По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня в статье рассказываем про инструменты с открытым исходным кодом, которые позволяют вам проверить скорость вашего Интернета и пропускную способность в Linux. Speedtest Speedtest - старый фаворит. Это инструмент для проверки скорости загрузки и скачивания с использованием speedtest.net. Он реализован на Python, упакован в Apt, а также доступен с pip. Вы можете использовать его как инструмент командной строки или в скрипте Python. Установите его с помощью: sudo apt install speedtest-cli Или: sudo pip3 install speedtest-cli Затем запустите его с помощью команды speedtest: speedtest Retrieving speedtest.net configuration... Testing from CenturyLink (65.128.194.58)... Retrieving speedtest.net server list... Selecting best server based on ping... Hosted by CenturyLink (Cambridge, UK) [20.49 km]: 31.566 ms Testing download speed................................................................................ Download: 68.62 Mbit/s Testing upload speed...................................................................................................... Upload: 10.93 Mbit/s Это быстрая, и пригодная для скриптов утилита, поэтому вы можете запускать его регулярно и сохранять результаты в файл или базу данных для записи скорости вашей сети с течением времени. Fast Fast - это услуга, предоставляемая Netflix. Его веб-интерфейс расположен на Fast.com, а интерфейс командной строки доступен через npm: npm install --global fast-cli И веб-сайт, и утилита командной строки предоставляют один и тот же базовый интерфейс - это простой тест скорости, и ничего лишнего: fast 82 Mbps v Команда показывает вашу скорость скачивания (download) через Интернет. Чтобы получить скорость загрузки (upload), используйте флаг -u: fast -u ? 80 Mbps v / 8.2 Mbps ^ iPerf iPerf (iPerf3) - отличный способ проверить скорость вашей локальной сети (а не скорость Интернета, как это делают два предыдущих инструмента). Пользователи Debian, Raspbian и Ubuntu могут установить его с помощью apt: sudo apt install iperf [Debian/Ubuntu] yum install epel-release [RHEL/CentOS] yum install iperf3 [RHEL/CentOS] iPerf также доступен в Window и Mac После установки вам понадобятся два компьютера в одной сети, чтобы использовать его (на обоих должен быть установлен iPerf). Один мы будем использовать в качестве сервера. Узнайте IP-адрес сервера: ip addr show | grep inet.*brd Запустите iperf на сервере: iperf -s Это компьютер входящих соединений от клиентов. Теперь запустите на втором компьютере iperf с флагом -c и укажите ip-адрес сервера. iperf -c server_address NetHogs NetHogs это утилита для проверки полосы пропускания, который группирует информацию по процессам. Это может быть полезно, чтобы понять кто занимает всю полосу пропускания. NetHogs входит во многие дистрибутивы. Для его установки используйте: yum install epel-release [RHEL/CentOS] yum install nethogs [RHEL/CentOS] apt install nethogs [Debian/Ubuntu] Для запуска используйте: sudo nethogs Вы можете указать определенный интерфейс после команды: sudo nethogs eth0 Также у команды есть дополнительные параметры, такие как выбор задержки для частоты обновления -d, информации о версии -V, tracemode -t. nload nload позволяет отслеживать сетевой трафик и использование полосы пропускания в режиме реального времени, с большим количеством дополнительной информации, такой как: общий объем передаваемых данных, минимальное и максимальное использование сети и многое другое. Также nload строит графики входящего и исходящего трафика. Опции nload: device - выбор интерфейса -a - промежуток в секундах, для подсчитывания среднего значения -i - стопроцентная планка на графике пропускной способности в kBit/s -m - отображение нескольких