По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Стандарт 802.11 поддерживал только один способ защиты данных, передаваемых по WI-FI, от перехвата- это WEP. В прошлых статьях мы узнали, что WEP является устаревшим средством защиты данных и его использование не рекомендовано. Какие же еще существуют способы шифрования и защиты данных при передаче по Wi-Fi? TKIP В свое время WEP применялся на беспроводном оборудовании клиента и точки доступа, но он был сильно уязвим. На смену WEP пришел протокол целостности временного ключа (Temporal Key Integrity Protocol (TKIP). TKIP добавляет следующие функции безопасности на устаревшем оборудовании и при использовании базового шифрования WEP: MIC: этот эффективный алгоритм шифрования добавляет хэш-значение к каждому кадру в качестве проверки целостности сообщения, чтобы предотвратить подделку. Time stamp: метка времени добавляется в MIC, чтобы предотвратить атаки, которые пытаются повторно использовать или заменить кадры, которые уже были отправлены. MAC-адрес отправителя: MIC также включает MAC-адрес отправителя в качестве доказательства источника кадра. Счетчик последовательностей TKIP: эта функция обеспечивает запись кадров, отправленных по уникальному MAC-адресу, чтобы предотвратить использование повторение кадров в качестве атаки. Алгоритм смешивания ключей: этот алгоритм вычисляет уникальный 128-битный WEP-ключ для каждого кадра. Более длинный вектор инициализации (IV): размер IV удваивается с 24 до 48 бит, что делает практически невозможным перебор всех ключей WEP путем использования метода вычисления brute-force. До 2012 года протокол шифрования TKIP был достаточно безопасным методом защиты данных. Он применялся до тех пор, пока не появился стандарт 802.11i. Злоумышленники не оставили в стороне протокол TKIP. Было создано много алгоритмов атак против TKIP, поэтому его тоже следует избегать, если есть более лучший метод защиты данных в беспроводных сетях. CCMP Протокол Counter/CBC-MAC (CCMP) считается более безопасным, чем TKIP. CCMP состоит из двух алгоритмов: AES шифрование в режиме счетчика Cipher Block Chaining Message Authentication Code (CBC-MAC) используется в качестве проверки целостности сообщения (MIC) Расширенный стандарт шифрования (AES)- это текущий алгоритм шифрования, принятый Национальным институтом стандартов и технологий США (NIST) и правительством США и широко используемый во всем мире. Другими словами, AES является открытым, общедоступным и представляет собой самый безопасный метод шифрования на данный момент времени. Для использования протокола защиты CCMP, необходимо убедиться, что устройства и точки доступа поддерживают режим счетчика AES и CBC-MAC на аппаратном уровне. CCMP нельзя использовать на устаревших устройствах, поддерживающих только WEP или TKIP. Как определить, что устройство поддерживает CCMP? Ищите обозначение WPA2. GCMP Протокол Galois/Counter Mode Protocol (GCMP)- это надежный набор шифрования, который является более безопасным и эффективным, чем CCMP. GCMP состоит из двух алгоритмов: AES шифрование в режиме счетчика Galois Message Authentication Code (GMAC) используется в качестве проверки целостности сообщения (MIC) GCMP используется в WPA3. WPA, WPA2 и WPA3 На сегодняшний день существует три метода шифрования WPA: WPA, WPA2 и WPA3. Беспроводные технологии тестируются в официальных испытательных лабораториях в соответствии со строгими критериями. Альянс Wi-Fi представил первое поколение сертифицированную WPA (известную просто как WPA, а не WPA1), в то время как поправка IEEE 802.11i для совершенных методов обеспечения безопасности все еще разрабатывалась. WPA была основана на части стандарта 802.11i и включала аутентификацию 802.1x, TKIP и метод динамического управления ключами шифрования. Как только 802.11i был ратифицирован и опубликован, WiFi Alliance включил его в полном объеме в свою сертификацию WPA Version 2 (WPA2). WPA2 