По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Ранее мы уже рассказывали про регулировку громкости в Asterisk. Этот метод рабочий, но весьма статичен. Поэтому в голову пришла интересная мысль. Представьте, вы совершаете звонок. И, неожиданно, ваш собеседник начинает "кричать" в трубку. Пусть кричит – наши нервы прошли и не такое, но дело в том, что громкость звонка задана жёстко в кастомном диалплане. Поэтому, ощущения от крика буду особенно острыми :) А теперь, вообразите, что у вас есть возможность сделать собеседника "тише" кнопками телефонного аппарата. А потом, когда он успокоится, сделать снова громче. Интересно? Поехали. Подготовка Откроем FreePBX. Открыв модуль сервисных кодов (feature codes), мы обнаружим, что в нем можно только изменить существующие коды, но добавить новые нельзя. Решение указанной в начале статьи задачи будет базироваться на встроенных функциях Asterisk. То есть мы не будем добавлять кастомный контекст. Настройка Открываем файл /etc/asterisk/globals_custom.conf. Этот файл позволяет переписать или добавить глобальные переменные, используемые Asterisk (как стандартные, так и ваши личные). Если данного файла нет, то его нужно создать. Например, вот так: touch /etc/asterisk/globals_custom.conf chown asterisk:asterisk /etc/asterisk/globals_custom.conf chmod 775 /etc/asterisk/globals_custom.conf В файл добавляем следующую конструкцию: DYNAMIC_FEATURES=VUp#VDown#MUp#MDown Vol=0 Mic=0 Мы задали специальные функции, которые понадобятся нам далее. Сейчас будем закреплять комбинации цифр за кодами. Для этого открываем файл etc/asterisk/features_applicationmap_custom.conf и запишем в него следующее: VUp => 52*,self,Macro,VolumeUp VDown => 58*,self,Macro,VolumeDown MUp => 54*,self,Macro,MicUp MDown => 56*,self,Macro,MicDown Мы закрепили за кодами выполнение макроса громкости, который мы напишем далее. Не пугайтесь - "странные" комбинации выбраны по причине того, что их просто запомнить, так как на клавиатуре телефона, это так называемый "крест", наподобие джойстика ;) Go ahead. Приступаем к самим макросам. Для этого открываем файл /etc/asterisk/extensions_custom.conf и добавляе: [from-internal-custom] Set(__DYNAMIC_FEATURES=VUp#VDown#MUp#MDown) Таким образом, мы подключаем добавленные коды в диалплан Asterisk, который генерирует FreePBX. Не спешите закрывать файл extensions_custom.conf. В него же добавляем механизм увеличения громкости. То есть, макросы о которых мы писали ранее: [macro-VolumeUp] exten => s,1,Set(Vol=$[${Vol}+5]) same => n,Set(VOLUME(TX)=${Vol}) [macro-VolumeDown] exten => s,1,Set(Vol=$[${Vol}-5]) same => n,Set(VOLUME(TX)=${Vol}) [macro-MUp] exten => s,1,Set(Mic=$[${Mic}+5]) same => n,Set(VOLUME(RX)=${Mic}) [macro-MDown] exten => s,1,Set(Mic=$[${Mic}-5]) same => n,Set(VOLUME(RX)=${Mic}) Можно выдохнуть. На этом правки закончены. Как вы могли заметить, почему-то "громкостей" несколько. Все достаточно просто. Это 2 макроса на увеличение и уменьшение громкости канала звука и, соответственно, канала микрофона. Что нам все эти коды дают (по сравнению с жестко прописанными числами)? В любой момент разговора, если вы плохо (тихо) слышите собеседника, нужно набрать на телефоне 52* и громкость увеличится, так можно делать несколько раз пока уровень громкости собеседника не станет приемлемым. Это работает и наоборот: 58* и собеседник становится "тише". Удобно, правда? :) Из плюсов - не надо прерывать звонок. Нет жёсткого ограничения громкости. Если разговор затягивается на длительное время, можно выставить комфортную слышимость. Ну а второй макрос, спросите вы? Представьте: что делать, если собеседник жалуется, что вас тихо слышно? Нет проблем. Набираем 54* и собеседник начинает нас лучше слышать, то есть, мы увеличиваем громкость канала нашего микрофона!
