По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье расскажем как подключить Asterisk к виртуальной АТС от Манго – Телеком на примере FreePBX 13 Теория Перед тем как мы приступим к настройке, давайте разберемся со схемой работы интеграции. Подключаться к виртуальной АТС мы будет по протоколу SIP. В интерфейсе виртуальной АТС мы создадим сотрудника и назовем его Asterisk. Вслед за этим, нам необходимо будет создать SIP учетную запись и прикрепить ее к созданному ранее сотруднику. На этом этапе у нас будет логин, пароль и домен для регистрации нашего SIP – аккаунта. Следующим этапом, мы создаем переадресацию на созданного пользователя в настройках распределения звонков. Заключительным этапом мы создаем SIP – транк на нашем Asterisk в сторону виртуальной АТС и регистрируем его. Схема работы приведена ниже: Настройка Придерживаясь созданного плана, переходим к созданию нового сотрудника на виртуальной АТС. Для этого, в разделе «Обработка звонков» выбираем пункт «Сотрудники и группы». Далее, переходим во вкладку «Список абонентов» и нажимаем на кнопку «Добавить сотрудника». Откроется форма «Новый абонент»: Шаг 1 - указываем имя для нашего сотрудника. Мы указали просто asterisk Шаг 2 - указываем внутренний номер Шаг 3 - в качестве устройства можете выбрать либо опцию «На обычный IP – телефон», либо «На софтфон (компьютер)». В динамически сформированном ниже меню выбираем «Создать новую учетную запись SIP автоматически» Шаг 4 - если у вас заведено несколько номеров на виртуальной АТС, то выберите необходимую линию – этим номером буду закрываться все исходящие вызовы с Asterisk Нажимаем на кнопку создать. На скриншоте ниже сохраните себе выделенные красным параметры: Пусть в нашем примере это будут следующие настройки: SIP ID = user11@domain.mangosip.ru Пароль = Vf5kNm7Z Теперь необходимо создать правила распределения вызова на наш Asterisk. Переходим в раздел «Настройка», выбираем меню «Обработка входящих звонков» и нажимаем на «Распределение звонков, приветствие, голосовое меню». В открывшемся пункте меню выбираем номер, звонки на который мы будем маршрутизировать Далее, создаем схему, для этого справа нажмите добавить и введите название для схемы, например, «переадресация» и затем нажмите «Активировать»: Пролистываем ниже. Создаем схему с переадресации на созданного сотрудника asterisk. У вас должно получиться вот так: Настройка FreePBX Создаем SIP – транк в нашем FreePBX. Для этого, переходим в вкладку Connectivity -> Trunks: Во вкладке sip Settings, в разделе Outgoing скопируйте конфигурацию ниже, предварительно изменив параметры логина, пароль и домена: type=friend username=user11 secret=Vf5kNm7Z host=domain.mangosip.ru dtmfmode=rfc2833 disallow=all allow=alaw&g729 fromuser=user11 fromdomain=domain.mangosip.ru canreinvite=no insecure=port,invite qualify=200 context=from-trunk canreinvite=no Во разделе Incoming скопируйте строку регистрации ниже: user11:Vf5kNm7Z@domain.mangosip.ru/4991234567 Здесь, номер 4991234567, это DID, который будет нам передавать Манго - Телеком (номер, выбранный на этапе настройки распределения вызовов). О том, как настроить маршрутизацию вызовов с помощью FreePBX читайте по ссылке ниже: Маршрутизация вызовов FreePBX 13
img
Во всем мире умные города являются неотъемлемой частью устойчивого развитие общества. Основные концепции системы "Умный город": Контроль дорожного движения; Управление муниципальным транспортом; Управление общественным транспортом; Управление парковками. Умные города гарантируют, что их граждане доберутся от точки "А" до точки "Б" максимально безопасно и эффективно. Для достижения этой цели муниципалитеты обращаются к разработке IoT (Internet of Things) и внедрению интеллектуальных транспортных решений. Интеллектуальные дорожные решения используют различные типы датчиков, а также извлекают данные GPS из смартфонов водителей для определения количества, местоположения и скорости транспортных средств. В то же время интеллектуальные светофоры, подключенные к облачной платформе управления, позволяют отслеживать время работы "зеленого света" и автоматически изменять огни в зависимости от текущей дорожной ситуации для предотвращения заторов на дороге. Примеры концепций системы "Умного города": Смарт-паркинг С помощью GPS-данных система автоматически определяет, заняты ли места для парковки или доступны, и создают карту парковки в режиме реального времени. Когда ближайшее парковочное место становится бесплатным, водители получают уведомление и используют карту на