По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Не все любят управлять MySQL через Linux. Management Studio – говорили они. CLI – говорим мы. Бро, эта статья про то, как дать права доступа (permissions) учетным записям в Linux – среде. Логинимся Подключаемся к своему серверу по SSH. В командной строке вводим: mysql -u root -p Хоп – и мы уже в режиме управления MySQL: mysql> Вообще, эта статья про права доступа. Но на всякий случай вот тебе синтаксис команды, которая позволит создать нового пользователя с паролем в MySQL: CREATE USER 'логин'@'localhost' IDENTIFIED BY 'пароль'; А теперь права Друже, синтаксис команды, которая даст нужные тебе права крайне простой. Вот он: GRANT права ON база_данных.таблица TO 'логин'@'localhost'; Разберемся слева на право: права - могут быть следующие: ALL – дает полный доступ к базе данных. Кстати, если база данных не определена в команде, то даст полный доступ ко всему в MySQL (ох не надо так); CREATE – позволяет пользователю создавать базы данных и таблицы; DELETE – дает право пользователю удалять строки из таблиц; DROP – дает право удалять базы данных и таблица целиком (ну, так тоже не надо); EXECUTE – дает право пользователю выполнять хранимые процедуры; GRANT OPTION – с этой опцией юзер сможет давать права (или удалять) другим пользователям; INSERT – дает право хранить молчанию и все что он скажет будет.. Ладно, это просто право на добавление новых строк в таблицу; SELECT – самое распространенное право – парсить (извлекать) данные из SQL для чтения; SHOW DATABASES - этому пользователю можно будет смотреть на список баз данных; UPDATE – дает право пользователю изменять текущие строки в таблице; база_данных собственно, база данных, внутри которой живет ваша таблица; таблица - сама таблица. Табличка, table, le tableau; логин - имя пользователя вашего юзверя; Все просто. Пробежимся по примерам. Пример №1 Давайте дадим права юзеру example, с помощью которых он сможет создавать любые БД и таблицы: GRANT CREATE ON *.* TO 'example'@'localhost'; Использование звездочки (*) – это как маска, под которое попадает все. Пример №2 Дадим пользователю example права на удаление любых таблиц в заранее обозначенной базе данных, которая называется easybro GRANT DROP ON easybro.* TO 'example'@'localhost'; Как видишь, мы юзаем команду DROP. Кстати, лучшая практика после внесения изменения сделать небольшую перезагрузку прав командой: FLUSH PRIVILEGES; Как посмотреть права определенного пользователя в MySQL Посмотреть права очень просто. Опять же, на примере нашего юзера example: SHOW GRANTS FOR 'example'@'localhost';
img
Перед начало убедитесь, что ознакомились с материалом про построение деревьев в сетях. Правило кратчайшего пути, является скорее отрицательным, чем положительным экспериментом; его всегда можно использовать для поиска пути без петель среди набора доступных путей, но не для определения того, какие другие пути в наборе также могут оказаться свободными от петель. Рисунок 4 показывает это. На рисунке 4 легко заметить, что кратчайший путь от A до пункта назначения проходит по пути [A, B, F]. Также легко заметить, что пути [A, C, F] и [A, D, E, F] являются альтернативными путями к одному и тому же месту назначения. Но свободны ли эти пути от петель? Ответ зависит от значения слова "без петель": обычно путь без петель - это такой путь, при котором трафик не будет проходить через какой-либо узел (не будет посещать какой-либо узел в топологии более одного раза). Хотя это определение в целом хорошее, его можно сузить в случае одного узла с несколькими следующими переходами, через которые он может отправлять трафик в достижимый пункт назначения. В частности, определение можно сузить до: Путь является свободным от петель, если устройство следующего прыжка не пересылает трафик к определенному месту назначения обратно ко мне (отправляющему узлу). В этом случае путь через C, с точки зрения A, можно назвать свободным от петель, если C не пересылает трафик к месту назначения через A. Другими словами, если A передает пакет C для пункта назначения, C не будет пересылать пакет обратно к A, а скорее пересылает пакет ближе к пункту назначения. Это определение несколько упрощает задачу поиска альтернативных путей без петель. Вместо того, чтобы рассматривать весь путь к месту назначения, A нужно только учитывать, будет ли какой-либо конкретный сосед пересылать трафик обратно самому A при пересылке трафика к месту назначения. Рассмотрим, например, путь [A, C, F]. Если A отправляет пакет C для пункта назначения за пределами F, переправит ли C этот пакет обратно в A? Доступные пути для C: [C, A, B, F], общей стоимостью 5 [C, A, D, E], общей стоимостью 6 [C, F], общей стоимостью 2 Учитывая, что