img
В данной статье будет описан процесс настройки вашей АТС Asterisk с провайдером Zadarma. Настройка с помощью файлов конфигурации Asterisk Важный момент - у вас уже должны быть логин и пароль для данного провайдера, получить которые можно на сайте. Для примера будут указаны следующие данные: 1234567 - ваш SIP - номер, полученный при регистрации, ****** - ваш пароль и 321 - номер экстеншена. Рассмотрим самый стандартный вариант, при котором исходящие звонки с вышеуказанного внутреннего номера (экстеншена) маршрутизируются через SIP - транк zadarma-trunk. Для начала настройки необходимо отредактировать файл sip.conf следующим образом: [general] srvlookup=yes [zadarma-trunk] host=sip.zadarma.com insecure=invite,port type=friend fromdomain=sip.zadarma.com disallow=allallow=alaw&ulaw dtmfmode=autosecret=password defaultuser=1234567 trunkname=zadarma-trunk fromuser=1234567 callbackextension=zadarma-trunk context=zadarma-in qualify=400 directmedia=no [321] secret=password host=dynamic type=friend context=zadarma-out Настройки маршрутизации производятся в файле extensions.conf следующим образом: [zadarma-in] exten => 1234567,1, Dial(SIP/321) [zadarma-out] exten => _XXX,1,Dial(SIP/${EXTEN}) exten => _XXX.,1,Dial(SIP/${EXTEN}@zadarma-trunk) Для контекста [zadarma-in] все входящие вызовы направляются на экстеншен 321, и для [zadarma-out] возможны два варианта: если в набираемом номере 3 цифры, то вызов пойдет на один из экстеншенов, настроенных на вашей АТС, если же 4 и больше - вызов уйдет на транк zadarma-trunk. В случае, если ваша АТС находится не за маршрутизатором, а имеет публичный IP-адрес, то входящие вызовы можно принимать по следующей схеме, с использованием SIP URI. К примеру, 12039485767 - ваш DID номер подключенный к Zadarma, а 200.132.13.43 - адрес вашего Asterisk. Для этого нужно в личном кабинете в поле Настройки-Прямой телефонный номер нужно указать маршрутизацию с прямого DID номера на внешний сервер (SIP URI) в формате 12039485767@200.132.13.43 и отредактировать sip.conf следующим образом: [zadarma] host=sipde.zadarma.com type=friend insecure=port,invite context=zadarma-in disallow=all allow=alaw&ulaw dtmfmode = auto directmedia=no [zadarma2] host=siplv.zadarma.com type=friend insecure=port,invite context=zadarma-in disallow=all allow=alaw&ulaw dtmfmode = auto directmedia=no [zadarma3] host=sipfr.zadarma.com type=friend insecure=port,invite context=zadarma-in disallow=all allow=alaw&ulaw dtmfmode = auto directmedia=no Указываем исходящий маршрут в файле extensions.conf [zadarma-in] extended => 12039485767,1,Dial(SIP/321) Далее будет рассмотрена настройка транка для FreePBX 13 версии. Настройка с помощью FreePBX Важный момент, перед настройкой транка необходимо включить функцию SRV Lookup. Для этого необходимо пройти по пути Settings → Asterisk SIP Settings → Chan SIP Settings и для опции Enable SRV Lookup выбрать опцию Yes. Далее происходит уже знакомый процесс настройки транка – переходим во вкладку Connectivity → Trunks. Необходимо нажать на кнопку + Add Trunk и добавить chan_sip транк Присваиваем имя транку – в данном случае это «Zadarma_test» Далее необходимо перейти во вкладку sip Settings и указать настройки для входящей и исходящей связи (вкладки Outgoing и Incoming) Для удобства копирования, приведу настройки SIP - транка и строки регистрации в текстовом виде: host=sip.zadarma.com insecure=invite,port type=friend fromdomain=sip.zadarma.com disallow=all allow=alaw&ulaw dtmfmode=auto secret=****** defaultuser=1234567 fromuser=1234567 qualify=400 directmedia=no 1234567:******@sip.zadarma.com/1234567 Далее нужно нажать на Submit и Apply Config. Переходим к настройке входящего маршрута Маршрутизация Во вкладке Connectivity → Inbound Routes по уже знакомому способу создаём входящий маршрут (кнопка + Add Inbound Route), присваиваем описание и указываем номер. Далее нажимаем Submit и переходим к настройке исходящего маршрута: переходим по пути Connectivity → Outbound Route, создаём новый исходящий маршрут таким же образом как и входящий и указываем следующие параметры – имя маршрута, CID маршрута и используемый транк (тот, что был настроен в начале всего процесса.) Последним шагом является настройка Dial Patterns – переходим в одноименную вкладку и после поля префикс необходимо поставить одну единственную точку – иначе не будет возможности совершать исходящие вызовы. После этого необходимо нажать Submit и Apply Config. На этом настройка заканчивается.