своем телефоне, чтобы найти место для парковки быстрее и проще, а не заниматься поиском парковочного места вслепую. Служебные программы Умные города позволяют гражданам экономить деньги, предоставляя им больше контроля над своими домашними коммунальными услугами. IoT обеспечивает различные подходы к использованию интеллектуальных утилит: Смарт-счетчики и выставление счетов; Выявление моделей потребления; Удаленный мониторинг. Искусственный интеллект Искусственный интеллект становится ведущим драйвером в цифровой трансформации экономики и социальной жизни. Социальная организация производства и предоставления услуг меняются. Рутинные операции выполняются роботами. Решения принимаются на основе искусственного интеллекта. С помощью него можно предотвратить управленческие ошибки и облегчить принятие решений во всех сферах городского хозяйства и управления. Преобладание цифровых документов над бумажными Реализация этой концепции позволяет городу в полной мере использовать все преимущества цифровых технологий: Оказание государственных услуг более прозрачное; Оптимизация административных процедур; Наиболее эффективное использование ресурсов. Промышленность Реализация проектов по комплексному онлайн-мониторингу промышленных объектов. Благодаря данной системе, можно контролировать состояние системы, управлять ей, а также получать статистику. Транспорт Данные от датчиков IoT могут помочь выявить закономерности того, как граждане используют транспорт. Чтобы провести более сложный анализ, интеллектуальные решения для общественного транспорта могут объединить несколько источников, таких как продажа билетов и информация о движении. Благодаря реализации данного направления можно осуществлять мониторинг транспортной инфраструктуры и мониторинг транспортных средств. Современные решения способны существенно повысить эффективность грузоперевозок, а также оптимизировать работу железнодорожных путей и дорожного покрытия, следя за температурой и влажностью. Известные уязвимости представленных систем В настоящее время происходит рост технологических возможностей, а также рост разнообразия различных электронных устройств и оборудования, используемых в автоматизированных системах управления, всё это ведет к повышению количества уязвимостей к данным системам. В добавок ко всему, процесс введения в эксплуатацию различных решений не дает стопроцентной гарантии того, что не будут допущены различные ошибки в глобальном проектировании. Это создает вероятность появления дополнительных архитектурных уязвимостей. Злоумышленники могут воспользоваться известными проблемами с безопасностью компонентов жизнеобеспечения в системах автоматизации и предпринять попытку реализации атаки. Такие действия злоумышленников могут прервать нормальную работу такого масштабного объекта, как, например, аэропорт, повлечь за собой вывод из нормальной работы системы жизнеобеспечения, блокируя систему безопасности. И, будучи незамеченными вовремя, способны привести к непоправимым последствиям. Большинство систем не защищено от попыток внедрения. Обычно все решения в области защиты систем реализуются на уровне межсетевого экрана. Но в случае с попытками атаки на столь критичные системы этого оказывается недостаточно. Роль информационной безопасности для экосистем Информационная безопасность связана с внедрением защитных мер от реализации угрозы несанкционированного доступа, что является частью управления информационными рисками и включает предотвращение или уменьшение вероятности несанкционированного доступа. Основной задачей информационной безопасности является защита конфиденциальности, целостности и доступности информации, поддержание продуктивности организации часто является важным фактором. Это привело к тому, что отрасль информационной безопасности предложила рекомендации, политики информационной безопасности и отраслевые стандарты в отношении паролей, антивирусного программного обеспечения, брандмауэров, программного обеспечения для шифрования, юридической ответственности и обеспечения безопасности, чтобы поделиться передовым опытом. Информационная безопасность достигается через структурированный процесс управления рисками, который: Определяет информацию, связанные активы и угрозы, уязвимости и последствия несанкционированного доступа; Оценивает риски; Принимает решения о том, как решать или рассматривать риски, т. е. избегать, смягчать, делиться или принимать; Отслеживает действия и вносит коррективы для решения любых новых проблем, изменений или