По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
232 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6, но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation). Все про NAT за 10 минут Что такое NAT Сети обычно проектируются с использованием частных IP адресов . Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16. Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес. И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей. Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес. Маршрутизатор NAT обычно работает на границе Stub-сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети. Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес. Терминология NAT В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям. При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим. NAT включает в себя четыре типа адресов: Внутренний локальный адрес (Inside local address); Внутренний глобальный адрес (Inside global address); Внешний местный адрес (Outside local address); Внешний глобальный адрес (Outside global address); При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом: Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT; Внешний адрес (Outside address) - адрес устройства назначения; Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети; Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети; Рассмотрим это на примере схемы. На рисунке ПК имеет внутренний локальный (Inside local) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local) адрес ПК транслируется в 208.141.16.5 (inside global). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4. Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами. Термины, inside и outside, объединены с терминами local и global, чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам. На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону. Внутренний локальный адрес (Inside local address) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес. Внутренний глобальный адрес (Inside global address) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address) на внутренний глобальный адрес (Inside global address). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5. Внешний глобальный адрес (Outside global address) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы. Внешний локальный адрес (Outside local address) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4 Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address) на 208.141.16.5. (Inside global address). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК. Типы NAT Существует три типа трансляции NAT: Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами; Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами; Port Address Translation (PAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload; Static NAT Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Статическая NAT таблица выглядит так:   Dynamic NAT Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Динамическая NAT таблица выглядит так: Port Address Translation (PAT) PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT. С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP, оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты. Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы. Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет. Адрес источника (Source Address) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP. Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный. В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535. Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов. То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста. Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора. А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID. ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4. Преимущества и недостатки NAT NAT предоставляет множество преимуществ, в том числе: NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов; NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений; NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов; NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы; Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем: Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP. NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени; Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT; Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок; Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования; Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата; Мы разобрали основные принципы работы NAT. Хотите больше? Прочитайте нашу статью по настройке NAT на оборудовании Cisco .
img
