img

11 программ для глубокого обучения в 2024 году

Глубокое обучение меняет подход к обработке данных. Эта технология основана на искусственном интеллекте (AI) и машинном обучении (ML). Помогает бизнесу, организациям и университетам эффективно использовать данные для прогнозирования и анализа. В этой статье мы подробнее рассмотрим, что такое глубокое обучение, и подберем для него актуальные инструменты.

icon strelka icons icons

узнай больше на курсе

Python программист с нуля
Стань разработчиком на одном из самых популярных языков программирования - Python
Укажите вашу электронную почту
Неверный адрес электронной почты
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных
Готово!
Отправили доступы на вашу
электронную почту
Java-разработчик с нуля
Освойте backend-разработку и программирование на Java, фреймворки Spring и Maven, работу с базами данных и API
Укажите вашу электронную почту
Неверный адрес электронной почты
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных
Готово!
Отправили доступы на вашу
электронную почту
C# разработчик с нуля
На курсе ты освоишь основы программирования на C#, включая синтаксис, объектно-ориентированное программирование и асинхронное программирование.
Укажите вашу электронную почту
Неверный адрес электронной почты
Нажимая на кнопку, вы соглашаетесь на обработку персональных данных
Готово!
Отправили доступы на вашу
электронную почту

Что такое глубокое обучение?

Глубокое обучение — это современная концепция, которая пытается имитировать работу человеческого мозга, чтобы позволить системам агрегировать данные и прогнозировать результаты с большей точностью и скоростью.

Это подмножество искусственного интеллекта (AI) и машинного обучения (ML). Здесь есть многослойные нейронные сети, которые пытаются имитировать поведение человеческого мозга, хотя до достижения этой цели еще далеко.

Глубокое обучение используется исследователями, инженерами, разработчиками и учреждениями для «обучения» на больших объемах данных. Хотя однослойная нейронная сеть все еще может предсказывать, добавление дополнительных слоев повышает точность и улучшает результаты.

В настоящее время глубокое обучение поддерживает многие сервисы и приложения на основе ИИ и Ml, позволяющие повысить уровень автоматизации и выполнять физические и аналитические задачи без участия человека.

Как работает глубокое обучение?

Глубокое обучение использует нейронные сети или ANN (искусственные нейронные сети) и пытается имитировать поведение мозга, используя комбинацию данных и предубеждений для точного описания, распознавания и классификации объектов.

Нейронные сети состоят из различных слоев взаимосвязанных узлов, расположенных один над другим для оптимизации и уточнения классификации или предсказания. Этот тип вычислений в сети известен как прямое распространение.

Здесь слои на выходе и входе известны как видимые слои. Модели глубокого обучения принимают данные для обработки на входе, а окончательную классификацию или предсказание делают на выходе. Кроме того, обратное распространение – это еще один метод, использующий такие алгоритмы, как градиентный спуск, для вычисления всех ошибок в своих предсказаниях. Затем он корректирует смещения и веса функций, двигаясь назад по слоям, чтобы обучить и оптимизировать модель.

Когда используется прямое и обратное распространение, это позволяет нейронным сетям делать высокоточные классификации и предсказания. Кроме того, с течением времени нейронные сети продолжают обучение для повышения точности. 

Типы нейронных сетей, используемых в глубоком обучении, — это сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN) и другие.  

Примеры использования программного обеспечения для глубокого обучения в бизнесе

  • Обслуживание клиентов. Организации используют глубокое обучение в сфере обслуживания с помощью сложных чат-ботов. Они определяют ответы и отвечают на вопросы, направляют разговоры к пользователям и т. д. А также сервисов для прогнозирования уровня оттока клиентов, понимания их поведения и т. д. 
  • Виртуальные помощники. Компании и частные лица используют виртуальных помощников, таких как Siri, Alexa, Google Assistant и т. д., для упрощения своих задач.
  • Финансовые услуги. Финансовые учреждения используют предиктивную аналитику для торговли акциями, выявления мошенничества, оценки бизнес-рисков, управления портфелями клиентов и т. д.  
  • Юриспруденция. Правоохранительные органы могут использовать алгоритмы глубокого обучения для анализа транзакционных данных и выявления на их основе критических моделей мошенничества или преступлений. 
  • Разработка программного обеспечения. Например, распознавание речи и компьютерное зрение для создания замечательных приложений и повышения эффективности их развертывания путем извлечения закономерностей из видео- и звукозаписей, документов и изображений. 
  • Промышленная автоматизация. Глубокое обучение в промышленности обеспечивает безопасность работников с помощью сервисов, позволяющих обнаружить их движение до того, как они могут столкнуться с опасным объектом.