img
Несмотря на доступ к все более эффективному и мощному оборудованию, операции, выполняемые непосредственно на традиционных физических (или «чистых») серверах, неизбежно сталкиваются со значительными практическими ограничениями. Стоимость и сложность создания и запуска одного физического сервера говорят о том, что эффективное добавление и удаление ресурсов для быстрого удовлетворения меняющихся потребностей затруднено, а в некоторых случаях просто невозможно. Безопасное тестирование новых конфигураций или полных приложений перед их выпуском также может быть сложным, дорогостоящим и длительным процессом. Исследователи-первопроходцы Джеральд Дж. Попек и Роберт П. Голдберг в статье 1974 года («Формальные требования к виртуализируемым архитектурам третьего поколения» (“Formal Requirements for Virtualizable Third Generation Architectures”) - Communications of the ACM 17 (7): 412–421) предполагали, что успешная виртуализация должна обеспечивать такую среду, которая: Эквивалента физическому компьютеру, поэтому доступ программного обеспечения к аппаратным ресурсам и драйверам должен быть неотличим от невиртуализированного варианта. Обеспечивает полный контроль клиента над аппаратным обеспечением виртуализированной системы. По возможности эффективно выполняет операции непосредственно на базовых аппаратных ресурсах, включая ЦП. Виртуализация позволяет разделить физические ресурсы вычислений, памяти, сети и хранилища («основополагающая четверка») между несколькими объектами. Каждое виртуальное устройство представлено в своем программном обеспечении и пользовательской среде как реальный автономный объект. Грамотно настроенные виртуальные изолированные ресурсы могут обеспечить более защиту приложений приложений без видимой связи между средами. Виртуализация также позволяет создавать и запускать новые виртуальные машины почти мгновенно, а затем удалять их, когда они перестанут быть необходимыми. Для больших приложений, поддерживающих постоянно меняющиеся бизнес-требования, возможность быстрого вертикального масштабирования с повышением или понижением производительности может означать разницу между успехом и неудачей. Адаптивность, которую предлагает виртуализация, позволяет скриптам добавлять или удалять виртуальные машины за считанные секунды, а не недели, которые могут потребоваться для покупки, подготовки и развертывания физического сервера. Как работает виртуализация? В невиртуальных условиях, архитектуры х86 строго контролируют, какие процессы могут работать в каждом из четырех тщательно определенных уровней привилегий (начиная с Кольца 0 (Ring 0) по Кольцо 3). Как правило, только ядро операционной системы хоста имеет какой-либо шанс получить доступ к инструкциям, хранящимся в кольце под номером 0. Однако, поскольку вы не можете предоставить нескольким виртуальным машинам, которые работают на одном физическом компьютере, равный доступ к кольцу 0, не вызывая больших проблем, необходим диспетчер виртуальных машин (или «гипервизор»), который бы эффективно перенаправлял запросы на такие ресурсы, как память и хранилище, на виртуализированные системы, эквивалентные им. При работе в аппаратной среде без виртуализации SVM или VT-x все это выполняется с помощью процесса, известного как ловушка, эмуляция и двоичная трансляция. На виртуализированном оборудовании такие запросы, как правило, перехватываются гипервизором, адаптируются к виртуальной среде и возвращаются в виртуальную