В данной статье рассмотрим ещё один полезный модуль из базового функционала FreePBX 13 - Set CallerID. Данный модуль позволяет влиять на идентификатор вызывающего абонента (CID- СallerID) в рамках процесса установления вызова. Например, если у вас несколько провайдеров по-разному отдают CallerID, в данном модуле можно привести их к общему виду для корректного отображения в CDR или добавить к определенным входящим звонкам уникальный префикс. Пошаговое видео Настройка модуля Set CID Перейдём к настройке. Традиционно, для всех примеров, будем использовать FreePBX версии 13. Для того, чтобы попасть в модуль Set CallerID, с главной страницы, переходим по следующему пути: Applications -> Set CallerID. По умолчанию, данная вкладка пустая, нажимаем на кнопку Add Откроется следующее окно добавления нового CID, в котором необходимо заполнить следующие пункты. Рассмотрим подробнее каждый из пунктов: Description - Предлагается ввести описательное название нового CID, которое поможет определить его назначение. Например: “Sales CID” CallerID Name - Здесь настраивается на что будет заменено имя звонящего (caller ID name). Если предполагается изменение текущего имени, то необходимо включить соответствующие переменные. Если же оставить данное поле пустым, то имя звонящего останется пустым. CallerID Number - Здесь настраивается на что будет заменён номер звонящего (caller ID number). Если предполагается изменение текущего номера, то необходимо включить соответствующие переменные. Если же оставить данное поле пустым, то номер звонящего останется пустым. Destination - Здесь выбирается назначение для продолжения звонка. Звонок будет перенаправлен по данному назначению с новыми именем и номером (CallerID Name/ Number) Пример модификации Caller ID Name Давайте рассмотрим несколько примеров, чтобы понять, как работает данный модуль, а заодно и принципы работы с переменными. Допустим, мы хотим добавить некий префикс к номерам, которые маршрутизируются с нашего IVR. Мы знаем, что на нашем IVR настроен маршрут для соединения с отделом продаж по клавише “3” и хотим, чтобы у всех звонков, отправленных по данному маршруту был префикс “Sales” перед номером. Для этого, сначала создаём новый шаблон в модуле. В поле Description пишем “Sales CID” В поле CallerID Name пишем “Sales:” перед ${CALLERID(name)}, это действие и добавляет необходимый префикс. Поле CallerID Number оставляем без изменений Наконец, в поле Destination, выбираем назначение для данного шаблона – внутренний номер менеджера по продажам (7771 Sales Manager) Не забываем нажимать Submit и Apply Config Далее, отправляемся в модуль IVR и настраиваем соответствующее правило. Готово, теперь все абоненты, попавшие на IVR и нажавшие клавишу “3” на телефоне, попадут на менеджера по продажам, но их номера на дисплее телефона менеджера, будут иметь префикс “Sales”, так менеджер поймёт, что звонок поступил с IVR. Если Вы хотите подробнее ознакомиться с возможностями модуля IVR, прочитайте нашу соответствующую статью о настройке модуля IVR во FreePBX 13. Пример модификации Caller ID Number Рассмотрим другой пример. Допустим, наш провайдер отдаёт нам callerID в формате 8ХХХХХХХХХХ. Но звонить в город мы должны через префикс “9”. Если нам придёт звонок с номера 8ХХХХХХХХХХ, мы должны будем сначала набрать “9”, чтобы дозвониться. Данную задачу можно решить с помощью модуля Set CallerID. Создадим новый шаблон. В поле Description пишем “Outbound Prefix 9” Поле CallerID Name оставляем без изменений В CallerID Number Наконец, в поле Destination, выбираем назначение для данного шаблона, например ринг-группа - (4543 Managers) Готово, теперь, при поступлении внешнего звонка на ринг-группу Managers, к номеру звонящего автоматически будет добавлен необходимый префикс “9”, таким образом, все участники из ринг-группы, смогут очень просто сразу вызвать абонента заново. Если Вы хотите побольше узнать о группах вызова, прочитайте нашу соответствующую статью о настройке модуля Ring Groups во FreePBX 13. Синтаксис Обобщим все вышесказанное и сведем в таблицу принципы формирования переменных: Пример Описание ${переменная:n} убирает одну цифру спереди. Например, если звонок приходит вам с Caller ID Number +74951234567, то запись вида ${CALLERID(num):1} преобразует его в 74951234567 ${переменная:-n} тоже самое, только цифры буду удаляться с конца. Например, при записи ${CALLERID(num):-2} номер +74951234567 будет преобразован в +749512345 ${переменная:s:n} Данную запись следуют интерпретировать так: начиная с символа s удалить n символов. Например, запись вида ${CALLERID(num):3:2} преобразует номер +74951234567 в +741234567
img
