другого протокола (например, BGP), то эта настройка покажется вам очень простой. Также учтите, что подход к настройке OSPFv3 на подинтерфейсах не меняется.
img
В статье пойдет речь о расположении файлов и папок, как использовать поиск для нахождения нужной информации. Задача ознакомление с предназначение основных папок в операционной системе Linux и то, что в них находиться. Разберемся в структуре FHS и посмотрим, как искать файлы и команды. FHS (File System Hierarchy Standard) – это стандартная иерархия ОС. Согласно Hierarchy FHS - есть стандартные папки, которые должны располагаться в корне. Вот классическое расположение файлов и папок в корневой папке ОС Linux. Стандарт FHS был изначально предназначен для того, чтобы во всех дистрибутивах ОС Linux могли понять и найти все, что нам нужно. Некоторые дистрибутивы Linux отклоняются от этого стандарта, но не сильно в целом данный стандарт соблюдается. Перечислим основные папки и их предназначение. /bin – базовые исполняемые файлы /boot – файлы loader /dev – устройства /etc – конфигурация ПК /home – домашние директории /lib – библиотеки ядра /proc – информация о работающей системе /media – монтирование носителей /mnt – монтирование носителей /opt – дополнительное программное обеспечение /root – домашняя директория админа /sbin – основные программы настройки системы /srv – данные системных служб /tmp – временные файлы /usr – бинарные файлы пользователей /var - переменные Первая папка bin в ней находятся базовые исполняемые файлы команд, т.е все команды которые может использовать пользователь они находятся здесь в данной папке. Папка boot – в данной папке находятся файлы загрузчика. Обычно это отдельный диск примонтированный в котором находиться ядро Linux. В папке dev – находятся файлы всех устройств в операционной системе Linux все и даже устройства представляют собой файлы. Папка etc – здесь находиться конфигурация нашего конкретного ПК, в ней много подпапок и в ней лежит конфигурация. В директории home находятся домашние папки всех пользователей, кроме пользователя root. В данной папке находятся документы, рабочий стол и т.д все что относится к пользователю. Папка lib здесь находятся общие библиотеки и модули ядра. Папка proc – здесь находятся вся информация о запущенных в данный момент процессах. В данную папку монтируется виртуальная файловая система procfs. Папка media создана для монтирования съемных накопителей типа USB или CD-ROM. В старых версиях Linux и до сих пор осталась, есть папка mnt. Раньше в нее монтировались съемные носители, теперь же данную папку обычно используют для монтирования дополнительных файловых систем. Папка opt - для установки дополнительного программного обеспечения. Папка root – говорит сама за себя. Папка sbin в данной папке лежат настройки серьезных таких компонент, как файрвол iptables, например, или процесс инициализации init. Папка srv в ней лежат данные для всех системных служб. Папка tmp – понятно, что в ней хранятся временные файлы. Причем данные файлы там хранятся до перезагрузки операционной системы, во время нее они удаляются. В папке usr хранятся двоичные файлы, которые относятся непосредственно к пользователю, например, игры или программы, т.е то что пользователь самостоятельно установил. Папка var – папка переменные, здесь обычно размещается почта или логи программ. Понятно, что это стандарт во многих дистрибутивах могут быть отклонения, но в том или ином виде все эти папки присутствуют в различных дистрибутивах. Подробнее про структуру FHS можно прочитать здесь Вторая часть не менее важная, как же найти в данных папках необходимую информацию. Команды, используемые для поиска: Grep – Утилита поиска по содержимому в том числе и внутри файла Find - Утилита поиска файлов по свойствам. Серьезная утилита, которая начинает поиск файлов по файловой системе в реальном времени, у данной утилиты есть множество ключей и параметров Locate – Это быстрый поиск файлов. Which – Поиск команды. Выводит минимальное количество информации Type – Вывод точной команды Whereis – Поиск команды, исходников и мануалов. Серьезный глубокий инструмент Начнем с find / -name mail. Данная команда начнет искать в корневой папке / все файлы с именем mail. Данная команда рекурсивно осуществляет поиск по всей файловой системе. Т.