C собирается выбрать кратчайший путь к месту назначения, он выберет [C, F] и, следовательно, не будет пересылать трафик обратно в A. Превращая это в вопрос: почему C не будет перенаправлять трафик обратно в A? Потому что у него есть путь, стоимость которого ниже, чем у любого пути через A до места назначения. Это можно обобщить и назвать downstream neighbor: Любой сосед с путем, который короче локального пути к месту назначения, не будет возвращать трафик обратно ко мне (отправляющему узлу). Или, скорее, учитывая, что локальная стоимость представлена как LC, а стоимость соседа представлена как NC, тогда: Если NC LC, то тогда neighbor is downstream. Теперь рассмотрим второй альтернативный путь, показанный на рисунке 4: [A, D, E, F]. Еще раз, если A отправляет трафик к пункту назначения к D, будет ли D зацикливать трафик обратно к A? Имеющиеся у D пути: [D, A, C, F], общей стоимостью 5 [D, A, B, F], общей стоимостью 4 [D, E, F], общей стоимостью 3 Предполагая, что D будет использовать кратчайший доступный путь, D будет пересылать любой такой трафик через E, а не обратно через A. Это можно обобщить и назвать альтернативой без петель (Loop-Free Alternate -LFA): Любой сосед, у которого путь короче, чем локальный путь к месту назначения, плюс стоимость доступа соседа ко мне (локальный узел), не будет возвращать трафик обратно ко мне (локальному узлу). Или, скорее, учитывая, что локальная стоимость обозначена как LC, стоимость соседа обозначена как NC, а стоимость обратно для локального узла (с точки зрения соседа) - BC: Если NC + BC LC, то сосед - это LFA. Есть две другие модели, которые часто используются для объяснения Loop-Free Alternate: модель водопада и пространство P/Q. Полезно посмотреть на эти модели чуть подробнее. Модель водопада (Waterfall (or Continental Divide) Model). Один из способов предотвратить образование петель в маршрутах, рассчитываемых плоскостью управления, - просто не объявлять маршруты соседям, которые пересылали бы трафик обратно мне (отправляющему узлу). Это называется разделенным горизонтом (split horizon). Это приводит к концепции трафика, проходящего через сеть, действующую как вода водопада или вдоль русла ручья, выбирая путь наименьшего сопротивления к месту назначения, как показано на рисунке 5. На рисунке 5, если трафик входит в сеть в точке C (в источнике 2) и направляется за пределы E, он будет течь по правой стороне кольца. Однако, если трафик входит в сеть в точке A и предназначен для выхода за пределы E, он будет проходить по левой стороне кольца. Чтобы предотвратить зацикливание трафика, выходящего за пределы E, в этом кольце, одна простая вещь, которую может сделать плоскость управления, - это либо не позволить A объявлять пункт назначения в C, либо не позволить C объявлять пункт назначения в A. Предотвращение одного из этих двух маршрутизаторов от объявления к другому называется разделенным горизонтом (split horizon), потому что это останавливает маршрут от распространения через горизонт, или, скорее, за пределами точки, где любое конкретное устройство знает, что трафик, передаваемый по определенному каналу, будет зациклен. Split horizon реализуется только за счет того, что устройству разрешается объявлять о доступности через интерфейсы, которые оно не использует для достижения указанного пункта назначения. В этом случае: D использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E C использует D для достижения пункта назначения, поэтому он не будет объявлять о доступности D B использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E A использует B для достижения пункта назначения, поэтому он не будет объявлять о доступности B Следовательно, A блокирует B от знания альтернативного пути, который он имеет к месту назначения через C, а C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петель пересекает этот разделенный горизонт. точка в сети. На рис. 12-5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направляемый в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. C, в терминах LFA, является нижестоящим соседом A. Следовательно, A блокирует B от знания об альтернативном пути, который он имеет к месту назначения через C, и C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петли будет пересекать эту точку split horizon в сети. На рисунке 5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направленный в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. В терминах LFA, С является нижестоящим соседом (downstream neighbor) A. P/Q пространство Еще одна модель, описывающая, как работают LFA, - это пространство P / Q. Рисунок 6 иллюстрирует эту модель. Проще всего начать с определения двух пространств. Предполагая, что линия связи [E, D] должна быть