основан на превосходных алгоритмах AES CCMP, а не на устаревшем TKIP от WPA. Очевидно, что WPA2 был разработан взамен WPA. В 2018 году Альянс Wi-Fi представил версию WPA3 в качестве замены WPA2, добавив несколько важных и превосходных механизмов безопасности. WPA3 использует более сильное шифрование AES с помощью протокола Galois/Counter Mode Protocol (GCMP). Он также использует защищенные кадры управления (PMF) для защиты кадров управления 802.11 между точкой доступа и клиентами, чтобы предотвратить несанкционированный доступ и нарушение нормальной работы BSS. Обратите внимание, что все три версии WPA поддерживают два режима проверки подлинности клиента: предварительный общий ключ (PSK) или 802.1x, в зависимости от масштаба развертывания. Они также известны как личный режим и режим предприятия, соответственно.
img
Предыдущая статья из цикла про соответствие пакетов в IP ACL. Обратные маски, такие как значения dotted-decimal number (DDN), фактически представляют собой 32-разрядное двоичное число. Как 32-разрядное число, маска WC фактически направляет логику маршрутизатора бит за битом. Короче говоря, бит маски WC (wildcard), равный 0, означает, что сравнение должно выполняться как обычно, но двоичный 1 означает, что бит является подстановочным знаком и может быть проигнорирован при сравнении чисел. Кстати, наш калькулятор подсетей показывает и сам считает WC (wildcard) маску. Вы можете игнорировать двоичную маску WC. Почему? Что ж, обычно мы хотим сопоставить диапазон адресов, которые можно легко идентифицировать по номеру подсети и маске, будь то реальная подсеть или сводный маршрут, который группирует подсети вместе. Если вы можете указать диапазон адресов с помощью номера подсети и маски, вы можете найти числа для использования в вашем ACL с помощью простой десятичной математики, как описано далее. Если вы действительно хотите знать логику двоичной маски, возьмите два номера DDN, которые ACL будет сравнивать (один из команды access-list, а другой из заголовка пакета), и преобразуйте оба в двоичный код. Затем также преобразуйте маску WC в двоичную. Сравните первые два двоичных числа бит за битом, но также игнорируйте любые биты, для которых маска WC случайно перечисляет двоичный 1, потому что это говорит вам игнорировать бит. Если все биты, которые вы проверили, равны, это совпадение! Нахождения правильной обратной маски, соответствующей подсети Во многих случаях ACL должен соответствовать всем хостам в определенной подсети. Чтобы соответствовать подсети с помощью ACL, вы можете использовать следующие сочетания: Используйте номер подсети в качестве исходного значения в команде access-list. Используйте обратную маску, полученную путем вычитания маски подсети из 255.255.255.255. Например, для подсети 172.16.8.0 255.255.252.0 используйте номер подсети (172.16.8.0) в качестве параметра адреса, а затем выполните следующие вычисления, чтобы найти обратную маску: Продолжая этот пример, завершенная команда для той же подсети будет следующей: access-list 1 permit 172.16.8.0 0.0.3.255 Соответствие любому/всем адресам В некоторых случаях вам может понадобиться одна команда ACL для сопоставления всех без исключения пакетов, которые достигают этой точки в ACL. Во-первых, вы должны знать (простой) способ сопоставить все пакеты с помощью ключевого слова any. Что еще более важно, вам нужно подумать о том, когда сопоставить все без исключения пакеты. Во-первых, чтобы сопоставить все пакеты с помощью команды ACL, просто используйте ключевое слово any для адреса. Например, чтобы разрешить все пакеты: access-list 1 permit any Итак, когда и где вы должны использовать такую команду? Помните, что все ACL Cisco IP заканчиваются неявным отрицанием любой концепции в конце каждого ACL. То есть, если маршрутизатор сравнивает пакет с ACL, и пакет не соответствует ни одному из настроенных операторов, маршрутизатор отбрасывает