По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Архитектуры х64 и х86 являются одними из наиболее широко используемых типов архитектур системы команд (АСК или ISA – Instruction Set Architecture), созданными Intel и AMD. ISA определяет поведение машинного кода и то, как программное обеспечение управляет процессором. ISA – это аппаратный и программный интерфейс, определяющий, что и как может делать ЦП. Прочитав эту статью, вы узнаете разницу между архитектурами х64 и х86. Что из себя представляет архитектура х86? х86 – это тип ISA для компьютерных процессоров, разработанный Intel в 1978 году. Архитектура х86 основана на микропроцессоре Intel 8086 (отсюда и название) и его модификации 8088. Изначально это была 16-битная система команд для 16-битных процессоров, а позже она выросла до 32-битной системы команд. Количество битов показывает, сколько информации ЦП может обработать за цикл. Так, например, 32-разрядный ЦП передает 32 бита данных за тактовый цикл. Благодаря своей способности работать практически на любом компьютере, от обычных ноутбуков до домашних ПК и серверов, архитектура х86 стала достаточно популярной среди многих производителей микропроцессоров. Наиболее значительным ограничением архитектуры х86 является то, то она может обрабатывать максимум 4096 Мб ОЗУ. Поскольку общее количество поддерживаемых комбинаций равно 232 (4 294 967 295), то 32-разрядный процессор имеет 4,29 миллиарда ячеек памяти. В каждой ячейке хранится 1 байт данных, а в сумме это примерно 4 Гб доступной памяти. На сегодняшний день термин х86 обозначает любой 32-разрядный процессор, способный выполнять систему команд х86. Что из себя представляет архитектура х64? х64 (сокращение от х86-64) – это архитектура системы команд, расширенная до 64-битного кода. В ее основе лежит архитектура х86. Впервые она была выпущена в 2000 году. Она представляла два режима работы – 64-битный режим и режим совместимости, который позволяет пользователям запускать 16-битные и 32-битные приложения. Поскольку вся система команд х86 остается в х64, то старые исполняемые файлы работают практически без потери производительности. Архитектура х64 поддерживает гораздо больший объем виртуальной и физической памяти, чем архитектура х86. Это позволяет приложениям хранить в памяти большие объемы данных. Кроме того, х64 увеличивает количество регистров общего назначения до 16, обеспечивая тем самым дополнительную оптимизацию использования и функциональность. Архитектура х64 может использовать в общей сложности 264 байта, что соответствует 16 миллиардам гигабайт (16 эксабайт) памяти. Гораздо большее использование ресурсов делает эту архитектуру пригодной для обеспечения работы суперкомпьютеров и машин, которым требуется доступ к огромным ресурсам. Архитектура х64 позволяет ЦР обрабатывать 64 бита данных за тактовый цикл, что намного больше, чем может себе позволить архитектура х86. х86 VS х64 Несмотря на то, что оба эти типа архитектуры основаны на 32-битной системе команд, некоторые ключевые отличия позволяют их использовать для разных целей. Основное различие между ними заключается в количестве данных, которые они могут обрабатывать за каждый тактовый цикл, и в ширине регистра процессора. Процессор сохраняет часто используемые данные в регистре для быстрого доступа. 32-разрядный процессор на архитектуре х86 имеет 32-битные регистры, а 64-разрядный процессор – 64-битные регистры. Таким образом, х64 позволяет ЦП хранить больше данных и быстрее к ним обращаться. Ширина регистра также определяет объем памяти, который может использовать компьютер. В таблице ниже продемонстрированы основные различия между системами команд архитектур х86 и х64. ISA х86 х64 Выпущена Выпущена в 1978 году Выпущена в 2000 году Создатель Intel AMD Основа Основана на процессоре Intel 8086 Создана как расширение архитектуры х86 Количество бит 32-битная архитектура 64-битная архитектура Адресное пространство 4 ГБ 16 ЭБ Лимит ОЗУ 4 ГБ (фактически доступно 3,2 ГБ) 16 миллиардов ГБ Скорость Медленная и менее мощная в сравнении с х64 Позволяет быстро обрабатывать большие наборы целых