Помимо этого, оно используется в продуктах и услугах для аэрокосмической и военной промышленности, генерации текстов, здравоохранения, восстановления изображений, пультов с голосовым управлением, самоуправляемых автомобилей, машинного перевода, разработки лекарств, биоинформатики, климатологии, анализа медицинских изображений и т. д.

Теперь давайте поговорим о некоторых из лучших платформ глубокого обучения на рынке. 

Caffe

Разработанный Berkeley AI Research (BAIR), Caffe – это отличный фреймворк глубокого обучения, который отличается скоростью, модульностью и экспрессией. Он имеет лицензию BSD 2-Clause.

Его выразительная архитектура способствует инновациям и применению, а оптимизация не требует жесткого кодирования и легко настраивается. Вы можете переключаться между GPU и CPU, установив всего один флаг для обучения на GPU-системе. Затем вы можете без труда развернуть его на мобильных устройствах.

Код Caffe позволяет активно развиваться. В первый год существования Caffe его форкнули более 1000 разработчиков, которые внесли в него множество важных изменений, сделав его самым современным с точки зрения моделей и кода. Кроме того, Caffe обладает высокой скоростью, что делает его оптимальным для развертывания в промышленности и проведения исследовательских экспериментов. С помощью графического процессора NVIDIA K40 он может обрабатывать более 60 миллионов изображений в день.

Это означает, что он может обрабатывать 1 изображение в миллисекунду для выводов и 4 изображения в миллисекунду для обучения. Аппаратное обеспечение и последние библиотеки также стали быстрее, что делает его одной из самых быстрых утилит convnet. Caffe используется в прототипах стартапов, академических исследовательских проектах и крупных промышленных приложениях в области речи, зрения и мультимедиа. У него большое сообщество на GitHub и группа Caffe-users.

Neural Designer

Если вы хотите создавать приложения для ИИ без создания блок-схем и кодирования, Neural Designer поможет вам. Это понятная и удобная платформа для ИИ, машинного обучения и глубокого обучения.

Эта платформа ИИ специализируется на мощной технологии нейронных сетей ML, которую можно использовать для распознавания закономерностей, обнаружения взаимосвязей и прогнозирования тенденций на основе анализа данных. Ее модели выполняют аппроксимацию выходных данных в качестве входных функций и присваивают шаблонам категории, помогая вам извлечь из данных всю их ценность. Neural Designer - одна из самых быстрых ML-платформ, позволяющая экономить время на обучение моделей, а ее высокопроизводительные вычисления повышают вашу производительность. Она используется в различных отраслях промышленности, таких как машиностроение, энергетика, экология, банковское дело, розничная торговля, медицина и т. д.

Например, он используется для моделирования гидродинамики яхт и прогнозирования их характеристик на основе скорости и итсионов.  Он также используется при проектировании бетона с высочайшими свойствами и их точной оценке. Более 20 тысяч государственных учреждений, университетов и инновационных компаний используют Neural Designer для поддержки своих усилий в области искусственного интеллекта, включая Intel, Сиднейский университет, Gentera, Golomt Bank и другие.

Keras

Используйте простую, но надежную и гибкую платформу глубокого обучения Keras для создания приложений искусственного интеллекта. Этот API предназначен для использования людьми, а не машинами. Он использует лучшие практики для снижения когнитивной нагрузки и предлагает простые и последовательные API.

Keras предоставляет понятные сообщения об ошибках, чтобы вы могли вовремя принять меры, а также снижает частоту действий пользователя, необходимых для типичных случаев использования. Кроме того, она предлагает обширные руководства для разработчиков и документацию.

Keras входит в пятерку лучших команд-победителей на Kaggle и является одним из самых используемых фреймворков для глубокого обучения. Его используют такие организации, как NASA, NIH, CERN и другие научные учреждения по всему миру. 

Более того, Keras может облегчить процесс проведения новых экспериментов и дать вам уверенность в том, что вы сможете опробовать все новые и новые идеи, чтобы выиграть гонку у своих конкурентов. Он предлагает высокоуровневые удобства для ускорения циклов экспериментов.