защищена от сбоя: Рассчитайте Shortest Path Tree из E (E использует стоимость путей к себе, а не стоимость от себя, при вычислении этого дерева, потому что трафик течет к D по этому пути). Удалите линию связи [E,D] вместе с любыми узлами, доступными только при прохождении через эту линию. Остальные узлы, которых может достичь E, - это пространство Q. Рассчитайте Shortest Path Tree из D. Удалите канал [E, D] вместе со всеми узлами, доступными только при прохождении по линии. Остальные узлы, которых может достичь D, находятся в пространстве P. Если D может найти маршрутизатор в пространстве Q, на который будет перенаправляться трафик в случае отказа канала [E, D]- это LFA. Удаленные (remote) Loop-Free Alternates Что делать, если нет LFA? Иногда можно найти удаленную альтернативу без петель (remote Loop-Free Alternate - rLFA), которая также может передавать трафик к месту назначения. RLFA не подключен напрямую к вычисляющему маршрутизатору, а скорее находится на расстоянии одного или нескольких переходов. Это означает, что трафик должен передаваться через маршрутизаторы между вычисляющим маршрутизатором и remote next hop. Обычно это достигается путем туннелирования трафика. Эти модели могут объяснить rLFA, не обращая внимания на математику, необходимую для их расчета. Понимание того, где кольцо "разделится" на P и Q, или на две половины, разделенные split horizon, поможет вам быстро понять, где rLFA можно использовать для обхода сбоя, даже если LFA отсутствует. Возвращаясь к рисунку 6, например, если канал [E, D] выходит из строя, D должен просто ждать, пока сеть сойдется, чтобы начать пересылку трафика к месту назначения. Лучший путь от E был удален из дерева D из-за сбоя, и E не имеет LFA, на который он мог бы пересылать трафик. Вернитесь к определению loop-free path, с которого начался этот раздел-это любой сосед, к которому устройство может перенаправлять трафик без возврата трафика. Нет никакой особой причины, по которой сосед, которому устройство отправляет пакеты в случае сбоя локальной линии связи, должен быть локально подключен. В разделе "виртуализация сети" описывается возможность создания туннеля или топологии наложения, которая может передавать трафик между любыми двумя узлами сети. Учитывая возможность туннелирования трафика через C, поэтому C пересылает трафик не на основе фактического пункта назначения, а на основе заголовка туннеля, D может пересылать трафик непосредственно на A, минуя петлю. Когда канал [E, D] не работает, D может сделать следующее: Вычислите ближайшую точку в сети, где трафик может быть туннелирован и не вернется к самому C. Сформируйте туннель к этому маршрутизатору. Инкапсулируйте трафик в заголовок туннеля. Перенаправьте трафик. Примечание. В реальных реализациях туннель rLFA будет рассчитываться заранее, а не рассчитываться во время сбоя. Эти туннели rLFA не обязательно должны быть видимы для обычного процесса пересылки. Эта информация предоставлена для ясности того, как работает этот процесс, а не сосредоточен на том, как он обычно осуществляется. D будет перенаправлять трафик в пункт назначения туннеля, а не в исходный пункт назначения - это обходит запись локальной таблицы переадресации C для исходного пункта назначения, что возвращает трафик обратно в C. Расчет таких точек пересечения будет обсуждаться в чуть позже в статьях, посвященных первому алгоритму кратчайшего пути Дейкстры.
img
Анализ телеметрических системТелеметрия это программный комплекс для автоматической записи и передачи данных из удаленных или недоступных источников в другую систему для мониторинга и анализа. Данные телеметрии могут передаваться с использованием радиосигнала, GSM, спутникового или кабельного телевидения, в зависимости от системы. > В мире разработки программного обеспечения телеметрия может дать представление о том, какие функции конечные пользователи используют чаще всего, обнаруживать ошибки и проблемы, а также предлагать лучшую информацию о производительности без необходимости запрашивать обратную связь непосредственно от пользователей. Как работает телеметрия? В общем смысле телеметрия работает через датчики на удаленном источнике, которые измеряют физические или электрические данные. Это преобразуется в электрические напряжения, которые объединяются с данными синхронизации. Они формируют поток данных, который передается по беспроводной среде, проводной или их комбинации. На удаленном приемнике поток дезагрегируется, и исходные данные отображаются или обрабатываются в соответствии со спецификациями пользователя. В контексте разработки программного обеспечения понятие телеметрии часто путают с регистрацией. Но ведение журнала это инструмент, используемый в процессе разработки для