машину. Простое добавление нового программного уровня для обеспечения такого уровня организации взаимодействия приведет к значительной задержке практически во всех аспектах производительности системы. Одним из успешных решений было решение ввести новый набор инструкций в ЦП, которые создают, так называемое, «кольцо 1», которое действует как кольцо 0 и позволяет гостевой ОС работать без какого-либо влияния на другие несвязанные операции. На самом деле, при правильной реализации виртуализация позволяет большинству программных кодов работать как обычно, без каких-либо перехватов. Несмотря на то, что эмуляция часто играет роль поддержки при развертывании виртуализации, она все же работает несколько иначе. В то время как виртуализация стремится разделить существующие аппаратные ресурсы между несколькими пользователями, эмуляция ставит перед собой цель заставить одну конкретную аппаратную/программную среду имитировать ту, которой на самом деле не существует, чтобы у пользователей была возможность запускать процессы, которые изначально было невозможно запустить. Для этого требуется программный код, который имитирует желаемую исходную аппаратную среду, чтобы обмануть ваше программное обеспечение, заставив его думать, что оно на самом деле работает где-то еще. Эмуляция может быть относительно простой в реализации, но она почти всегда несет за собой значительные потери производительности. Согласно сложившимся представлениям, существует два класса гипервизоров: Type-1 и Type-2. Bare-metal гипервизоры (исполняемые на «голом железе») (Type-1), загружаются как операционная система машины и – иногда через основную привилегированную виртуальную машину – сохраняют полный контроль над аппаратным обеспечением хоста, запуская каждую гостевую ОС как системный процесс. XenServer и VMWare ESXi – яркие примеры современных гипервизоров Type-1. В последнее время использование термина «гипервизор» распространилось на все технологии виртуализации хостов, хотя раньше оно использовалось только для описания систем Type-1. Первоначально более общим термином, охватывающим все типы систем, был «Мониторы виртуальных машин». То, в какой степени люди используют термин «мониторы виртуальных машин» все это время, наводит меня на мысль, что они подразумевают «гипервизор» во всех его интерпретациях. Гипервизоры, размещенные на виртуальном узле (Type-2) сами по себе являются просто процессами, работающими поверх обычного стека операционной системы. Гипервизоры Type-2 (включая VirtualBox и, в некотором роде, KVM) отделяют системные ресурсы хоста для гостевых операционных систем, создавая иллюзию частной аппаратной среды. Виртуализация: паравиртуализация или аппаратная виртуализация Виртуальные машины полностью виртуализированы. Иными словами, они думают, что они обычные развертывания операционной системы, которые живут собственной счастливой жизнью на собственном оборудовании. Поскольку им не нужно взаимодействовать со своей средой как-то иначе, чем с автономной ОС, то они могут работать с готовыми немодифицированными программными стеками. Однако раньше за такое сходство приходилось платить, потому что преобразование аппаратных сигналов через уровень эмуляции занимало дополнительное время и циклы. В случае с паравиртуализацией (PV – Paravirtualization) паравиртуальные гости хотя бы частично осведомлены о своей виртуальной среде, в том числе и том, что они используют аппаратные ресурсы совместно с другими виртуальными машинами. Эта осведомленность означает, что хостам PV не нужно эмулировать хранилище и сетевое оборудование, и делает доступными эффективные драйверы ввода-вывода. На первых порах это позволяло гипервизорам PV достигать более высокой производительности для операций, требующих подключения к аппаратным компонентам. Тем не менее, для того, чтобы предоставить гостевой доступ к виртуальному кольцу 0 (т.