интерфейсов, без графика -t - интервал обновления в миллисекундах -u - режим отображения: Bit/s, kBit/s, MBit/s Для установки используйте: sudo apt install nload [Debian/Ubuntu] yum install epel-release [RHEL/CentOS] um install nload [RHEL/CentOS] Для запуска: nload CBM – Color Bandwidth Meter CBM - очень простой инструмент, который отображает сетевой трафик на всех подключенных устройствах. Удобство заключается в том, что команды отображаются в нижней части терминала. Для установки используйте команду: sudo apt install cbm -y [Debian/Ubuntu] yum install epel-release [RHEL/CentOS] yum install cbm [RHEL/CentOS] После этого просто запустите: cbm vnStat vnStat - это монитор сетевого трафика, который использует статистику сетевого интерфейса, предоставляемую ядром, что означает что он не будет перехватывать трафик и в результате гарантирует низкую загрузку ЦПУ. Особенность vnStst в том, что он сохраняет все данные в собственной базе. vnStat также предоставляет веб-интерфейс на основе php для отображения графической статистики. Для настройки веб-интерфейса vnStat в вашей системе должны быть установлены пакеты Apache, php и php-gd. Для установки используйте команду: sudo apt install vnstat [Debian/Ubuntu] sudo yum install epel-release [RHEL/CentOS] sudo yum install vnstat [RHEL/CentOS] Для запуска: vnstat iftop iftop - это инструмент для мониторинга, который создает обновляемый список сетевых подключений между парами хостов в реальном времени. Для установки используйте: sudo apt install iftop [Debian/Ubuntu] yum install epel-release[RHEL/CentOS] yum install iftop [RHEL/CentOS] Для запуска: sudo iftop Будет произведен запуск с мониторингом всех интерфейсов. slurm slurm - это еще один инструмент мониторинга сетевой нагрузки для linux, который показывает результаты в графике ascii. Команды для установки: sudo apt-get install slurm [Debian/Ubuntu] sudo yum install slurm -y [RHEL/CentOS]
img
Предыдущая статья этого цикла: Устранение неполадок коммутации Cisco Следующая статья этого цикла: Устранение неисправностей EtherChannel Case #1 На рисунке представлена топология, состоящая из трех коммутаторов, и между коммутаторами у нас есть два канала связи для резервирования. Коммутатор А был выбран в качестве корневого моста для VLAN 1. Когда вы имеете дело со связующим деревом, лучше всего нарисовать небольшую схему сети и записать роли интерфейса для каждого коммутатора (назначенного, не назначенного/альтернативного или заблокированного). Обратите внимание, что одним из каналов связи между коммутатором A и коммутатором C является интерфейс Ethernet (10 Мбит). Все остальные каналы — это FastEthernet. Мы используем команду show spanning-tree для проверки ролей интерфейса для коммутатора A и коммутатора C. Вы видите, коммутатор C выбрал свой интерфейс Ethernet 0/13 как корневой порт, а интерфейс FastEthernet 0/14 выбран в качестве альтернативного порта. Это не очень хорошая идея. Это означает, что мы будем отправлять весь трафик вниз по линии 10 Мбит, в то время как 100 Мбит не используется вообще. Когда коммутатор должен выбрать корневой порт он выберет его следующим образом: Выбирается интерфейс, который имеет самую низкую стоимость для корневого моста. Если стоимость равная, выбирается наименьший номер интерфейса. Обычно стоимость интерфейса Ethernet выше, чем Fast Ethernet, поэтому он должен выбрать интерфейс FastEthernet. Почему коммутатор выбрал интерфейс Ethernet 0/13? Мы видим, что интерфейс Ethernet 0/13 и FastEthernet0/14 имеют одинаковую стоимость. Затем коммутатор С выберет самый низкий номер интерфейса, который является interface Ethernet 0/13. После проверки конфигурации интерфейса, видно, что кто-то изменил стоимость интерфейса на 19 (по умолчанию для интерфейсов