чисел; быстрее, чем х86 Передача данных Поддерживает параллельную передачу только 32 бит через 32-битную шину за один заход Поддерживает параллельную передачу больших фрагментов данных через 64-битную шину данных Хранилище Использует больше регистров для разделения и хранения данных Хранит большие объемы данных с меньшим количеством регистров Поддержка приложения Нет поддержки 64-битных приложений и программ. Поддерживает как 64-битные, так и 32-битные приложения и программы. Поддержка ОС Windows XP, Vista, 7, 8, Linux Windows XP Professional, Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS   Функции Каждая архитектура системы команд имеет функции, которые ее определяют и дают некоторые преимущества в тех или иных вариантах использования. Следующие списки иллюстрируют функции х64 и х86: х86 Использует сложную архитектуру со сложным набором команд (CISC-архитектуру). Сложные команды требуют выполнения нескольких циклов. х86 имеет больше доступных регистров, но меньше памяти. Разработана с меньшим количеством конвейеров обработки запросов, но может обрабатывать сложные адреса. Производительность системы оптимизируется с помощью аппаратного подхода – х86 использует физические компоненты памяти для компенсации нехватки памяти. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). х64 Имеет возможность обработки 64-битных целых чисел с преемственной совместимость для 32-битных приложений. (Теоретическое) виртуальное адресное пространство составляет 264 (16 эксабайт). Однако на сегодняшний день в реальной практике используется лишь небольшая часть из теоретического диапазона в 16 эксабайт – около 128 ТБ. х64 обрабатывает большие файлы, отображая весь файл в адресное пространство процессора. Быстрее, чем х86, благодаря более быстрой параллельной обработке, 64-битной памяти и шине данных, а также регистрам большего размера. Поддерживает одновременную работу с большими файлами в нескольких адресных пространствах. Кроме того, х64 одновременно эмулирует две задачи х86 и обеспечивает более быструю работу, чем х86. Загружает команды более эффективно. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). Применения Из-за того, что эти две архитектуры имеют различные функции и имеют различия в доступе к ресурсам, скорости и вычислительной мощности, каждая архитектура используется для различных целей: х86 Многие компьютеры по всему миру по-прежнему основаны на операционных системах и процессорах х86. Используется для игровых консолей. Подсистемы облачных вычислений по-прежнему используют архитектуру х86. Старые приложения и программы обычно работают на 32-битной архитектуре. Лучше подходит для эмуляции. 32-битный формат по-прежнему более предпочтителен при производстве аудио из-за возможности совмещения со старой аудиотехникой. х64 Все большее число ПК используют 64-разрядные процессоры и операционные системы на основе архитектуры х64. Все современные мобильные процессоры используют архитектуру х64. Используется для обеспечения работы суперкомпьютеров. Используется в игровых консолях. Технологии виртуализации основаны на архитектуре х64. Она лучше подходит для новых игровых движков, так как она быстрее и обеспечивает лучшую производительность. Ограничения И хотя обе ISA имеют какие-то ограничения, х64 – все же более новый и более совершенный тип архитектуры. Ниже приведен список ограничений для обоих типов архитектур: х86 Имеет ограниченный пул адресуемой памяти. Скорость обработки ниже в сравнении с архитектурой х64. Фирмы-поставщики больше не разрабатывают приложения для 32-битных операционных систем. Для современных процессоров требуется 64-битная ОС. Все устройства в системе (видеокарты, BIOS и т.