к мы запустили поиск от пользователя root, то он пробежался по всем папкам спокойно, если запускать от обычного пользователя, то может не хватать прав. Есть другая команда - locate mail. Данная команда отрабатывает практически мгновенно. Команда find искала именно по синтаксису, плюс можно добавлять сложные конструкции поиска. Команда locate делает проще показывает все где находится сочетание символов. Запустим поиск с помощью команды find / -user siadmin, поиск будет искать все что касается данного пользователя. Поиск опять идет дольше, чем поиск командой locate siadmin. Дело в том, что данная команда по умолчанию ищет не везде и у нее есть конфигурационный файл cat /etc/updatedb.conf. В данном конфигурационном файле мы можем увидеть, что данная утилита не ищет в примонтированных файловых системах. Даная строчка # PRUNENAMES=".git .bzr .hg .svn", говорит о том , что в данных форматы в поиске не выдаются. Поиск не производится в папках PRUNEPATHS="/tmp /var/spool /media /var/lib/os-prober /var/lib/ceph /home/.ecryptfs /var/lib/schroot". И не ищет в перечисленных файловых системах в файле. Данный файл можно конфигурировать и будут манятся параметры поиска. Создадим файл текстовый touch Vadim.txt. И попробуем найти - locate Vadim.txt. Ничего не нашел. find Vadim.txt - поиск успешен. locate работает с индексной локацией. Данный механизм напоминает индексацию файлов в MS Windows. Проходит индексация файлов и папок и после этого windows знает, что и где лежит. А если индексация не была проведена, то операционная система Windows или говорит, что ничего не найдено или поиск происходит длительное время. Аналогично утилита locate работает в Linux. Раз в день, команда locate запускает команду find. Команда find пробегает по всей файловой системе, а команда locate создает некую Базу данных и запоминает где и что находиться. Именно поэтому команда find работает долго, а команда locate работает практически моментально. Locate знает, где и что лежит в тот момент когда find искал. Но есть большой минус, данная функция происходит раз в день и изменения могут быть не актуальны. Для обновления базы данных команды locate, необходимо ее запустить вручную updatedb. Т.е ест конфигурация /etc/updatedb.conf и мы запускаем обновление Базы данных команды. После обновления, команда будет практически мгновенно находить. И последняя часть статьи, в которой необходимо рассмотреть поиск по командам. Тут достаточно просто, есть команда ls – она показывает содержимое папки. Мы можем найти где находиться данная команда which ls и получим, что она находиться /bin/ls. Т.е. команда ls хранится в папке bin – где хранятся бинарники тех команд, которые могут быть вызваны пользователями. По сути когда мы набираем команду ls, мы вводим /bin/ls. У нас есть команда type. Обратите внимание, когда мы вызываем команду ls срабатывает подсветка файлов и так далее, т.е. настройки оболочки. Когда мы запускаем напрямую /bin/ls то вызывается непосредственно команда и игнорируются настройки оболочки. Причина заключается в том, что когда мы запускаем просто команду ls, то она запускается с некоторыми ключами. Чтобы узнать, что за ключи используются необходимо набрать type ls. Обратите внимание, что команда ls – это алиаспсевдоним. Т.е запуская в таком режиме, фактически мы вводим /bin/ls –color=auto. И получаем красивый вывод. Type позволяет выводить псевдоним. Есть еще одна команда, которая более детальную информацию выводит whereis ls. Для ls там не много информации. Показывает, где лежит и к какому пакету относится.
img
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему. На рисунке 1 Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов? Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E? Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example? Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте? Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения. Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области: Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект. Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений. Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации: Использование известных и/или настроенных вручную идентификаторов Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов. Объявление сопоставления между двумя идентификаторами в протоколе Вычисление одного вида идентификатора из другого Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения. Хорошо известные и/или настраиваемые вручную идентификаторы Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если: Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ... Количество сопоставлений между идентификаторами относительно невелико, и ... Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ... Самым простым решением является ведение какой-либо таблицы сопоставления вручную. Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную. Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping. База данных и протокол сопоставления Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети. Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов. Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов. Сопоставления идентификаторов объявления в протоколе Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический). Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND). Вычисление одного идентификатора из другого В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу. Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59