FastEthernet). SwitchC(config)#interface Ethernet 0/13 SwitchC(config-if)#no spanning-tree cost 19 Уберем настройки команды cost. После того, как мы убрали настройки команды cost, видно, что состояние порта изменилось. FastEthernet 0/14 теперь является корневым портом, а стоимость интерфейса Ethernet 0/13 равна 100 (это значение по умолчанию для интерфейсов Ethernet). Задача решена! Извлеченный урок: убедитесь, что интерфейс, которым вы хотите сделать в качестве корневого порта, имеет наименьшую стоимость пути. Case #2 Итак, новый сценарий. Все интерфейсы равны (FastEthernet). Коммутатор A является корневым мостом для VLAN 10, и после проверки ролей интерфейса мы находим следующее: Хм, интересно... Коммутатор A является корневым мостом, а FastEthernet 0/17 был выбран в качестве резервного порта. Это то, что вы видите каждый день. Коммутатор B выбрал корневой порт, а все остальные интерфейсы являются альтернативными портами. Мы ничего не видим на коммутаторе С. Мы видим, что Коммутатор A и Коммутатор B используют связующее дерево для VLAN 10. Коммутатор C, однако, не использует связующее дерево для VLAN 10. В чем может быть проблема? Конечно, неплохо проверить, работают ли интерфейсы на коммутаторе C или нет (но, конечно, это то, что вы уже изучили и сделали в первой статье). Интерфейсы выглядят хорошо. VLAN 10 активна на всех интерфейсах коммутатора C. Это означает, что остовное дерево должно быть активным для VLAN 10. Давайте еще раз посмотрим на это сообщение. Это говорит о том, что остовное дерево для VLAN 10 не существует. Есть две причины, по которым можно увидеть это сообщение: Для VLAN 10 нет активных интерфейсов. Spanning-дерево было отключено для VLAN 10. Мы подтвердили, что VLAN 10 активна на всех интерфейсах коммутатора C, поэтому, может быть, связующее дерево было отключено глобально? SwitchC(config)#spanning-tree vlan 10 Вот так выглядит лучше! Теперь связующее дерево включено для VLAN 10 и работает ... проблема решена! Эта проблема может показаться немного странной, но она появляется ее время от времени в реальном мире. Сценарий, который мы рассмотрели раньше, - это событие из реальной жизни, где клиент, которому поставщик беспроводной связи отключил остовное дерево для интерфейсов, которые подключаются к точке беспроводного доступа. Ниже то, что клиент ввел на коммутаторе: SwitchC(config)#interface fa0/1 SwitchC(config-if)#no spanning-tree vlan 10 SwitchC(config)# В интерфейсе они набрали no spanning-tree vlan 10, но как вы видите, что они оказались в режиме глобальной конфигурации. Нет команды для отключения остовного дерева на интерфейсе, подобного этой, поэтому коммутатор думает, что вы ввели глобальную команду для отключения остовного дерева. Коммутатор принимает команду отключения остовного дерева для VLAN 10 и возвращает вас в режим глобальной конфигурации... проблема решена! Извлеченный урок: проверьте, включено ли связующее дерево. Case #3 Давайте продолжим по другому сценарию! Та же топология... наш клиент жалуется на плохую работу. Начнем с проверки ролей интерфейсов: Посмотрите на картинку выше. Видите ли вы, что интерфейс FastEthernet 0/16 на коммутаторе B и коммутаторе C обозначены? На Коммутаторе A все интерфейсы обозначены. Как вы думаете, что произойдет, когда один из наших коммутаторов переадресует трансляцию или должен передать кадр? Правильно! У нас будет цикл ... Обычно в этой топологии интерфейсы FastEthernet 0/16 и 0/17 на коммутаторе C должны быть альтернативными портами, поскольку коммутатор C имеет худший ID моста. Так как они оба обозначены, мы предполагаем, что Коммутатор C не получает BPDU на этих интерфейсах. Так почему же остовное дерево провалилось здесь? Здесь важно помнить, что связующему дереву требуются блоки BPDU, передаваемые между коммутаторами для создания топологии без петель. BPDU могут быть отфильтрованы из-за MAC access-lists, VLAN access-maps или из-за spanning-tree toolkit? SwitchA#show vlan access-map SwitchB#show vlan access-map SwitchC#show vlan access-map Ни на одном из коммутаторов нет VLAN access maps. SwitchA#show access-lists SwitchB#show access-lists SwitchC#show access-lists Нет списков доступа... Нет port security... как насчет команд, связанных с остовным деревом? Вот что-то есть!