улучшений. Типы протоколов для системы управления "Умным городом" Протоколы и стандарты связи при организации Интернета вещей можно в широком смысле разделить на две отдельные категории. Сетевые Протоколы Интернета Вещей Сетевые протоколы Интернета вещей используются для подключения устройств по сети. Это набор коммуникационных протоколов, обычно используемых через Интернет. При использовании сетевых протоколов Интернета вещей допускается сквозная передача данных в пределах сети. Рассмотрим различные сетевые протоколы: NBIoT (Narrowband Internet of Things) Узкополосный IoT или NB-IoT это стандарт беспроводной связи для Интернета вещей (IoT). NB-IoT относится к категории сетевых стандартов и протоколов маломощных глобальных сетей (LPWAN low power wide area network), позволяющих подключать устройства, которым требуются небольшие объемы данных, низкая пропускная способность и длительное время автономной работы. LoRaWan (Long Range Wide Area Network) глобальная сеть дальнего радиуса действия Это протокол для работы устройств дальнего действия с низким энергопотреблением, который обеспечивает обнаружение сигнала ниже уровня шума. LoRaWan подключает аккумуляторные устройства по беспроводной сети к интернету, как в частных, так и в глобальных сетях. Этот коммуникационный протокол в основном используется умными городами, где есть миллионы устройств, которые функционируют с малой вычислительной мощностью. Интеллектуальное уличное освещение это практический пример использования протокола LoRaWan IoT. Уличные фонари могут быть подключены к шлюзу LoRa с помощью этого протокола. Шлюз, в свою очередь, подключается к облачному приложению, которое автоматически управляет интенсивностью лампочек на основе окружающего освещения, что помогает снизить потребление энергии в дневное время. Bluetooth Bluetooth один из наиболее широко используемых протоколов для связи на короткие расстояния. Это стандартный протокол IoT для беспроводной передачи данных. Этот протокол связи является безопасным и идеально подходит для передачи данных на короткие расстояния, малой мощности, низкой стоимости и беспроводной связи между электронными устройствами. BLE (Bluetooth Low Energy) это низкоэнергетическая версия протокола Bluetooth, которая снижает энергопотребление и играет важную роль в подключении устройств Интернета вещей. ZigBee ZigBee это протокол Интернета вещей, что позволяет смарт-объекты, чтобы работать вместе. Он широко используется в домашней автоматизации. Более известный для промышленных установок, ZigBee используется с приложениями, которые поддерживают низкоскоростную передачу данных на короткие расстояния. Уличное освещение и электрические счетчики в городских районах, которые обеспечивают низкое энергопотребление, используют коммуникационный протокол ZigBee. Он также используется с системами безопасности и в умных домах и городах. Протоколы передачи данных Интернета Вещей Протоколы передачи данных IoT используются для подключения маломощных устройств Интернета вещей. Эти протоколы обеспечивают связь точка-точка с аппаратным обеспечением на стороне пользователя без какого-либо подключения к интернету. Подключение в протоколах передачи данных IoT осуществляется через проводную или сотовую сеть. К протоколам передачи данных Интернета вещей относятся: MQTT (Message Queuing Telemetry Transport) телеметрический транспорт очереди сообщений Один из наиболее предпочтительных протоколов для устройств Интернета вещей, MQTT собирает данные с различных электронных устройств и поддерживает удаленный мониторинг устройств. Это протокол подписки/публикации, который работает по протоколу TCP, что означает, что он поддерживает событийный обмен сообщениями через беспроводные сети. CoAP (Constrained Application Protocol) CoAP это протокол интернет-утилиты для функционально ограниченных гаджетов. Используя этот протокол, клиент может отправить запрос на сервер, а сервер может отправить ответ обратно клиенту по протоколу HTTP. Для облегченной реализации он использует протокол UDP (User Datagram Protocol) и сокращает использование пространства. AMQP (Advanced Message Queuing Protocol) расширенный протокол очереди сообщений AMQP это протокол уровня программного обеспечения для ориентированной на сообщения среды промежуточного программного обеспечения, обеспечивающий маршрутизацию и постановку в очередь. Он используется для надежного соединения точка-точка и поддерживает безопасный обмен данными между подключенными устройствами и облаком. AMQP состоит из