диагностики ошибок и потоков кода, и он ориентирован на внутреннюю структуру веб-сайта, приложения или другого проекта разработки. Телеметрия это то, что позволяет собирать поток данных с устройств, которые становятся основой для анализа. Основные свойства телеметрии Основным свойством телеметрии является способность конечного пользователя контролировать состояние объекта или окружающей среды, находясь вдали от него. Поскольку телеметрия дает представление о том, насколько хорошо работает система для конечных пользователей, как её используют это невероятно ценный инструмент для постоянного мониторинга и управления производительностью. Телеметрия помогает понять: Какими функциями чаще пользуются пользователи; Как они взаимодействуют с системой; Как часто взаимодействуют с системой и в течение какого времени; Какие параметры настройки пользователи выбирают чаще всего; Какие предпочитают они определенные типы дисплея, способы ввода, ориентацию экрана или другие конфигурации устройства; Как себя ведут во время сбоя. Очевидно, что телеметрия, имеет неоценимое значение для процесса разработки. Она позволяет постоянно совершенствовать и вводить новые функции. Проблемы телеметрии Телеметрия, безусловно, фантастическая технология, но она не без проблем. Наиболее значимая проблема и часто встречающаяся - связана не с самой телеметрией, а с конечными пользователями и их готовностью разрешить то, что они считают утечкой данных. Для решения данной проблемы, некоторые пользователи сразу же отключают передачу данных. Это проблема пока не имеет четкого решения, но и не мешает развитию системы дальше. Методы защиты телеметрических данных Большие утечки данных являются большой проблемой не только для нашей странны, но и для всего мира. Несмотря на это многие не заботятся о защите, например, из-за нехватки средств для киберзащиты. Для повышения безопасности данных, нужно сделать всё, чтобы хакеры не получили информацию. Рассмотрим основные методы защиты данных. Требования к паролю Надежная политика паролей это передовая линия защиты финансовых транзакций, личных сообщений и личной информации. Для конечных пользователей использование надежного пароля на работе так же важно, как и дома, это некий личный телохранитель, который защищает от всего, что у него есть, от серьезных угроз безопасности, мошенников и хакеров. Именно тогда системный администратор приходит, чтобы убедиться в наличии надлежащих правил и политик, которые помогут вам облегчить эту нагрузку. Большинство пользователей понимают природу рисков безопасности, связанных с легко угадываемыми паролями, но разочаровываются, сталкиваясь с незнакомыми критериями или пытаясь запомнить 30 разных паролей для своих учетных записей. Вот почему системные администраторы играют важную роль в обеспечении того, чтобы каждый пользователь хорошо знал о рисках безопасности, с которыми они сталкиваются каждый день. Для этого им нужны надежные политики паролей. Политики паролей это набор правил, которые были созданы для повышения безопасности компьютера, побуждая пользователей создавать надежные и безопасные пароли, а затем хранить и правильно их использовать. Основные аспекты политики паролей: Применение политики историй паролей; Политика минимального срока действия пароля; Политика максимального срока действия пароля; Политика минимальной длины пароля; Пароли должны соответствовать требованиям политики сложности; Политика аудита паролей. Несмотря на это надежного пароля недостаточно для сохранения данных в безопасности. Двухфакторная аутентификация Двухфакторная аутентификация это дополнительный уровень безопасности, используемый для того, чтобы люди, пытающиеся получить доступ к онлайн-аккаунту, подтверждали, что они действительно являются тем, за кого они себя выдают. Сначала пользователь вводит свое имя пользователя и пароль. Затем, вместо немедленного получения доступа, они должны будут предоставить другую часть информации. С двухфакторной аутентификацией надежнее так, как только один из факторов не разблокирует аккаунт. Таким образом, даже если пароль украден или телефон утерян, вероятность того, что кто-то другой получит второстепенные данные, крайне мала. Шифрование данных на устройствах Шифрование данных на устройства это не универсальное решение для защиты всех данных и информации от посторонних глаз, особенно когда данные отправляются через Интернет. Вместо этого устройство шифрования преобразует все данные, хранящиеся на телефоне, в форму, которую можно прочитать только с правильными учетными данными. Это выходит за рамки обычного пароля экрана блокировки, так как данные могут быть доступны из-за этого экрана с некоторыми специальными знаниями и использованием