Фильтр BPDU был включен на интерфейсах FastEthernet 0/16 и 0/17 коммутатора B. Из-за этого коммутатор C не получает BPDU от коммутатора B. SwitchB(config)#interface fa0/16 SwitchB(config-if)#no spanning-tree bpdufilter enable SwitchB(config-if)#interface fa0/17 SwitchB(config-if)#no spanning-tree bpdufilter enable Удалим настройки фильтра BPDU. Теперь вы видите, что FastEthernet 0/16 и 0/17 являются альтернативными портами и блокируют трафик. Наша топология теперь без петель... проблема решена! Извлеченный урок: убедитесь, что блоки BPDU не заблокированы и не отфильтрованы между коммутаторами. Case #4 Новая топология. Коммутатор A был выбран в качестве корневого моста для VLAN 10. Все интерфейсы являются FastEthernet каналами. После использования команды show spanning-tree vlan 10 вот, что мы видим. Все интерфейсы одинаковы, но по какой-то причине коммутатор B решил выбрать FastEthernet 0/16 в качестве корневого порта. Разве вы не согласны с тем, что FastEthernet 0/13 должен быть корневым портом? Стоимость доступа к корневому мосту ниже, чем у FastEthernet 0/16. Используем команду show spanning-tree interface, чтобы проверить информацию о spanning-tree для каждого интерфейса. Как вы можете видеть, существует только связующее дерево для VLAN 1, активное на интерфейсе FastEthernet 0/13 и 0/14. Есть несколько вещей, которые мы могли бы проверить, чтобы увидеть, что происходит: Во-первых, всегда полезно проверить, активно ли связующее дерево для определенной VLAN. Можно отключить spanning-tree с помощью команды no spanning-tree vlan X. В этом сценарии связующее дерево активно для VLAN 10, потому что мы можем видеть на FastEthernet 0/16 и 0/17. Мы знаем, что остовное дерево активно глобально для VLAN 10, но это не значит, что оно активно на всех интерфейсах. Мы можем использовать команду show interfaces switchport, чтобы проверить, работает ли VLAN 10 на интерфейсе FastEthernet 0/13 и 0/14. Это отобразит нам некоторую интересную информацию. Вы видите, что эти интерфейсы оказались в режиме доступа, и они находятся в VLAN 1. SwitchB(config)#interface fa0/13 SwitchB(config-if)#switchport mode trunk SwitchB(config-if)#interface fa0/14 SwitchB(config-if)#switchport mode trunk Давайте изменим режим интерфейсов на магистральный, чтобы трафик VLAN 10 мог проходить через эти интерфейсы. Ну вот, теперь все намного лучше выглядит. Трафик VLAN 10 теперь передается по интерфейсу FastEthernet 0/13 и 0/14, и вы видите, что интерфейс FastEthernet 0/13 теперь выбран в качестве корневого порта. Задача решена! Извлеченный урок: убедитесь, что VLAN активна на интерфейсе, прежде чем рассматривать проблемы связующего дерева. В следующей статье мы расскажем, как траблшутить проблемы с EtherChannel.
img