д.) совместно используют доступную оперативную память, оставляя еще меньше памяти для ОС и приложений. х64 Она не работает на устаревших устройствах. Ее высокая производительность и скорость, как правило, потребляют больше энергии. Маловероятно, что 64-разрядные драйверы будут доступны для старых систем и оборудования. Некоторое 32-разрядное программное обеспечения не полностью совместимо с 64-разрядной архитектурой. Как проверить, на какой архитектуре работает ваш компьютер – х64 или х86? Если вы купили ПК в последние 10-15 лет, то он с большой долей вероятности работает на архитектуре х64. Для того, чтобы проверить, является ли ваш компьютер 32-разрядным или 64-разрядным, выполните следующие действия: Шаг 1: Откройте настройки В Windows 10 нажмите на клавишу Windows и щелкните значок «Settings» («Настройки»). Шаг 2: Откройте параметры системы В меню настроек выберите пункт «System» («Система»). Шаг 3: Найдите характеристики устройства Выберите пункт «About» («О программе») на левой панели и в разделе «Device specifications» («Характеристики устройства») найдите тип системы: В приведенном выше примере система представляет собой 64-разрядную операционную систему с процессором на базе архитектуры х64. Через командную строку это можно сделать быстрее: wmic OS get OSArchitecture Ну а для Linux нужно выполнить команду: uname -m Что лучше – х86 или х64? Несмотря на то, что и у х86, и у х64 есть свои преимущества, будущее не терпит ограничений, а это значит, что х86 практически перестанет использоваться или будет полностью выведена из использования. К тому же, х64 намного быстрее, может выделять больше оперативной памяти и имеет возможности параллельной обработки через 64-битную шину данных. Это делает ее лучшим вариантом при выборе между двумя типами архитектуры. Если стоит выбор, какую ОП установить, то всегда лучше отдать предпочтение в пользу 64-разрядной ОС, поскольку она может запустить как 32-разрядное, так и 64-разрядное программное обеспечение. А вот ОС на базе х86 работает только с 32-разрядным программным обеспечением. В общем и целом, х64 гораздо более эффективна, чем х86, поскольку использует всю установленную оперативную память, предоставляет больше места на жестком диске, имеет более высокую скорости шины и общую лучшую производительность. Заключение Данная статья показала различия между архитектурами системы команд х86 и х64, а также описала их функции, возможные применения и ограничения. Примите во внимание все особенности каждой ISA и сделайте выбор в пользу наиболее вам подходящей.
img
Ошибочно можно подумать, что на вопрос «Какой язык программирования самый быстрый?» можно легко ответить. На самом же деле, когда речь идет о скорости и о программировании, то здесь возникает множество технических нюансов. Для начала определим - быстрее не значит лучше, это зависит от варианта использования. (Но мы к этому еще вернемся.) Здесь мы подробно рассмотрим, что делает язык программирования «быстрым», почему это так важно и как вы можете начать изучать некоторые из самых быстрых языков программирования. Что делает язык программирования быстрым? Ключевая особенность языка программирования, которая определяет его скорость, заключается в том, компилируемый он или интерпретируемый. Компилируемые языки, такие как Lisp, C++, Go, Rust и Swift, должны быть преобразованы в машинный код (см. ассемблер ниже), который уже непосредственно взаимодействует с аппаратной составляющей. Интерпретируемые языки, такие как Python, JavaScript, Ruby и PHP, работают путем преобразования исходного кода в машинный код налету. Поскольку этот процесс преобразования происходит непосредственно во время выполнения кода и увеличивает нагрузку, то можно сделать вывод, что интерпретируемые языки работают медленнее, чем компилируемые. Есть несколько других факторов, определяющих скорость языка. Возьмите, например, Java и C#. Эти языки являются и компилируемыми, и интерпретируемыми. Однако вместо компиляции в код на языке ассемблера они компилируются в байт-код. Скомпилированный байт-код интерпретируется для запуска на виртуальной машине, оптимизированной для прямого взаимодействия с аппаратной составляющей. Байт-код – это своего рода язык ассемблера для виртуальной машины. Такой процесс делает эти языки более быстрыми, чем, например, JavaScript, который преобразует текстовый исходный код непосредственно в машинный. Другой фактор – это статическая или динамическая типизация. Языки со статической типизацией определяют типы всех переменных при компиляции языка, а языки