пакет. Хотите переопределить это поведение по умолчанию? Настроить permit any в конце ACL. Вы также можете явно настроить команду для запрета всего трафика (например, access-list 1 deny any) в конце ACL. Почему, когда та же самая логика уже находится в конце ACL? Что ж, ACL показывает счетчики списка для количества пакетов, соответствующих каждой команде в ACL, но нет счетчика для этого не явного запрета любой концепции в конце ACL. Итак, если вы хотите видеть счетчики количества пакетов, совпадающих с логикой deny any в конце ACL, настройте явное deny any. Внедрение стандартных IP ACL В этой лекции уже представлены все этапы настройки по частям. Далее суммируются все эти части в единую конфигурацию. Эта конфигурация основана на команде access-list, общий синтаксис которой повторяется здесь для справки: access-list access-list-number {deny | permit} source [source-wildcard] Этап 1. Спланируйте локацию (маршрутизатор и интерфейс) и направление (внутрь или наружу) на этом интерфейсе: Стандартные списки ACL должны быть размещены рядом с местом назначения пакетов, чтобы они случайно не отбрасывали пакеты, которые не следует отбрасывать. Поскольку стандартные списки ACL могут соответствовать только исходному IP-адресу пакета, идентифицируйте исходные IP-адреса пакетов по мере их прохождения в направлении, которое проверяет ACL. Этап 2. Настройте одну или несколько команд глобальной конфигурации списка доступа для создания ACL, учитывая следующее: Список просматривается последовательно с использованием логики первого совпадения. Действие по умолчанию, если пакет не соответствует ни одной из команд списка доступа, - отклонить (отбросить) пакет. Этап 3. Включите ACL на выбранном интерфейсе маршрутизатора в правильном направлении, используя подкоманду  ip access-group number {in | out}. Далее рассмотрим несколько примеров. Стандартный нумерованный список ACL, пример 1 В первом примере показана конфигурация для тех же требований, что и на рисунках 4 и 5. Итак, требования для этого ACL следующие: Включите входящий ACL на интерфейсе R2 S0/0/1. Разрешить пакеты, приходящие от хоста A. Запретить пакеты, приходящие от других хостов в подсети хоста A. Разрешить пакеты, приходящие с любого другого адреса в сети класса A 10.0.0.0. В исходном примере ничего не говорится о том, что делать по умолчанию, поэтому просто запретите весь другой трафик. В примере 1 показана завершенная правильная конфигурация, начиная с процесса настройки, за которым следует вывод команды show running-config. R2# configure terminal Enter configuration commands, one per line. End with CNTL/Z. R2(config)# access-list 1 permit 10.1.1.1 R2(config)# access-list 1 deny 10.1.1.0 0.0.0.255 R2(config)# access-list 1 permit 10.0.0.0 0.255.255.255 R2(config)# interface S0/0/1 R2(config-if)# ip access-group 1 in R2(config-if)# ^Z R2# show running-config ! Lines omitted for brevity access-list 1 permit 10.1.1.1 access-list 1 deny 10.1.1.0 0.0.0.255 access-list 1 permit 10.0.0.0 0.255.255.255 Во-первых, обратите внимание на процесс настройки в верхней части примера. Обратите внимание, что команда access-list не изменяет командную строку из приглашения режима глобальной конфигурации, поскольку команда access-list является командой глобальной конфигурации. Затем сравните это с выводом команды show running-config: детали идентичны по сравнению с командами, которые были добавлены в режиме конфигурации. Наконец, не забудьте указать ip access-group 1 в команде под интерфейсом R2 S0/0/1, который включает логику ACL (как локацию, так и направление). В примере 2 перечислены некоторые выходные данные маршрутизатора R2, которые показывают информацию об этом ACL. Команда show ip access-lists выводит подробную информацию только о списках ACL IPv4, а команда show access-lists перечисляет сведения о списках ACL IPv4, а также о любых других типах ACL, настроенных в настоящее время, например, списки