восстановления, загрузчиков. После шифрования музыка, фотографии, приложения и данные учетной записи не могут быть прочитаны без предварительного разделения информации с использованием уникального ключа. За кулисами происходит немало вещей, где пароль пользователя преобразуется в ключ, который хранится в "среде надежного выполнения", чтобы защитить его от программных атак. Затем этот ключ необходим для шифрования и дешифрования файлов, вроде тех алфавитных шифровальных головоломок, которые шифруют буквы. Например, с Android это очень просто. Вы просто вводите свой пароль при загрузке или разблокировке устройства, и все ваши файлы будут доступны. Это означает, что, если ваш телефон попадет в чужие руки, никто другой не сможет разобраться в каких-либо данных на вашем телефоне, не зная вашего пароля. Шифрование сетевого трафика внутри системы Шифрование сетевого трафика обеспечивает защиту данных от перехвата злоумышленником, который отслеживает сетевой трафик. Использование шифрования для защиты сетевого трафика, проходящего через Интернет, широко распространено, обычно в форме соединений SSL/TLS. Но внутри центров обработки данных связь между серверами часто не шифруется. Злоумышленник, который получает доступ к такой сети, даже не имея доступа к серверам, на которых хранятся данные, может перехватывать защищенные данные при передаче между серверами в кластере с несколькими машинами. Кроме того, организации все чаще регистрируют и анализируют собственный сетевой трафик для обнаружения сетевых вторжений. В результате полные копии сетевого трафика могут храниться в течение длительного периода времени в этих системах мониторинга. Для всех сетевых ссылок, которые перемещают защищенные данные, важно использовать шифрование. Это относится не только к соединениям, созданным авторизованными пользователями для доступа к системе извне центра обработки данных, но также и к сетевым соединениям между узлами во много серверной системе. На практике это почти всегда требует SSL/TLS или аналогичного уровня VPN между пользователями и системой. Внутри самой системы связь может быть защищена с использованием SSL/TLS, IPSec или какой-либо другой технологии VPN типа "точка-точка". Создание процессов для удаленного доступа Если сотрудник покидает компанию, необходимо удалить его как пользователя в учетных записях компании. Ограниченный доступ для администратора Нельзя попадаться в ловушку предоставления каждому сотруднику доступа администратора. Сотрудники с правами администратора могут заблокировать сайт, банковский счет, страницы в социальных сетях и многое другое. Кроме того, они могут удалять пользователей в приложениях, которые необходимы. Нужно присвоить статус редактора и участника нескольким людям, но сохранить статус администратора для себя и доверенного члена команды. Резервное копирование и обновление Необходимо сохранять резервную копию данных на случай кражи компьютера или телефона. Однако не всегда целью воровства является, в том числе и удаление данных. Вредоносные программы, вирусы и сбои системы могут стереть данные, поэтому обновления программного обеспечения так же важны. У обновленных систем есть шанс избежать угроз безопасности. Анализ защиты информации от несанкционированного доступа Ключевой процедурой во время разработки любой информационной системы является, прежде всего, регулирование разрешенного доступа к данным и их использования. Без контроля несанкционированного доступа построение режима защиты конфиденциальности для авторизованных пользователей является спорным, потому что любая защита, которую можно легко обойти, не является истинной защитой. Реализация конфиденциальности и безопасности связана с защитой от различных угроз, такие как: шифрование, аудит, ведение журнала, контроль доступа, разделение ролей, оповещение и активный мониторинг. Сама архитектура - это совокупность вещей, образующих единое целое с желаемыми свойствами, и желаемые свойства для защиты конфиденциальности и защиты от несанкционированного доступа не являются одинаковыми для всех информационных систем. Каждая система требует индивидуальный подход. Требования безопасности могут иметь огромное влияние на каждый аспект разработки системы. Архитектура данных, возможность совместного размещения служб на одной машине, производительность системы и даже бюджеты аппаратного обеспечения могут существенно зависеть от требований безопасности. Существуют различные методы обеспечения информационной безопасности высокого уровня, которые могли бы применяться на каждом предприятии, однако существует проблема дороговизны передовых методов защиты информации, при том что не каждое предприятие может это себе позволить, либо предлагаемые меры защиты избыточны. Для