трех отдельных компонентов, а именно: обмена, очереди сообщений и привязки. Все эти три компонента обеспечивают безопасный и успешный обмен сообщениями и их хранение. Это также помогает установить связь одного сообщения с другим. Протокол AMQP в основном используется в банковской отрасли. Всякий раз, когда сообщение отправляется сервером, протокол отслеживает сообщение до тех пор, пока каждое сообщение не будет доставлено предполагаемым пользователям/адресатам без сбоев. M2M (Machine-to-Machine) протокол связи между машинами Это открытый отраслевой протокол, созданный для обеспечения удаленного управления приложениями устройств Интернета вещей. Коммуникационные протоколы М2М являются экономически эффективными и используют общедоступные сети. Он создает среду, в которой две машины взаимодействуют и обмениваются данными. Этот протокол поддерживает самоконтроль машин и позволяет системам адаптироваться к изменяющимся условиям окружающей среды. Коммуникационные протоколы M2M используются для интеллектуальных домов, автоматизированной аутентификации транспортных средств, торговых автоматов и банкоматов. XMPP (eXtensible Messaging and Presence Protocol) расширяемый протокол обмена сообщениями и информацией о присутствии XMPP имеет уникальный дизайн. Он использует механизм для обмена сообщениями в режиме реального времени. XMPP является гибким и может легко интегрироваться с изменениями. XMPP работает как индикатор присутствия, показывающий состояние доступности серверов или устройств, передающих или принимающих сообщения. Помимо приложений для обмена мгновенными сообщениями, таких как Google Talk и WhatsApp, XMPP также используется в онлайн-играх, новостных сайтах и голосовом стандарте (VoIP). Протоколы Интернета вещей предлагают защищенную среду для обмена данными. Очень важно изучить потенциал таких протоколов и стандартов, так как они создают безопасную среду. Используя эти протоколы, локальные шлюзы и другие подключенные устройства могут взаимодействовать и обмениваться данными с облаком.
img
В этой серии статей мы обсуждаем темы администрирования RHEV 3.5. RHEV - это решение для виртуализации Red Hat Enterprise Virtualization, основанное на проекте oVirt (open-source Virtualization project). Red Hat Enterprise Virtualization - это комплексное решение управления виртуализацией для виртуализированных серверов и настольных компьютеров. В этой статье мы обсуждаем среду RHEV и базовое использование. RHEV состоит из двух основных компонентов, таких как гипервизор и система управления. RHEV-H - это гипервизор платформы RHEV, который используется для размещения виртуальных машин. В основе его лежит KVM и RHEL. RHEVM - это система управления средой, которая управляет гипервизорами среды. Он также используется для создания, перемещения, изменения и управления виртуальными машинами, размещенными на гипервизорах. Особенности RHEV 3.5 Это решение с открытым исходным кодом основывается на ядре Red Hat Enterprise Linux с технологией гипервизора виртуальной машины на основе ядра (KVM). Поддерживаемый предел до 160 логических процессоров и 4 ТБ для каждого узла и до 160 виртуальных процессоров и до 4 ТБ памяти на виртуальную машину. Интеграция с OpenStack. Поддерживаются ежедневные задачи, такие как автономное перемещение, высокая доступность, кластеризация и т. д. Необходимые условия для использования Мы будем работать на двух узлах: "гипервизоры" и "хосты" с одним менеджером и одним узлом хранения iscsi. Потом мы добавим один IPA-и DNS-сервер в нашу среду. Мы планируем два сценария использования: Физическое использование - реальная среда, поэтому вам понадобится как минимум три или более физических машины. Виртуальное использование - тестовые лаборатории/среда, поэтому вам понадобится одна физическая машина с большими ресурсами, например, процессор i3 или i5 с оперативной памятью 8G или 12G, в дополнение к другому программному обеспечению виртуализации, например Vmware workstation. В этой серии статей мы работаем над вторым сценарием: Physical Host OS : Fedora 21 x86_64 with kernel 3.18.9-200 RHEV-M machine OS : RHEL6.6 x86_64 RHEV-H machines hypervisor : RHEV-H 6.6 Virtualization software : Vmware workstation 11 Virtual Network interface : vmnet3 Network : 11.0.0.0/24 Physical Host IP : 11.0.0.1 RHEV-M machine : 11.0.0.3 В будущих статьях мы добавим дополнительные компоненты, такие как ноды хранения и IPA-сервер, чтобы сделать среду максимально масштабируемой.Для RHEV-M позаботьтесь заранее об: RHEL / CentOS6. 