ACL IPv6. Вывод этих команд показывает два примечания. В первой строке вывода в этом случае указывается тип (стандарт) и номер. Если существовало более одного ACL, вы бы увидели несколько разделов вывода, по одной на каждый ACL, каждая со строкой заголовка, подобной этой. Затем эти команды перечисляют счетчики пакетов для количества пакетов, которые маршрутизатор сопоставил с каждой командой. Например, на данный момент 107 пакетов соответствуют первой строке в ACL. Наконец, в конце примера перечислены выходные данные команды show ip interface. Эта команда перечисляет, среди многих других элементов, номер или имя любого IP ACL, включенного на интерфейсе для подкоманды интерфейса ip access-group. Стандартный нумерованный список ACL, пример 2 Для второго примера используйте рисунок 8 и представьте, что ваш начальник в спешке дает вам некоторые требования в холле. Сначала он говорит вам, что хочет фильтровать пакеты, идущие от серверов справа к клиентам слева. Затем он говорит, что хочет, чтобы вы разрешили доступ для хостов A, B и других хостов в той же подсети к серверу S1, но запретили доступ к этому серверу хостам в подсети хоста C. Затем он сообщает вам, что, кроме того, хостам в подсети хоста A следует отказать в доступе к серверу S2, но хостам в подсети хоста C должен быть разрешен доступ к серверу S2 - и все это путем фильтрации пакетов, идущих только справа налево. Затем он говорит вам поместить входящий ACL на интерфейс F0/0 R2. Если вы просмотрите все запросы начальника, требования могут быть сокращены до следующего: Включите входящий ACL на интерфейсе F0/0 R2. Разрешить пакеты от сервера S1, идущие к хостам в подсети A. Запретить пакетам с сервера S1 идти к хостам в подсети C. Разрешить пакетам с сервера S2 идти к хостам в подсети C. Запретить пакетам с сервера S2 идти к хостам в подсети A. Не было комментариев о том, что делать по умолчанию; используйте подразумеваемое отклонение всего по умолчанию. Как оказалось, вы не можете сделать все, что просил ваш начальник, с помощью стандартного ACL. Например, рассмотрим очевидную команду для требования номер 2: access-list 2 permit 10.2.2.1. Это разрешает весь трафик с исходным IP-адресом 10.2.2.1 (сервер S1). Следующее требование просит вас фильтровать (отклонять) пакеты, полученные с того же IP-адреса! Даже если вы добавите другую команду, которая проверяет исходный IP-адрес 10.2.2.1, маршрутизатор никогда не доберется до него, потому что маршрутизаторы используют логику первого совпадения при поиске в ACL. Вы не можете проверить и IP-адрес назначения, и исходный IP-адрес, потому что стандартные ACL не могут проверить IP-адрес назначения. Чтобы решить эту проблему, вам следует переосмыслить проблему и изменить правила. В реальной жизни вы, вероятно, вместо этого использовали бы расширенный ACL, который позволяет вам проверять как исходный, так и целевой IP-адрес. Представьте себе, что ваш начальник позволяет вам изменять требования, чтобы попрактиковаться в другом стандартном ACL. Во-первых, вы будете использовать два исходящих ACL, оба на маршрутизаторе R1. Каждый ACL разрешает пересылку трафика с одного сервера в эту подключенную локальную сеть со следующими измененными требованиями: Используя исходящий ACL на интерфейсе F0 / 0 маршрутизатора R1, разрешите пакеты с сервера S1 и запретите все остальные пакеты. Используя исходящий ACL на интерфейсе F0 / 1 маршрутизатора R1, разрешите пакеты с сервера S2 и запретите все остальные пакеты. Пример 3 показывает конфигурацию, которая удовлетворяет этим требованиям. access-list 2 remark This ACL permits server S1 traffic to host A's subnet access-list 2 permit 10.2.2.1 ! access-list 3 remark This ACL permits server S2 traffic to host C's subnet access-list 3 permit 10.2.2.2 ! interface F0/0 ip access-group 2 out ! interface F0/1 ip access-group 3 out Как показано в примере, решение с номером ACL 2 разрешает