В обычной корпоративной сети доступ к серверам из филиалов организации может осуществляться, чаще всего, подключением к серверам, расположенным в центральном офисе. Но при расположении серверной инфраструктуры в облаке параметры связи рабочих станций с серверами будут зависеть уже не от канала связи от каждого конкретного филиала до центрального офиса, а от канала связи всех отделений организации с ЦОД облачного провайдера, чьими услугами пользуется организация для формирования облачной инфраструктуры. Переход в облака поставил перед разработчиками ПО и сетевыми инженерами ряд новых условий, вызывающих задержку сигнала, которые им приходится учитывать для формирования качественного доступа к данным в облаке. Например, задержка длительностью 500мс приводит к снижению трафика Google на 20%, а задержка в 100мс сокращает продажи Amazon на 1%. Время задержки может быть очень важным аспектом во время работы с виртуальными рабочими столами (VDI), потоковым вещанием, трейдингом, передовыми web-сервисами, базами данных, терминальными приложениями. Но задержка не столь критична для таких сервисов как электронная почта или работа с документами. QoS и SLA Существует проблема обеспечения необходимого качества обслуживания (QoS). Разные виды трафика имеют различные требования к рабочим характеристикам сети. Чувствительность видов трафика была взята из и показана в таблице 1 Таблица 1. Чувствительность различных приложений сетевым характеристикам Тип трафика Уровень чувствительности к сетевым характеристикам Полоса пропускания Потери Задержка Джиттер Голос Очень низкий Средний Высокий Высокий Электронная коммерция Низкий Высокий Высокий Низкий Транзакции Низкий Высокий Высокий Низкий Электронная почта Низкий Высокий Низкий Низкий Telnet Низкий Высокий Средний Низкий Поиск в сети "от случая к случаю" Низкий Средний Средний Низкий Постоянный поиск в сети Средний Высокий Высокий Низкий Пересылка файлов Высокий Средний Низкий Низкий Видеоконференция Высокий Средний Высокий Высокий Мультикастинг Высокий Высокий Высокий Высокий Рекомендации МСЭ-Т по обеспечению QoS для сетей описываются в рекомендациях Y.1540 - стандартные сетевые характеристики для передачи пакетов в сетях IP, и Y.1541 нормы для параметров, определенных в Y.1540. Данные рекомендации важны для всех участников сети: провайдеров и операторов, пользователей и производителей оборудования. При создании оборудования, планировании развертывания и оценке сетей IP, оценка качества функционирования сети все будут опираться на соответствие характеристик требованиям потребителей. Основные характеристики, рассматриваемые в рекомендации Y.1540: производительность сети; надежность сети/сетевых элементов; задержка; вариация задержки (jitter); потери пакетов. Подробнее о данных характеристиках следует прочитать в вышеназванных рекомендациях. В таблице 2 указаны нормы на определенными в Y.1540 характеристики и распределены по классам качества обслуживания (QoS). Таблица 2 - Нормы для характеристик сетей IP с распределением по классам QoS Сетевые характеристики Классы QoS 0 1 2 3 4 5 Задержка доставки пакета IP, IPTD 100 мс 400 мс 100 мс 400 мс 1 с Н Вариация задержки пакета IP, IPDV 50 мс 50 мс Н Н Н Н Коэффициент потери пакетов IP, IPLR 1х10 3 1х10 3 1х10 3 1х10 3 1х10 3 Н Коэффициент ошибок пакетов IP, IPER 1х10 4 1х10 4 1х10 4 1х10 4 1х10 4 Н Примечание: Н не нормировано. Рекомендация Y.1541 устанавливает соответствие между классами QoS и приложениями: Класс 0 приложения реального времени, чувствительные к джиттеру, характеризуемые высоким уровнем интерактивности (VoIP, видеоконференции); Класс 1 приложения реального времени, чувствительные к джиттеру, интерактивные (VoIP, видеоконференции); Класс 2 транзакции данных, характеризуемые высоким уровнем интерактивности (например, сигнализация); Класс 3 транзакции данных, интерактивные; Класс 4 приложения, допускающие низкий уровень потерь (короткие транзакции, массивы данных, потоковое видео) Класс 5 традиционные применения сетей IP. Таким образом некоторые из облачных сервисов вполне могут попадать в классы 0 и 1, а значит следует учитывать время задержки и стараться сделать так, чтобы она не превышала 100 мс. Задержки в сетях Подключение к облаку через VPN аналогично подключению к центральному