База данных временных рядов, она же Time Series Database (TSDB), оптимизирована для меток времени или данных временных рядов. Данные временных рядов - это средние измерения или события, которые прослежены, собраны, или объединены в течение определенного времени. Это могут быть данные, собранные из контрольных сигналов датчиков движения, метрики JVM из java-приложений, данные рыночной торговли, сетевые данные, ответы API, время безотказной работы процесса и т.д. Базы данных временных рядов полностью настраиваются с данными временных меток, которые индексируются и эффективно записываются таким образом, что можно вставить данные временных рядов. Эти данные временных рядов можно запрашивать гораздо быстрее, чем из реляционной базы данных или базы данных NoSQL. В последнее время она приобрела большую популярность. А почему нет? Это замечательный инструмент для мониторинга бизнеса и ИТ-операций. Хорошая новость в том, что есть множество вариантов выбора, и большинство из них - с открытым исходным кодом. 1. InfluxDB InfluxDB является одной из самых популярных баз данных временных рядов среди DevOps, которая написана в Go. InfluxDB была разработана с самого начала, с целью обеспечить высокомасштабируемый механизм приема и хранения данных. Он очень эффективен при сборе, хранении, запросе, визуализации и выполнении действий с потоками данных временных рядов, событий и метрик в реальном времени. Она предоставляет политики понижающей дискретизации и хранения данных для поддержания высокой ценности, высокой точности данных в памяти и более низкой ценности данных на диске. Он построен на основе "облачной" технологии для обеспечения масштабируемости в нескольких топологиях развертывания, включая локальную облачную среду и гибридные среды. InfluxDB - это решение с открытым исходным кодом и готовое для развертывания на предприятии. Он использует InfluxQL, который очень похож на язык SQL, для взаимодействия с данными. Последняя версия содержит агенты, панели мониторинга, запросы и задачи в наборе инструментов. Это универсальный инструмент для панели мониторинга, визуализации и оповещения. Особенности Высокая производительность для данных временных рядов с высоким уровнем приема и запросов в реальном времени InfluxQL для взаимодействия с данными, которые схож с языком запросов SQL. Основной компонент стека TICK (Telegraf, InfluxDB, Chronograf и Kapacitor) Поддержка плагинов для таких протоколов, как collectd, Graphite, OpenTSDB для приема данных Может обрабатывать миллионы точек данных всего за 1 секунду Политики хранения для автоматического удаления устаревших данных Так как это открытый исходный код, вы можете загрузить и поднять его на своем сервере. Тем не менее, они предлагают InfluxDB Cloud на AWS, Azure и GCP. 2. Prometheus Prometheus - это решение для мониторинга с открытым исходным кодом, используемое для анализа данных метрик и отправки необходимых предупреждений. Он имеет локальную базу данных временных рядов на диске, которая хранит данные в пользовательском формате на диске. Модель данных Prometheus многомерна на основе временных рядов; он сохраняет все данные в виде потоков значений с временной меткой. Это очень полезно при работе с полностью числовым временным рядом. Сбор данных о микросервисах и их запрос - одна из сильных сторон Prometheus. Он плотно интегрируется с Grafana для визуализации. Особенности Имеет многомерную модель, в которой использовались пары "имя метрики" и "ключ-значение" (метки) PromQL используется для запроса данных временных рядов для создания таблиц, оповещений и графиков Adhoc Использует режим HTTP pull для сбора данных временных рядов Использует промежуточный шлюз для передачи временных рядов У Prometheus есть сотни экспортеров для экспорта данных из Windows, Linux, Java, базы данных, API, веб-сайта, серверного оборудования, PHP, обмена сообщениями и т.д. 3. TimescaleDB TimesterDB - реляционная база данных с открытым исходным кодом, которая делает SQL масштабируемым для данных временных рядов. Эта база данных построена на PostgreSQL. Он предлагает два продукта - первый вариант - это бесплатное издание, которое вы можете установить на свой сервер. Второй вариант - TimesterDB Cloud, где вы получаете полностью размещенную и управляемую инфраструктуру в облаке для вашего развертывания. Он может использоваться для мониторинга DevOps, понимания показателей приложений, отслеживания данных с устройств Интернета вещей, понимания финансовых данных и т.д. Можно измерять журналы, события Kubernetes, метрики Prometheus и даже пользовательские метрики. Владельцы продуктов могут использовать его для понимания производительности продукта с течением времени, что помогает принимать стратегические решения для роста. Особенности Выполнение запросов 10-100X быстрее, чем PostgreSQL, MongoDB Возможность горизонтального масштабирования до петабайт и записи миллионов точек данных в секунду Очень похож на PostgreSQL, что облегчает работу с ним разработчиков и администраторов. Сочетание функций реляционных баз данных и баз данных временных рядов для создания мощных приложений. Встроенные алгоритмы и функции производительности для защиты от больших затрат. 