таких случаев, когда затраты должны быть минимальными (low cost projects), но при этом необходимо обеспечивать надежность хранимых данных, приходят на помощь другие технологии, например, технология Tangle. Она является открытой для использования и не требует вложений на реализацию, что позволяет организовать надежное, распределенное хранилище данных доступное большинству пользователей. Таким образом, должны быть четкие представление о некоторых основных технических и юридических аспектах в сфере конфиденциальности. В этом контексте рациональные методы сбора данных и обеспечения информационной безопасности являются необходимыми основаниями для создания конкретных механизмов контроля соблюдения конфиденциальности. Понимая свои данные, вы можете понять, какие силы работают над ними и как защитить их соответствующим образом. Не менее важным являются сертифицированные средства защиты информации. Выбор сертифицированного средства защиты информации зависит от вида информационной системы, а также от класса её защищенности и должен проводиться по результатам аудита информационной безопасности информационной системы предприятия. Таким образом, должны быть четкие представление о некоторых основных технических и юридических аспектах в сфере конфиденциальности. Рациональные методы сбора данных и обеспечения информационной безопасности являются необходимыми основаниями для создания конкретных механизмов контроля за соблюдением конфиденциальности. Понимая свои данные, вы можете понять, какие силы работают над ними и как защитить их соответствующим образом. Технология IOTA Одной из наиболее популярных технологий на сегодняшний день, является технология Blockchain. Это можно считать революцией в цифровом мире. Blockchain используется в качестве цифровой книги для записи финансовых транзакций или данных, которые имеют ценность по своей природе. Это очень неизменная и безопасная система. Blockchain доказал свои возможности в технологическом и финансовом отношении, но он обладает недостатками с точки зрения масштабируемости. Потребности отрасли растут очень быстро, но платформа Blockchain не готова к обработке большого количества транзакций одновременно. Таким образом, чтобы решить эту проблему масштабирования и облегчить решение проблем безопасности, нужна новая платформа, и вот тут-то и появляется IOTA. IOTA - криптовалюта, появившаяся в конце 2015 года, и она направлена на решение основных проблем Blockchain. Проще говоря, в технологии Blockchain не может расширяться дальше и не может обрабатывать больше транзакций, чем текущий предел в семь операций в секунду. Новая технология IOTA решает эти проблемы и предлагает совершенно новую технологию, которая все еще децентрализована, но может обрабатывать и бесконечное количество транзакций. IOTA это технология, которая представляет эволюционно новый уровень транзакционных расчётов и передачи данных. Распределенный цифровой регистр, или криптографический токен, специально созданный и разработанный для Интернета вещей. Работа IOTA основана на технологии путаницы. Tangle это другое название для описания направленного ациклического графа IOTA (DAG). Это уровень интеграции данных и расчета транзакций, разработанный для сосредоточения на Интернете вещей (IOT). Tangle действует как строка отдельных транзакций, которые связаны между собой и хранятся в децентрализованном сетевом узле участников. Основным мотивом технологии путаницы является разработка масштабируемых сред для выполнения транзакций, связанных с IoT. Как работает технология? Чтобы иметь четкое представление о том, как работает клубок, рассмотрим ориентированный граф. Направленный граф представляет собой совокупность квадратных прямоугольников, соединенных ребрами с помощью стрелок. Нижеприведенный рисунок 1 является примером ориентированного графа. Известно, что криптовалюта IOTA работает в системе Tangle, которая представляет собой подобный вид ориентированного графа, который содержит транзакции. Каждая транзакция отображается в виде вершины на графике. Всякий раз, когда новая транзакция присоединяется к путанице, она выбирает две предыдущие транзакции для утверждения и добавляет два ребра в сеть. Чтобы преодолеть проблему злонамеренных атак на сеть, фонд IOTA разработал процесс под названием "Координатор". Координатор действует как механизм добровольного и временного консенсуса для Tangle. Координатор выступает в роли эмитента этапа на каждые 2 минуты транзакции на путанице, и транзакции, одобренные координатором, рассматриваются на предмет подтверждения 100% уверенности. Если количество транзакций IoT уменьшится, они не будут уязвимы для атак. Следовательно, сеть продолжает расширяться, и тогда роль координатора будет