офису организации по VPN, за исключением лишь того, что если в обычной корпоративной сети все филиалы организации подключались к центральному офису, то теперь подключение филиалов и центрального офиса в том числе будет осуществляться к ЦОД облачного провайдера. Для проверки задержки в большинстве ОС используется команда ping, а для проверки пути прохождения пакета команда tracert, которые подробнее рассмотрим ниже. Предположим, что домашняя сеть является подобием корпоративной сети малого предприятия. В таблице в приложении А собраны данные из статьи с указанием расположения ЦОД. Воспользуемся этими данными чтобы проверить задержку сигнала от текущей домашней сети, расположенной в городе Москва, без учета VPN, до web-сервера некоторых компаний, владеющих, ЦОД, расположенных в разных городах, тем самым проверяя разницу в задержке в зависимости от расположения ЦОД облачного провайдера. Для проверки задержки воспользуемся "Командной строкой" Windows и командами ping и tracert. Команда ping используется для проверки целостности и качества соединения в сети на основе протоколов TCP/IP. Команда tracert строит маршрут через коммутационные узлы между компьютером и конечным сервером и выводит их IP-адреса и время задержки. На рисунках 1 и 2 представлена системная справка по командам, соответственно, tracert и ping. Проведем тест проверки задержки до домена DataLine dtln.ru, расположенного ближе всего к домашней сети (рисунки 3 и 4). Как видно из результатов на рисунке 5.3, было передано и получено 4 пакета объемом 32 байта. Время обмена одним пакетом составило 1 миллисекунду. Команда tracert вывела следующие данные: 1, 2, 3 - номер перехода; <1 мс <1 мс <1 мс время ответа для 3-х попыток (в данном случае все попытки менее 1 мс); 185.3.141.232 IP-адреса (в данном случае IP-адрес домена dtln.ru) Согласно проверке данного IP на сайте 2ip.ru, данный домен базируется по тому же адресу на карте, что и указано в таблице в приложении Б. Таким образом можно сделать вывод, что web-сервер большинства компаний из списка вероятнее всего находится на территории одного из их ЦОД, но даже если и нет, то позволяет сделать выводы о доступности ресурса. Аналогично проверим ping для остальных компаний, результаты представим на рисунке 5.5. В качестве опорного времени задержки будет использовано среднее и максимальное время приема-передачи. Из данных рисунка 5 можно сделать вывод, что среднее значение времени задержки в пределах Москвы из сети, также находящейся в пределах Москвы, чаще всего не превышает 10мс. Можно сравнить данные значения с ping до серверов Amazon Web Services в разных регионах с сайта cloudping.info (рисунок 6). VPN без шифрования теоретически позволил бы сократить эту задержку в связи с использованием "прямого туннеля" между "офисом" и ЦОД. Шифрование будет вносить уже свою задержку, проверить которую в данных условиях нет возможности. В локальных сетях корпоративной сети и сети ЦОД задержка исчисляется в микросекундах. В сети ЦОД предъявляются высокие требования к быстродействию сети, современные решения Ethernet для ЦОД должны быть широкополосными и поддерживать скорости 10, 25, 40, 50, 100 Гбит/с, обеспечивать низкие задержки до 1-2 мкс для связи серверов (через три коммутатора), и многие другие. Скорость интернет-канала Передача видео через сети связи, будь то видео с камер наблюдения или же видеоконференции, являются одними из самых требовательных с скорости передачи данных. Если для работы с документами может быт достаточно скорости в 100 Кбит/с, то для передачи видео понадобится уже примерно 2 Мбит/с. Для некоторых приложений, таких как IP-телефония, желательно, чтобы уровень задержек был низким, а мгновенная пропускная способность канала была больше определенного порогового