Keras построен на базе знаменитого фреймворка TensorFlow 2 и является промышленным фреймворком, способным с легкостью масштабироваться на большие кластеры GPU или полноценные TPU. Вы можете использовать всю мощь TensorFlow с Keras и экспортировать модели:

  • в JavaScript и запускать их прямо в браузере;
  • в TF Lite и запускать их на Android, iOS и других встроенных устройствах.

Вы также можете предоставлять свои модели Keras через веб-интерфейс. В курсе рассматриваются все этапы рабочего процесса ML: от управления данными и обучения гиперпараметров до развертывания решения Поскольку эта платформа глубокого обучения проста в использовании, она используется во многих университетах и широко рекомендуется студентам, изучающим глубокое обучение.

H2O.ai

Ускоряйте и масштабируйте результаты ИИ с большей уверенностью, если у вас есть мощь H2O.ai. Облако H2O AI Cloud обладает потенциалом для решения сложных бизнес-задач и открытия новых идей H20.ai.

Комплексная платформа автоматизированного искусственного интеллекта (auML) H2O.ai призвана изменить подход к созданию и использованию ИИ. Она позволяет легко использовать ИИ, сохраняя при этом точность, прозрачность и скорость. 

Эта платформа позволяет создавать приложения и модели искусственного интеллекта, упрощать процесс мониторинга производительности и быстрее адаптироваться к меняющимся сценариям. Кроме того, она позволяет внедрять инновации, предлагая выдающиеся решения своим клиентам с помощью интуитивно понятного AppStore, основанного на искусственном интеллекте.

H2O.ai доверяют более 20 тысяч организаций по всему миру, включая ADP, AT&T, Walgreens, Equifax, UCSF Health и другие. Он обслуживает многие отрасли, такие как финансы, страхование, маркетинг, здравоохранение, телекоммуникации, розничная торговля, производство и т. д. 

Вы получаете практический опыт работы с H2O.AI Cloud БЕСПЛАТНО в течение 90 дней.

Gensim

Gensim — отличная, но БЕСПЛАТНАЯ библиотека на Python, которая предлагает тематическое моделирование для людей. Она может обучать большие семантические модели NLP, находить связанные документы и представлять текст в виде семантического вектора.

Причина, по которой выбор Gensim может стать хорошим выбором, кроется в его возможностях, таких как невероятная скорость, независимость от платформы, потоковая обработка больших данных, открытый исходный код, готовые модели и доказанная производительность.   

Gensim - одна из самых быстрых библиотек, которые можно использовать для обучения векторных вкраплений, как на Python, так и на других языках. Ее основные алгоритмы используют прочные, распараллеленные и оптимизированные процедуры на языке C. Кроме того, она может обрабатывать большие массивы данных с помощью алгоритмов data-steamed без ограничений по объему оперативной памяти.

Более того, Gensim может работать на Windows, macOS X, Linux и других платформах, поддерживающих NumPy и Python. Это зрелая ML-библиотека с 1М+ скачиваний в неделю и 2600+ академических цитирований, которую используют тысячи университетов и компаний. Вы можете найти ее исходный код на сайте Giit, где она размещена под лицензией GNU LGPL и поддерживается сообществом разработчиков с открытым исходным кодом.

Сообщество Gensim публикует готовые к использованию модели для таких отраслей, как здравоохранение, юриспруденция и т. д., в рамках проекта Gensim-data. Вы можете быстро приступить к работе с этой системой глубокого обучения, так как она быстро устанавливается.

Apache SINGA

Apache SINGA — это библиотека для распределенного обучения ML-моделей и моделей глубокого обучения. Apache'sis Apache'sis - проект верхнего уровня, обладающий множеством удивительных функций и возможностей.

Это программное обеспечение для глубокого обучения легко устанавливается с помощью Docker, Conda, Pip и из исходного кода. Она предоставляет различные примеры моделей глубокого обучения в своем репозитории на Google Colab и GitHub. Она также поддерживает параллельное обучение данных на разных GPU на одном узле или на разных узлах.

SINGA записывает графы вычислений и автоматически реализует обратное распространение после завершения прямого распространения. Она также применяет оптимизацию памяти в классе устройств. Кроме того, SINGA поддерживает множество популярных оптимизаторов, таких как стохастический градиентный спуск, Adam, AdaGrad, RMSProp и другие.