весь трафик с сервера S1, при этом эта логика включена для пакетов, выходящих из интерфейса F0/0 маршрутизатора R1. Весь другой трафик будет отброшен из-за подразумеваемого запрета all в конце ACL. Кроме того, ACL 3 разрешает трафик от сервера S2, которому затем разрешается выходить из интерфейса F0/1 маршрутизатора R1. Также обратите внимание, что решение показывает использование параметра примечания списка доступа, который позволяет оставить текстовую документацию, которая остается в ACL. Когда маршрутизаторы применяют ACL для фильтрации пакетов в исходящем направлении, как показано в Примере 2, маршрутизатор проверяет пакеты, которые он направляет, по списку ACL. Однако маршрутизатор не фильтрует пакеты, которые сам маршрутизатор создает с помощью исходящего ACL. Примеры таких пакетов включают сообщения протокола маршрутизации и пакеты, отправленные командами ping и traceroute на этом маршрутизаторе. Советы по устранению неполадок и проверке Устранение неполадок в списках ACL IPv4 требует внимания к деталям. В частности, вы должны быть готовы посмотреть адрес и обратную маску и с уверенностью предсказать адреса, соответствующие этим двум комбинированным параметрам. Во-первых, вы можете определить, соответствует ли маршрутизатор пакетам или нет, с помощью пары инструментов. Пример 2 уже показал, что IOS хранит статистику о пакетах, соответствующих каждой строке ACL. Вдобавок, если вы добавите ключевое слово log в конец команды access-list, IOS затем выдает сообщения журнала со случайной статистикой совпадений с этой конкретной строкой ACL. И статистика, и сообщения журнала могут помочь решить, какая строка в ACL соответствует пакету. Например, в примере 4 показана обновленная версия ACL 2 из примера 3, на этот раз с добавленным ключевым словом log. Внизу примера затем показано типичное сообщение журнала, в котором показано результирующее совпадение на основе пакета с исходным IP-адресом 10.2.2.1 (в соответствии с ACL) с адресом назначения 10.1.1.1. R1# show running-config ! lines removed for brevity access-list 2 remark This ACL permits server S1 traffic to host A's subnet access-list 2 permit 10.2.2.1 log ! interface F0/0 ip access-group 2 out R1# Feb 4 18:30:24.082: %SEC-6-IPACCESSLOGNP: list 2 permitted 0 10.2.2.1 -> 10.1.1.1, 1 Packet Когда вы впервые устраняете неисправности на ACL, прежде чем вдаваться в подробности логики сопоставления, подумайте, как об интерфейсе, на котором включен ACL, так и о направлении потока пакетов. Иногда логика сопоставления идеальна, но ACL был включен на неправильном интерфейсе или в неправильном направлении, чтобы соответствовать пакетам, настроенным для ACL. Например, на рисунке 9 повторяется тот же ACL, показанный ранее на рисунке 7. Первая строка этого ACL соответствует конкретному адресу хоста 10.1.1.1. Если этот ACL существует на маршрутизаторе R2, размещение этого ACL в качестве входящего ACL на интерфейсе S0/0/1 R2 может работать, потому что пакеты, отправленные хостом 10.1.1.1 - в левой части рисунка - могут входить в интерфейс S0/0/1 маршрутизатора R2. Однако, если R2 включает ACL 1 на своем интерфейсе F0/0 для входящих пакетов, ACL никогда не будет соответствовать пакету с исходным IP-адресом 10.1.1.1, потому что пакеты, отправленные хостом 10.1.1.1, никогда не войдут в этот интерфейс. Пакеты, отправленные 10.1.1.1, будут выходить из интерфейса R2 F0/0, но никогда не попадут в него только из-за топологии сети.
img