4. Graphite Graphite - это универсальное решение для хранения и эффективной визуализации данных в реальном времени. Графит может выполнять две функции: хранить данные временных рядов и визуализировать графики по требованию. Но она не собирает данные для вас; для этого можно использовать такие инструменты, как collectd, Ganglia, Sensu, telegraf и т. д. Он имеет три компонента - Carbon, Whisper и Graphite-Web. Carbon получает данные временных рядов, агрегирует их и сохраняет на диске. Whisper - это хранилище базы данных временных рядов, в котором хранятся данные. Graphite-Web - это интерфейс для создания панелей мониторинга и визуализации данных. Особенности Graphite: Формат метрик, в котором передаются данные, прост. Комплексный API для визуализации данных и создания диаграмм, панелей мониторинга, графиков Предоставляет богатый набор статистических библиотек и функций преобразования Связывает несколько функций визуализации для создания целевого запроса. 5. QuestDB QuestDB - это реляционная база данных, ориентированная на столбцы, которая может выполнять анализ данных временных рядов в реальном времени. Он работает с SQL и некоторыми расширениями для создания реляционной модели для данных временных рядов. QuestDB был создан с нуля и не имеет зависимостей, повышающих его производительность. QuestDB поддерживает реляционные соединения и соединения временных рядов, что помогает сопоставлять данные. Самый простой способ начать работу с QuestDB - развернуть его внутри контейнера Docker. Функции QuestDB: Интерактивная консоль для импорта данных с помощью перетаскивания и запроса Поддерживается работа как на облачных технологиях (AWS, Azure, GCP), так и локально. Поддерживает такие корпоративные возможности, как работа с Active Directory, обеспечение высокой доступности, корпоративная безопасность, кластеризация Предоставляет информацию в режиме реального времени с использованием оперативной и прогнозируемой аналитики 6. AWS Timestream Как AWS может отсутствовать в списке? AWS Timestream - это служба базы данных временных рядов без сервера, которая является быстрой и масштабируемой. Он используется главным образом для приложений Интернета вещей, чтобы хранить триллионы событий в день и в 1000 раз быстрее при 1/10 стоимости реляционных баз данных. С помощью специализированного механизма запросов можно одновременно запрашивать последние данные и архивные сохраненные данные. Она предоставляет множество встроенных функций для анализа данных временных рядов для поиска полезной информации. Функции Amazon Timestream: Нет серверов для управления или экземпляров для выделения; все обрабатывается автоматически. Экономичный, платите только за то, что вы принимаете, храните и запрашиваете. Способен ежедневно принимать триллионы событий без снижения производительности Встроенная аналитика со стандартными функциями SQL, интерполяции и сглаживания для определения тенденций, шаблонов и аномалий Все данные шифруются с помощью системы управления ключами AWS (KMS) с ключами управления клиента (CMK) 7. OpenTSDB OpenTSDB - масштабируемая база данных временных рядов, написанная поверх HBase. Он способен хранить триллионы точек данных при миллионах операций записи в секунду. Данные в OpenTSDB можно хранить вечно с его исходной меткой времени и точным значением, чтобы не потерять данные. Имеет демон временных рядов (TSD) и утилиты командной строки. Демон временных рядов отвечает за хранение данных в HBase или их извлечение из нее. С TSD можно общаться с помощью HTTP API, telnet или простого встроенного графического интерфейса. Для сбора данных из различных источников в OpenTSDB нужны такие инструменты, как flume, collectd, vacuumetrix и т.д. Функции OpenTSBD: Может агрегировать, фильтровать, понижать метрики на огромной скорости Хранение и запись данных с точностью до миллисекунды Работает на Hadoop и HBase и легко масштабируется, добавляя узлы в кластер Использование графического интерфейса для создания графиков Заключение Поскольку в наши дни используются все больше и больше IoT или умных устройств, на веб-сайтах с миллионами событий в день в реальном времени генерируется огромный трафик, увеличивается торговля на рынке, что и привело к созданию база данных временных рядов! Базы данных временных рядов являются обязательным элементом производственного стека для мониторинга. Большая часть вышеперечисленной базы данных временных рядов доступна для бесплатного использования, поэтому получите облачную виртуальную машину и попробуйте посмотреть, что подойдет именно вам.
ОСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59