6 x86_64 new минимальная установка (чистая установка). Убедитесь, что система обновлена. Выделен статический IP-адрес. Машине назначено имя и она доступна по FQDN, например Обновите файл файл /etc/hosts с именем хоста и IP-адресом (убедитесь, что имя хоста резолвится). Минимальные требования - 4G для памяти и 25 GB для жесткого диска. Mozilla Firefox 37 - это рекомендуемый браузер для доступа к WUI. Установка Red Hat Enterprise Virtualization Manager 3.5 1. Чтобы получить доступ к пакетам и обновлениям RHEV, вы должны получить бесплатную 60-дневную пробную подписку с официального сайта red hat, используя корпоративную почту отсюда: Red Hat Enterprise Virtualization 60-дневный пробный период Примечние: после 60-дневного периода ваша виртуалка будет работать в нормальном режиме, однако без доступа к обновлениям системы, если таковые появятся. 2. Затем зарегистрируйте свою машину в RHN (Red Hat Network). 3. Далее установим пакет rhevm и его зависимости с помощью yum. [root@rhevm ~]# yum install rhevm 4. Теперь пришло время настроить rhevm, запустив команду "engine-setup", которая проверит состояние rhevm и любые доступные обновления, делая это в интерактивном режиме и задавая вам вопросы следующего характера: Вопросы, связанные с устанавливаемым продуктом Пакеты Конфигурация сети Конфигурация базы данных Конфигурация движка oVirt Конфигурация PKI Конфигурация Apache Конфигурация системы Предварительный просмотр конфигурации Подсказка: предлагаемые значения конфигурации по умолчанию указаны в квадратных скобках; если предлагаемое значение является приемлемым для вас (а чаще всего так и бывает), нажмите Enter, чтобы принять это значение.Выполните команду и понеслась! [root@rhevm ~]# engine-setup 1. Параметры продукта Первое, о чем инсталлятор спросит вас, это установить и настроить движок на том же хосте. В рамках пробной инсталляции оставьте значение по умолчанию (да). Если вы хотите, чтобы прокси-сервер WebSocket был настроен этом же хосте, оставьте значение по умолчанию (да). 2. Пакеты Скрипт проверит наличие любых обновлений. На этом этапе не требуется никакого пользовательского ввода. 3. Конфигурация сети Далее скрипт автоматически настроит iptables. Мы пока не используем DNS, поэтому убедитесь, что имя хоста (как мы и говорили ранее) резолвится, дополнительно проверим /etc/hosts, как мы делали это ранее. 4. Конфигурация базы данных Базой данных по умолчанию для RHEV3.5 является PostgreSQL. У вас есть возможность настроить его на том же хосте или на внешнем. В статье мы будем использовать локальный вариант и пусть скрипт настроит его автоматически. 5. Конфигурация движка oVirt В этом разделе укажите пароль администратора и application mode для вашей инсталляции. Мы укажем Both: 6. Конфигурация PKI RHEVM использует сертификаты для секьюрного подключения к хосту. Здесь указываем organization name для сертификата: 7. Конфигурация Apache Для веб-интерфейса пользователя RHEVM, необходимо установить и настроить веб-сервер Apache. Инсталлятор дает возможность выполнить автоматическую настройку апач - сервера, ее мы и выберем: 8. Конфигурация системы Среда RHEV содержит библиотеку ISO - файлов, в которой вы можете хранить множество ISO ОС - то есть это просто набор исо - файлов (образов) нужных операционных систем. Эта ISO библиотека называется также доменом ISO и этот домен является общей сетевой шарой. Эта шара будет находиться на том же хосте RHEVM и вы смонтировать его вручную или позволить скрипту настроить его автоматически. 9. Предварительный просмотр конфигурации В этом разделе вы увидите все предыдущие настройки и убедитесь, что все в порядке. Заключение Это последний этап, который показывает дополнительную информацию о том, как получить доступ к панели администратора и запускает службы для работы продукта: Подсказка: На этом этапе вы можете получить Warning (предупреждение), если ПО будет не хватать оперативной памяти. Будем честными: для тестовой среды это не очень важно, просто продолжайте работать. Однако на продуктивном контуре надо быть внимательным и прислушиваться к таким предупреждениям. Чтобы открыть веб-интерфейс пользователя RHEVM откройте URL в броузере: http://$your-ip/ovirt-engine Затем выберите Administrator Portal и укажите свои учетные данные пользователя: admin и пароль, который вы ввели во время установки. Нажмите кнопку Login. Обратите внимание, что вкладка hosts пуста, так как мы еще не добавили ни одного хоста/гипервизора в нашу среду.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59