Данная тема важна так как позволяет изменять приоритет процессов в операционной системе Linux. Иногда возникает такая ситуация, что необходимо изменить приоритет процессов, какой - то процесс сделать более приоритетным, отдав побольше ресурсов, а какой-то менее приоритетным забрав часть ресурсов сервера. В данной теме мы рассмотрим следующие вопросы: Научимся определять приоритеты процессов; Рассмотрим, как запускать программы с повышенным приоритетом или с пониженным; Посмотрим, как изменять приоритет запущенных программы. В Linux любой процесс может иметь приоритет от -20 до +19. Во FreeBSD до +20. Максимальным приоритетом считается, тот процесс у которого минимальное число. Т.е. максимальный по приоритету процесс будет иметь число - 20, а минимальный -19 соответственно. Поэтому задача с приоритетом -20 будет выполняться в первую очередь с максимум ресурсов и наоборот задача с +19 будет выполняться в последнюю очередь и минимум ресурсов. Linux для установки приоритетов использует такую программу nice и renice. Для того, чтобы рассмотреть данную тему воспользуемся командой ps aux. Запуская данную команду мы получаем все сведения о запущенных процессах на данном сервере. Так же мы можем увидеть от какого пользователя данный процесс запущен. Теперь мы используем другой набор ключей для команды ps. Чтоб получить нам интересующий вывод данных используем команду ps alx. Мы можем видеть, что получили немного другую информацию. Появилась колонка, промаркированная "NI" и колонка "PRI". Мы можем видеть, что верхние процессы выполняются с nice 0, т.е. это авторитет по умолчанию, который присваивается если не сказано иного. Возьмем другой вариант команды ps, с другими ключами. ps -eo user,pid,pcpu,nice,comm -e - ключ показывать все -o - output т.е какая информация нужна, далее в команде перечисляется необходимая информация (колонки) После ввода данной команды, мы видим, что столбцов стало меньше. Только то, что мы запрашивали, пользователь, ID процесса, загрузка CPU, приоритет и какая команда. Для того, чтобы понять, что такое приоритет, попробуем использовать команду sleep, которая позволяет, остановить операционную систему на указанное число секунд. sleep 10000 & И выведем команду ps -eo user,pid,pcpu,nice,comm | grep sleep, используя pipline сортируем по названию процесса sleep. Вот, что у нас вышло. Видим наш запущенный процесс. Далее запустим какую-нибудь задачу с максимальным приоритетом. Это полезно если мы хотим запустить, какой ни будь серьезный процесс, чтобы он получил максимальный приоритет. Как пример, срочная переиндексация базы данных на сервере с максимальным приоритетом или программку, которая будет собирать информацию о системе с минимальным приоритетом. nice sleep 60000 И мы можем увидеть, что появился наш процесс со значение 10 по умолчанию. Десять - это приоритет по умолчанию, и он ниже, чем ноль. Чем выше значение, тем приоритет ниже. Т.е. получается если мы запускаем с командой niсе, то процесс запускает с приоритетом ниже в 2 раза, чем просто если бы запустили. Мы можем принудительно завершить процессы. killall sleep. Попробуем запустить задачу с минимальным приоритетом. Для этого воспользуемся параметром. Команда будет выглядеть следующим образом. nice -n 19 sleep 6000 Как мы видим все получилось. Процесс запущен с минимальным приоритетом. Аналогично запускается процесс с максимальным приоритетом. nice -n -20 sleep 6000 Тут нужно пояснить, что задачи с наивысшим приоритетом, могут пользователи только с правами root. Если мы бы попытались сделать из-под обычного пользователя, то ничего у нас бы не вышло. killall sleep, еще раз завершим принудительно процессы. Запустим еще раз процесс с наименьшим приоритетом. nice -n 19 sleep 60000. Теперь изменим приоритет текущего процесса. Для этого есть следующая команда: renice 5 -p 416802 - т.е 5 - новый приоритет , 416802 - id процесса. Как мы видим все успешно поменялось. Вот таким образом мы можем динамически менять приоритеты. В Операционной системе Windows мы так же можем менять приоритеты в менеджере задач, но если там пять уровней, то в Linux их получается 40. Мы можем так же менять приоритеты определенному пользователю. renice приоритет -u пользователь Данные команды, нам позволяют гибко управлять распределением ресурсов на нашем сервере.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59