е. кольцу -1), современные аппаратные платформы – и, в частности, архитектура Intel Ivy Bridge – представили новую библиотеку наборов инструкций ЦП, которая позволила аппаратной виртуализации (HVM – Hardware Virtual Machine) обойти узкое место, связанное с ловушкой и эмуляцией, и в полной мере воспользоваться преимуществами аппаратных расширений и немодифицированных операций ядра программного обеспечения. Также значительно повысить производительность виртуализации может последняя технология Intel – таблицы расширенных страниц (EPT – Extended Page Tables). В связи с этим, в большинстве случаев можно обнаружить, что HVM обеспечивает более высокую производительность, переносимость и совместимость. Аппаратная совместимость Как минимум, несколько функций виртуализации требуют аппаратную поддержку, особенно со стороны ЦП хоста. Именно поэтому вы должны убедиться, что на вашем сервере есть все, что вам необходимо для задачи, которую вы собираетесь ему дать. Большая часть того, что вам нужно знать, храниться в файле /proc/cpuinfo и, в частности, в разделе «flags» (флаги) каждого процессора. Однако вам нужно знать, то искать, потому что флагов будет очень много. Запустите эту команду, чтобы посмотреть, что у вас под капотом: $ grep flags /proc/cpuinfo Контейнерная виртуализация Как мы уже видели ранее, виртуальная машина гипервизора – это полноценная операционная система, чья связь с аппаратными ресурсами «основополагающей четверки» полностью виртуализирована – она думает, что работает на собственном компьютере. Гипервизор устанавливает виртуальную машину из того же ISO-образа, который вы загружаете и используете для установки операционной системы непосредственно на пустой физический жесткий диск. Контейнер в свою очередь фактически представляет собой приложение, запускаемое из скриптообразного шаблона, которое считает себя операционной системой. В контейнерных технологиях, таких как LXC и Docker, контейнеры – это не что иное, как программные и ресурсные (файлы, процессы, пользователи) средства, которые зависят от ядра хоста и представления аппаратных ресурсов «основополагающей четверки» (т.е. ЦП, ОЗУ, сеть и хранилище) для всего, то они делают. Конечно, с учетом того, что контейнеры фактически являются изолированными расширениями ядра хоста, виртуализация Windows (или более старых или новых версий Linux с несовместимыми версиями libc), например, на хосте Ubuntu 16.04 будет сложна или невозможна. Но эта технология обеспечивает невероятно простые и универсальные вычислительные возможности. Перемещение Модель виртуализации также позволяет использовать широкий спектр операций перемещения, копирования и клонирования даже из действующих систем (V2V). Поскольку программные ресурсы, определяющие виртуальную машину и управляющие ею, очень легко идентифицировать, то обычно не требуется очень много усилий для дублирования целых серверных сред в нескольких местах и для разных целей. Иногда это не сложнее, чем создать архив виртуальной файловой системы на одном хосте, распаковать его на другом хосте по тому же пути, проверить основные сетевые настройки и запустить. Большинство платформ предлагают единую операцию командной строки для перемещения гостей между хостами. Перемещение развертываний с физических серверов на виртуализированные среды (P2V) иногда может оказаться немного сложнее. Даже создание клонированного образа простого физического сервера и его импорт в пустую виртуальную машину может сопровождаться определенными трудностями. И как только все это будет выполнено, вам, возможно, придется внести некоторые корректировки в системную архитектуру, чтобы можно было использовать возможности, предлагаемые виртуализацией, в полную силу. В зависимости от операционной системы, которую вы перемещаете, вам также может потребоваться использование паравиртуализированных драйверов для того, чтобы ОС могла корректно работать в своем «новом доме». Как и в любых других ситуациях управления сервером: тщательно все продумывайте заранее.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59