значения: не ниже 24 Кбит/с для ряда приложений IP-телефонии, не ниже 256 Кбит/с для приложений, обрабатывающих видеопоток в реальном времени. Для некоторых приложений задержки не так критичны, но, с другой стороны, желательна высокая пропускная способность, например, для передачи файлов. Например, компания Ivideon предлагает услуги облачного видеонаблюдения, и у них на сайте даются следующие требования к интернет-каналу для разного качества видеопотока. Данные представлены в таблице 3. Таблица 3 Требования к интернет-каналу для одной камеры видеонаблюдения при разных разрешения при частоте 25 кадров/сек Разрешение Качество изображения Рекомендуемая скорость 1280х720 (1Mpx) /25к/с 1 Мбит/с 1920x1080 (2Mpx) /25к/с 2 Мбит/с 2048x1536 (3Mpx) /25к/с 2 Мбит/с 2592x1728 (4Mpx) /25к/с 2 Мбит/с Но для работы с терминальными сессиями достаточно канала в 128-256 Кбит/с на пользователя. Для 50 пользователей понадобится 6.25 Мбит/с. Компания 1cloud.ru при выборе ширины канала связи предлагает скорость соединения в диапазоне от 10 до 100 Мбит/с для доступа к виртуальному серверу. Внутри облака сетевые соединения между виртуальными машинами имеют пропускную способность в 1 Гбит/с. RDP-сессия Для теста потребления трафика при использовании удаленного подключения RDP был проведен эксперимент. Два персональных компьютера находятся в одной локальной сети и подключены к интернету. Один выступает сервером удаленного доступа, второй подключается к нему посредством встроенной в Windows программы "Подключение к удаленному рабочему столу" по протоколу RDP. На сервере запускается видео в интернете. Для захвата трафика и анализа используется ПО Wireshark Параметры подключения: размер удаленного рабочего стола 1920х1080 глубина цвета 15 бит выбранная скорость соединения 56 Кбит/с дополнительные возможности отключены (рисунок 7) Wireshark программа для захвата и анализа сетевого трафика. Данная программа работает с подавляющим большинством известных протоколов, имеет понятный и логичный графический интерфейс, и мощнейшую систему фильтров. Во время подключения к удаленному рабочему столу программа замеряла отправленные и поступившие пакеты данных. Эти пакеты были отфильтрованы по IP-адресу сервера, а также по протоколу RDP. Интерфейс программы представлен на рисунке 8. График ввода/вывода данных по IP-адресу сервера по протоколу RDP представлен на рисунке 9. На графике на рисунке 9 видно два "всплеска" данных, т.е. две сессии подключения к серверу. Во время первой сессии проводилась работа с тяжеловесным графическим приложением. Во время второй сессии было включено видео, затем производился web-серфинг в браузере машины с некоторыми графическими материалами на странице. Как видно по графику, в пиковый момент была передача данных 5.5 Мбит/с. В последние моменты web-серфинга 0,65 Мбит/с. Таким образом можем сделать вывод, что протокол RDP не укладывается в ранее заявленный диапазон до 128 Кбит/с. Однако стоит учитывать, что RDP-сессия изначально очень требовательна к сети и является, по сути, передачей видеотрафика. Общедоступной информации в сети для анализа влияния облачной инфраструктуры на сеть, по крайней мере в русскоязычном сегменте интернета, чрезвычайно мало. Исследований по теме облачных вычислений недостаточно для заключения результата, и, в основном, это анализы финансовых затрат или производительности серверов. Наиболее подходящей темой для дискуссий на тему влияния облачной инфраструктуры на сеть могут служить только качество обслуживания (QoS) и договор о предоставлении услуг SLA, но данные темы слишком обширны и требует более углубленного внимания, а вопросы, связанные с ними, требуют внимания соответствующих специалистов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59