Кроме того, SINGA позволяет разработчикам ИИ использовать модели из разных инструментов и библиотек, позволяя загружать модели в формате ONNX, а также сохранять модели, заданные через API SINGA, в формате ONNX. Кроме того, она позволяет профилировать каждый оператор, буферизованный в вычислительном графе. Программа поддерживает полуточность, что позволяет использовать меньшее количество памяти GPU, ускорить обучение, использовать более крупные сети и т. д.

SINGA обладает удобным интерфейсом и хорошо продуманным технологическим стеком, что повышает ее функциональность. Его используют многие компании и организации по всему миру, включая Secureage Technology, NetEase, SGH SG, NUH SG, yzBigData и другие.

PyTorch

PyTorch — это ML-фреймворк с открытым исходным кодом, который может ускорить ваши процессы, начиная с создания прототипа исследования и заканчивая развертыванием на производстве. Он готов к производству, используя TorchScript для создания моделей, основанных на желании и графах.

Распределенный бэкенд Torch обеспечивает масштабируемую оптимизацию производительности и распределенное обучение в исследованиях и на производстве. Вы получите богатый набор библиотек и инструментов, таких как Captum, skorch, PyTorch Geometric и т. д., для поддержки вашего процесса разработки в области НЛП, компьютерного зрения и т. д.

Кроме того, PyTorch совместим с основными облачными сервисами, такими как AWS, GCP, Alibaba Cloud, Azure и т. д., что обеспечивает легкое масштабирование и удобство разработки. Вы можете легко начать работу с PyTorch, выбрав поддерживаемый менеджер пакетов, например Anaconda, выбрав свои предпочтения и выполнив команду install. 

Этот популярный фреймворк используется университетами и компаниями по всему миру, включая Salesforce, Стэнфордский университет, Amazon Advertising и другие.

MATLAB

Еще одна отличная платформа — MATLAB от MathWorks. Миллионы ученых, инженеров и студентов используют эту платформу для анализа данных, создания моделей и разработки алгоритмов.  

MATLAB представляет собой среду рабочего стола, оптимизированную для итеративных процессов проектирования и анализа, с языком программирования, непосредственно выражающим математику массивов и матриц. Кроме того, в нее входит редактор Live Editor для создания сценариев, объединяющих код, форматированный текст и вывод в виде исполняемого блокнота.

Кроме того, инструментарий MATLAB полностью документирован, профессионально создан и тщательно протестирован. Его приложения позволяют визуализировать работу различных алгоритмов с данными и выполнять итерации до получения желаемых результатов. Затем автоматически генерируется программа MATLAB для автоматизации или создания вашей работы.

Вы можете масштабировать проанализированную работу с помощью нескольких незначительных модификаций кода, не переписывая его и не изучая программирование больших данных. Возможности MATLAB включают:

  • Анализ данных: моделирование, изучение и анализ данных.
  • Графика: исследование и визуализация данных
  • Программирование: создание скриптов, классов и функций
  • Создание приложений: создание веб-приложений и приложений для настольных компьютеров
  • Интерфейсы внешних языков: использование MATLAB с Java, Python, Fortran, C/C++ и т.д.
  • Аппаратное обеспечение: подключите его к любому оборудованию и работайте
  • Параллельные вычисления: выполняйте крупномасштабные вычисления и моделирование параллельно с многоядерными настольными компьютерами, облаками, графическими процессорами и кластерами.
  • Развертывание: развертывайте свои сборки в Интернете и на рабочем столе и делитесь своими программами.
  • Облако: запуск MATLAB в облаке: от MathWorks Cloud до различных публичных облаков, таких как Azure и AWS.

Кроме того, вы можете автоматически конвертировать алгоритмы MATLAB в HDL, CUDA и C/C++ и запускать их на встраиваемых процессах или ASIC/FPGA. Вы также можете интегрировать его с Simulink, поддерживающим проектирование на основе моделей, и затем использовать MATLAB в обработке изображений, компьютерном зрении, системах управления, предиктивном обслуживании, робототехнике, обработке сигналов, беспроводной связи, тестировании, измерениях и т. д.

TensorFlow

TensorFlow — это комплексная платформа для машинного обучения с открытым исходным кодом. Она предлагает обширную и гибкую коллекцию инструментов, ресурсов сообщества и библиотек, чтобы помочь исследователям и разработчикам легко создавать и развертывать приложения на базе ML.