с динамической типизацией проверяют тип переменных во время выполнения кода. Эта проверка типов в режиме реального времени несет за собой некоторые затраты вычислительных ресурсов, что делает языки с динамической типизацией медленнее, чем языки со статической типизацией. Какие языки программирования самые быстрые? Самый быстрый язык программирования должен напрямую взаимодействовать с машиной. Давайте рассмотрим некоторые из самых быстрых языков, с которыми вы можете столкнуться, а также посмотрим для чего они используются. Assembly (ассемблер) На самом деле язык ассемблера не является каким-то одним конкретным языком. Это просто название, которое дают любому низкоуровневому языку программирования, который напрямую взаимодействует с аппаратным обеспечением компьютера. Это означает, что ассемблер для вашего ноутбука будет отличаться от ассемблера для вашего мобильного телефона, поскольку у них разные процессоры, требующие разных инструкций. Обычно ассемблер используют только разработчики, которые работают непосредственно с аппаратной составляющей или которые создают языки программирования. Lisp Lisp – это один из первых языков программирования. Ему уже более 60 лет. Было множество разновидностей этого языка, и многие другие языки программирования использовали некоторый набор функциональных возможностей, характерный для Lisp. Clojure, например, - это современный диалект Lisp, реализованный для виртуальной машины Java. Однако Lisp находится в этом списке не благодаря Clojure. Common Lisp компилируется непосредственно на языке ассемблера, а это означает, что код, который вы пишете на Lisp, будет ассемблерным при запуске в качестве исполняемого файла. Lisp все еще используется, но чаще вы можете его встретить именно как Clojure, а не Common Lisp. C/C++ C и C++ также являются компилируемыми языками. С – это простой процедурный язык программирования, который был разработан в начале 1970-х годов и который широко используется и по сей день (в основном во встроенных приложениях из-за его скорости и небольшого размера). С++ - это язык, расширяющий С и добавляющий объектно-ориентированные функции. Именно из-за этого он заменил С во многих приложениях. С++ используется в тех случаях, когда важна производительность, например, при разработке 3D-видеоигр или операционных систем. Go Go, также известный как Golang, - это язык программирования, разработанный Google. Он компилируется в ассемблер, как и большинство других языков, упомянутых здесь, но у него гораздо больше современных функций, более простой синтаксис и на нем легче писать (в сравнении с давним лидером среди быстрых языков С/С++). Golang часто используется в сетевых серверах и распределенных системах, где его скорость может повысить производительность этих систем. Rust Rust – еще один компилируемый язык программирования, который также является более безопасной альтернативой С/С++. Он ориентирован на скорость, безопасность памяти и параллельную обработку. Он часто используется в игровых движках, компонентах браузера и движках моделирования виртуальной реальности, где скорость в приоритете. C# C# - это язык, подобный Java. Он сначала компилируется в байт-код, а затем интерпретируется виртуальной машиной. Это делает его похожим на интерпретируемый язык, но при этом добавляет скорости. C#, разработанный Microsoft, прост в освоении и содержит множество сторонних библиотек, которые упрощают и ускоряют разработку. Он часто используется для создания настольных приложений, видеоигр и веб-сервисов. Java Java компилируется в байт-код, который затем интерпретируется виртуальной машиной Java (JVM). Это один из первых языков, использующий такую процедуру, поэтому он быстро стал (и остается) таким популярным. Использование виртуальной машины подразумевает, что приложение Java может быть перемещено из одной операционной системы в другую без изменения кода, если для второй операционной системы доступна версия JVM. Эта кроссплатформенная функция в сочетании со скоростью делает Java популярным языком программирования для многих прикладных задач, включая веб-разработку, разработку настольных приложений, разработку игр, разработку мобильных приложений и т.