уничтожена. Таким образом, Tangle становится полностью децентрализованной сетью и защищен с помощью полностью распределенного консенсусного механизма с использованием монеты памяти через DAG. Особенности технологии Tangle Это направленный ациклический граф (DAG); Это сеть с начальными блоками; Каждая сеть состоит из разных узлов, которые работают углубленно; Каждый узел имеет свой вес; Безграничная масштабируемость и рост данных; Менее подвержен атакам и взломам. Tangle против Blockchain Несмотря на то, что Blockchain и Tangle являются схожими технологиями, между этими двумя технологиями имеется немного технических вариаций. Техническое различие между Blockchain и Tangle или уникальными особенностями Tangle сделало его пригодным для IoT. Существенные различия между Blockchain и Tangle: Структура Структура Blockchain состоит из серии блоков или узлов информации, в которой каждый последующий блок связан с его предыдущим в постоянно растущей длинной цепочке. Когда речь идет о технологии Tangle, она состоит из группы узлов данных, которые движутся в одном направлении. Blockchain обладает возможностью циклического возврата транзакций назад, тогда как в Tangle он никогда не проверяет предшествующие узлы и позволяет Tangle поддерживать огромное количество транзакций. Визуализация вышеописанного представлена на рисунке 1. Безопасность Blockchain приобрел популярность с точки зрения безопасности из-за сложности формирования блоков. Формирование блока, связанного с математическим решением и процессом верификации, требует консенсуса. Tangle требует только проверки двух предыдущих узлов перед проверкой нового, и таким образом он создает новый узел. Вот как Tangle отстает безопаснее по сравнению с Blockchain. Децентрализация Blockchain и Tangle, обе технологии работают на децентрализованных системах, что означает отсутствие каких-либо других вещей, таких как интерфейс, сборы, препятствия и т.д. Технологию Tangle иногда называют "Blockchain следующего поколения". Несмотря на такие заблуждения, как его реализация, долгосрочная устойчивость и потенциальность, Tangle остается одной из лучших технологий в мире криптовалют. С годами применение IoT-устройств растет, и Tangle может справиться с увеличением количества транзакций. Известные уязвимости в системах Интернета вещей Некоторые уязвимости, с которыми сталкиваются системы Интернета вещей: Отсутствие безопасности транспортного уровня: в большинстве систем Интернета вещей данные хранятся на облачных серверах в интернете, мобильных телефонах или онлайн-базах данных. Эти данные можно легко взломать, так как они не шифруются при передаче. Что повышает риск безопасности данных в системе Интернета вещей. Неадекватные функции безопасности: в условиях растущей конкуренции и огромного спроса технологические гиганты хотят как можно скорее запустить свою программную систему IoT. Таким образом, важная часть жизненного цикла программного обеспечения, такая как тестирование, обеспечение качества и уязвимости безопасности, не выполняется должным образом. Плохая безопасность мобильных устройств: плохая безопасность мобильных устройств в системах Интернета вещей делает их более уязвимыми и рискованными. Данные хранятся в очень небезопасном виде в мобильных устройствах. Однако устройства iOS более безопасны, чем устройства на Android. Если пользователь потеряет свой смартфон и данные не будут сохранены, он будет в большой беде. Хранение данных на облачных серверах: хранение данных на облачных серверах также рассматривается как слабое звено в безопасности систем Интернета вещей. Облачные серверы имеют меньшую безопасность и открыты для злоумышленников из всех измерений. Разработчики должны убедиться, что данные, хранящиеся на облачных серверах, всегда должны быть в зашифрованном формате. Сетевые атаки: еще одной большой уязвимостью в системах Интернета вещей является беспроводное соединение, которое открыто для злоумышленников. Например, хакеры могут заблокировать функциональность шлюза в системах Интернета вещей. Это может разрушить всю систему IoT. IoT является одним из самых интересных и новейших технологий в наши дни. Интернет вещей используется для определения сети, которая состоит из ряда электронных устройств, соединенных между собой с помощью смарт-технологии. Умные города, умные автомобили, умные бытовые приборы будут следующей большой вещью, которая произведет революцию в том, как происходит жизнь, работа и взаимодействие людей. Как известно, каждая монета имеет две стороны. Аналогичным образом, IoT также имеет некоторые риски и уязвимости. Преодолевая эти угрозы, появится возможность пользоваться услугами систем Интернета вещей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59