Вы можете использовать интуитивно понятные и высокоуровневые API, такие как Keras, с возможностью быстрого внедрения для разработки и обучения ML-моделей, а также их простой итерации и отладки. Вы можете развертывать ML-модели в локальной сети, в браузере, на устройстве или в облаке, не заботясь об используемом языке программирования. TensorFlow имеет простую архитектуру, позволяющую превращать ваши идеи в полноценные модели и быстро публиковать их. Он предлагает простые инструкции, которые помогут вам решить типичные проблемы ML.

Это программное обеспечение для глубокого обучения используется предприятиями и разработчиками для решения реальных сложных задач, таких как выявление респираторных заболеваний, доступ к информации о правах человека и т. д. Такие компании, как Airbnb, Coca-Cola, Google, Intel, Twitter, GE Healthcare и другие, используют TensorFlow для создания инноваций.

Chainer

Следующий интуитивно понятный, мощный и гибкий фреймворк Chainer для нейронных сетей позволяет преодолеть разрыв между реализациями и алгоритмами глубокого обучения. Он поддерживает вычисления на CUDA и требует совсем немного кода для использования GPU, а также позволяет легко работать на разных GPU.

Chainer поддерживает несколько сетевых архитектур, таких как feed-forward nets, recursive nets, convnets и recurrent nets, наряду с per-batch архитектурой. Его прямые вычисления включают операторы потока управления Python с возможностью обратного распространения, что делает код легким для отладки и интуитивно понятным.

Mipar

Mipar также является хорошим программным обеспечением для глубокого обучения. Она позволяет отслеживать особенности на новых изображениях и использовать сохраненные трассировки для распознавания закономерностей и получения глубоких знаний. Вы также можете запускать свои модели на новых изображениях, чтобы обнаружить сложные особенности. Некоторые из примеров использования - обнаружение зерен, глубокое обучение, обнаружение клеток стомы и многое другое. Mipar предлагает БЕСПЛАТНУЮ пробную версию, чтобы понять, как она работает.

В итоге

Глубокое обучение способно быстро и точно удовлетворить потребности нынешнего технологически подкованного поколения, предлагая такие решения, как распознавание речи, предиктивная аналитика, анализ данных и т. д.

Поэтому используйте программное обеспечение для глубокого обучения, как описано выше, и используйте его преимущества и возможности для внедрения инноваций.

Ссылка
скопирована
Получите бесплатные уроки на наших курсах
Все курсы
icon strelka icons icons

узнай больше на курсе

Python программист с нуля
Стань разработчиком на одном из самых популярных языков программирования - Python
Подробнее о курсе
Java-разработчик с нуля
Освойте backend-разработку и программирование на Java, фреймворки Spring и Maven, работу с базами данных и API
Подробнее о курсе
C# разработчик с нуля
На курсе ты освоишь основы программирования на C#, включая синтаксис, объектно-ориентированное программирование и асинхронное программирование.
Подробнее о курсе
Фронтенд-разработчик с нуля
Погрузитесь в мир веб-разработки, освоив основные инструменты работы: HTML, CSS, JavaScript
Подробнее о курсе
Разработка приложений на Flutter и Dart
Научись создавать кроссплатформенные приложения на Flutter, освой язык Dart
Подробнее о курсе
Автоматизированное тестирование на Python
Изучите автоматизацию тестирования на Python чтобы стать востребованным специалистом
Подробнее о курсе
Еще по теме:
img
SQL или NoSQL, вот в чём вопрос! И как раз с этим вопросом мы поможем сегодня разобраться. Что использовать в каких случаях, где есть какие преимущества и как возможно использовать их все вместе.
img
Вебхуки позволяют различным системам обмениваться данными в реальном времени. В этой статье мы разберём, что такое вебхук, как он работает, где и зачем его использовать, а также как настроить.
img
Redis — один из самых популярных инструментов для хранения данных. В статье разбираем, что такое Redis и как его можно использовать.
img
Маска подсети помогает определить, какие устройства находятся в одной сети, а какие – за её пределами. В этой статье разберём, что такое маска подсети, зачем она нужна и как её использовать.
img
Деплой (развертывание) приложения — это этап разработки, на котором приложение размещается и запускается на сервере. Это позволяет начать его использование. В статье разберемся, как это происходит.
Весенние скидки
30%
50%
60%
До конца акции: 30 дней 24 : 59 : 59