д. Swift Swift – это современный язык программирования, разработанный Apple, который компилируется в ассемблер. Он был разработан с целью замены старого языка Objective-C. Он используется для разработки ваших любимых продуктов Apple, таких как Apple TV, Apple Watch, iPhone и iPad. Swift на сегодняшний день – самый популярный язык разработки для Mac OS X и iOS. Но при этом он также является кроссплатформенным и начинает использоваться и в других прикладных задачах. Не всегда дело в скорости Хотя скорость и важна при выборе языка программирования, но есть множество других факторов, о которых тоже не стоит забывать. При написании кода бывают ситуации, когда другие характеристики языка программирования могут оказаться важнее скорости. В конце концов, если бы скорость была в приоритете для каждого проекта, то языки программирования, не вошедшие в этот список, не применялись бы вовсе, и мы бы писали код на ассемблере. Так или иначе, правда в том, что некоторые из самых популярных языков программирования даже не вошли в этот список. Скорость относительна, и во многих случаях программа на С++ будет в 10 раз быстрее программы на Python, но в данном случае это не имеет значения. В конце концов, если операция завершится за 0,001 секунды, а не за 0,01 секунды, вы действительно почувствуете разницу? Однако разница будет заметна, если вам придется выполнять одну и ту же операцию тысячи раз в цикле. В большинстве случаев скорость разработки куда важнее скорости выполнения. Медленную программу можно масштабировать для повышения ее производительности, выделяя на нее больше ресурсов, а вычислительные ресурсы намного дешевле, чем оплата времени разработки для написания кода на более сложном для написания языке низкого уровня. Более медленные языки программирования популярны, потому что на них легче писать, они имеют множество доступных сторонних библиотек и могут быть быстрее развернуты. Все это ускоряет процесс разработки. Хотя скорость языка программирования не всегда является самой важной характеристикой, у нее все же есть определенные преимущества.
img
Одним из полезнейших инструментов в повседневной работе современного бизнеса является интеграция CRM – системы и офисной телефонии. Это позволяет совершать исходящие звонки по нажатию на номер клиента, иметь всю историю звонков заказчика в CRM, прослушивать его аудиозапись разговоров, автоматически направлять вызов на ответственного менеджера и конечно, видеть карточку клиента при входящем звонке. Сегодня мы хотим рассказать об интеграции облачной Битрикс24 и IP – АТС Asterisk. Как это работает? Настройки рассмотрим на базе решения «Простые звонки». После обращения в компанию, на почту придет ссылку на модуль для Asterisk и инструкция по настройке. Архитектура работы решения следующая: на офисной IP – АТС Asterisk развертывается модуль коннектора, с указанием необходимых настроек. В свою очередь, на стороне Битрикс24 устанавливается приложение и расширение для браузера, в котором указываются реквизиты для подключения к коннектору на IP – АТС. Данное решение работает только в браузере GoogleChrome Настройка Asterisk Переходим к установке модуля АТС – коннектора на стороне Asterisk: Содержимое архива prostiezvonki извлекаем в директорию Asterisk /var/www/html/admin/modules/ и переходим дальше по файловой структуре в директорию /var/www/html/admin/modules/prostiezvonki/module Если вы используете 32 битную систему, то скопируйте файлл libProtocolLib.so в директорию /usr/lib и cel_prostiezvonki.so в директорию /usr/lib/asterisk/modules. Если у вас установлена 64 битная система, то загрузите их в /usr/lib64 и /usr/lib64/asterisk/modules соответственно. Файл из архива cel.conf переместите в директорию /etc/asterisk После настроек, переходим в интерфейс FreePBX. Перейдите во вкладку Admin → Module Admin. Находим модуль «Простые звонки» и производим его установку. После этого, приступаем к настройке: переходи во вкладку Admin → Module Admin: Рассмотрим опции настройки модуля: Общая настройка модуля Пароль - пароль, с помощью которого, Битрикс24 будет подключаться к АТС – коннектору. В данном примере пароль простой - P@ssw0rd Лог файл - полный путь к лог - файлу, в котором коннектор будет фиксировать детали своей работы Уровень записи лога - глубина логирования. Это значение имеет смысл менять на debug на этапе отладаки и "траблшутинга" Порт - порт, на котором АТС - коннектор будет "слушать" подключение от Битрикс24 Лицензия - лицензионный ключ, который вам прислала команда технической поддержки Размер очереди событий - параметр регламентирует размер очереди, в которой накапливается история звонков в случае отсутствия соединения между коннектором на АТС и CRM - системой Общая настройка модуля Префикс для входящих - префикс, который система будет подставлять к входящим звонкам, в момент передачи в Битрикс24 Префикс для исходящих - при использовании функции "Click - to - Call", то есть звонок по нажатию, коннектор будет подставлять префикс для исходящих вызовов Тип канала - в нашем примере мы работает по протоколу SIP Длина внутренних номеров - например, если вы используете внутреннюю нумерацию с 100 - 199, то данное значение будет равно 3 Настройка записи телефонных разговоров Внешняя директория - директория, в которой содержатся файлы системы записи. Здесь содержится внешний IP – адрес нашего маршрутизатора и проброшенный порт. Своего рода это префикс для ссылок на аудио - файл, который коннектор будет подставлять при передаче их в Битрикс24. Мы подробно расскажем о настройке этого поля далее. Настройка умной переадресации Таймаут поиска - время, в течение которого, коннектор ожидает получить номер ответственного сотрудника от Битрикс24 Таймаут ответа - время, в течение которого будет звонить телефон ответственного менеджера Для использования функции «Умная переадресация» (перевод звонка на ответственного менеджера), установите соответствующую галочку в настройках входящих маршрутов Ссылки на запись разговора в Битрикс24 Подключитесь к серверу IP – АТС Asterisk по SSH. Создадим директорию audio в корневой директории WEB – сервера /var/www/html/: [root@asterisk ~]# mkdir /var/www/html/audio После этого смонтируем папку, где хранятся файлы системы записи разговоров Asterisk в созданную директорию. Для этого, откройте файл /etc/fstab: [root@asterisk ~]# vim /etc/fstab Добавьте в файл следующую запись: /var/spool/asterisk/monitor/ /var/www/html/audio/ none rbind 0 0 Примените изменения командой mount -a Настройка Битрикс24 для работы с коннектором Приступаем к настройке Битрикс24. Для этого, переходим в раздел Приложения → Все приложения→ IP-телефония → Простые звонки. Произведите установку указанного приложения: Теперь устанавливаем расширение для браузера Google Chrome. Кликните по кнопке ниже и установите указанное расширение: Расширение для Google Chrome Переходим по пути Настройка → «Инструменты → «Расширения. Находим «Простые звонки» и нажимаем Настройки для конфигурации опций подключения к АТС – коннектору: Опции настройки: Внутренний номер телефона - ваш внутренний номер (Extension) Адрес АТС-коннектора - в нашей примере указано адрес 1.2.3.4:56789 - это внешний IP - адрес нашего маршрутизатора и проброшенный порт. То есть, при обращение на этот адрес "извне", происходит проброс на внутренний адрес 192.168.1.2:10150, где 192.168.1.2 - это IP - адрес Asterisk, а 10150 - порт, который мы ранее указывали в настройках АТС - коннектора Пароль - пароль, который мы указали в настройка АТС - коннектора Кол-во секунд для определения клиента по номеру телефона - если у вас на этапе эксплуатации не определяется клиент по известному номеру, увеличьте это значение Автоматическое создание лида - создавать ли лида, если звонок пришел с неизвестного номера Готово. Нажимаем «Сохранить и подключить». Как видно, наш коннектор находится в статусе «Подключен». Сделаем тестовый звонок: Использование нового API Bitrix24 При установленной галочке "Использование нового API Bitrix24 (бета)", как показано на скриншоте ниже, происходят изменения в работе всплывающих окон:
Осенние скидки
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59