По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этой статье расскажем что такое хеш, хеширование и рассмотрим какие есть алгоритмы хеширования. Что такое хеширование? Хеширование означает использование некоторой функции или алгоритма для сопоставления данных объекта с некоторым репрезентативным целочисленным значением. Результат этой функции известен как хеш-значение или просто хэш (hash). Хорошая хеш-функция использует алгоритм одностороннего хеширования, или, другими словами, хэш нельзя преобразовать обратно в исходный ключ. Обеспечение того, чтобы данные не изменялись (модифицировались) во время передачи, очень важно, и чтобы помочь нам определить, сохраняется ли целостность сообщения, мы можем использовать алгоритмы хеширования. Алгоритмы хеширования предназначены для получения входных данных, например, строки текста или файла, а затем использования односторонней функции для создания дайджеста. Дайджест (digest) - это хеш-представление ввода, и его нельзя отменить. Каждый уникальный файл или сообщение генерирует уникальное хеш-значение (дайджест). Это означает, что, если данные каким-либо образом изменены, значение хеш-функции будет однозначно другим. На следующем рисунке показан процесс одностороннего хеширования: Как этот процесс работает между устройствами? Представьте, что отправитель, хост A, хочет отправить сообщение на устройство назначения, хост B. Вместо того, чтобы хост A отправлял сообщение как есть, хост A создаст дайджест сообщения. Как только в дайджесте будет создано сообщение, хост A отправит и сообщение, и дайджест хосту B. На следующем рисунке показано, что хост A отправляет сообщение с дайджестом хосту B: Когда хост B получает сообщение от источника, он также создает дайджест сообщения и сравнивает его с дайджестом, полученным от хоста A. Если оба значения хеш-функции (дайджесты) совпадают, это означает, что сообщение не было изменено во время передачи. Однако, если значения дайджеста различаются, это означает, что где-то по пути сообщение было изменено и, следовательно, содержимое сообщения не совпадает. Возможно ли, что два разных файла будут иметь одинаковое хеш-значение? Хотя алгоритмы хеширования предназначены для создания уникального дайджеста для каждого уникального файла, в прошлом были случаи, что у двух разных файлов одно и то же значение хеш-функции. Это известно, как хэш-коллизия. Если произошла коллизия хеширования, это означает, что алгоритм хеширования, используемый во время процесса, уязвим, и ему не следует доверять. Однако некоторые из самых популярных алгоритмов хеширования, которые используются в настоящее время, подвержены коллизии хеширования. Алгоритмы хеширования Message Digest 5 (MD5) - это алгоритм хеширования, который создает 128-битный дайджест. Алгоритм MD5 был реализован во многих системах на протяжении многих лет и работал хорошо до тех пор, пока не произошла коллизия хеширования. Это сделало MD5 уязвимым алгоритмом хеширования, который больше не рекомендуется. На следующем рисунке представлен процесс хеширования MD5: Как показано на предыдущей диаграмме, сообщение отправляется алгоритму MD5, который затем преобразуется в 128-битный дайджест. Хотя MD5 все еще используется во многих системах, рекомендуется использовать более безопасную функцию, такую как Secure Hashing Algorithm 2 (SHA-2). Еще одна хорошо известная функция хеширования - это Secure Hashing Algorithm 1 (SHA-1). Этот алгоритм хеширования был создан еще в 1990-х годах Национальным институтом стандартов и технологий (NIST). NIST разработал этот алгоритм с функциями, аналогичными MD5. Одним из основных преимуществ использования SHA-1 для проверки целостности является то, что он создает 160-битный дайджест любого сообщения или файла. На следующем рисунке представлена функция SHA-1: Хотя SHA-1 считается лучше, чем MD5, так как создает более крупный дайджест, он работает медленнее, чем MD5, и содержит уязвимости в самом алгоритме. Однако NIST разработал более новую версию, известную как SHA-2. SHA-2 позволяет создавать дайджест с использованием битов большого размера, таких как: SHA-224 (224 bit) SHA-256 (256 bit) SHA-384 (384 bit) SHA-512 (512 bit) Имейте в виду, что даже если вы знаете, что для проверки целостности сообщения использовалось хеширование, оно все равно уязвимо для атаки MiTM. Представьте, что источник отправляет сообщение с хеш-значением. Злоумышленник может перехватить сообщение, изменить его содержимое и пересчитать новый хэш перед его отправкой адресату. Чтобы помочь получателю проверить подлинность источника, нам нужно применить Hash Message Authentication Code (HMAC) к нашему процессу хеширования. Чтобы добавить аутентификацию источника во время процесса хеширования, добавляется HMAC. HMAC - это секретный ключ, который объединяет входное сообщение с алгоритмом хеширования, таким как MD5 или SHA-1, для создания уникального дайджеста. На следующем рисунке показано использование HMAC с функцией хеширования: Поскольку этот секретный ключ (HMAC) используется только отправителем и предполагаемым получателем, значение выходного дайджеста будет просто зависеть от фактического входного сообщения (данных) и секретного ключа, используемого для применения дополнительного уровня безопасности для аутентификации источника. Поскольку источник и место назначения будут единственными сторонами, которые знают секретный ключ (значение HMAC), атака MiTM не будет успешной с точки зрения нарушения целостности любых сообщений, которые проходят через сеть. На следующем скриншоте показан секретный ключ (HMAC), примененный к строке текста: Как показано на предыдущем рисунке, текстовая строка (сообщение) была объединена с секретным ключом и обработана с использованием алгоритма хеширования MD5 и SHA-1 для создания уникального дайджеста.
img
Кэш DNS может быть поврежден по ряду причин, включая сетевые атаки или вирусы. Когда это происходит, сопоставление IP-адресов становится поврежденным для некоторых популярных веб-сайтов. Например, вместо того, чтобы заходить на сайт www.google.com, ваш браузер может перенаправить вас на IP-адрес вредоносного веб-сайта, который злоумышленник вставил в записи DNS вашего компьютера. Или вы можете получить большое количество ошибок 404. Очистка кеша DNS удаляет всю сохраненную информацию поиска DNS. Затем ваш компьютер получает обновленные данные с DNS-серверов при следующей отправке запроса на поиск. Как очистить кэш DNS в Windows Очистка кеша DNS - это простой и быстрый процесс. Процедура одинакова для почти всех систем Windows. Для примера ниже мы будем использовать Windows 10. Чтобы очистить DNS на вашем компьютере с Windows: Загрузите командную строку от имени администратора. Откройте меню «Пуск» и начните вводить "командная строка" или "cmd", пока не увидите ее в результатах. Введите ipconfig/flushdns, когда командная строка загрузится, и нажмите Enter на клавиатуре. Процесс должен занять всего несколько секунд. Вы должны увидеть подтверждающее сообщение DNS Resolver Cache, когда это будет сделано: База данных кэша DNS на вашем компьютере теперь очищена. Вы должны получить правильное и обновленное сопоставление IP-адресов с DNS-серверов в следующий раз, когда ваш компьютер отправит DNS-запрос. Очистить кэш DNS на Mac Есть несколько разных команд для очистки кеша DNS в OS X и macOS в зависимости от используемой версии. Поскольку процедура одинакова для всех версий, в этой статье подробно описано, как очистить DNS в macOS Mojave (10.14), а затем перечислены команды для других версий в таблице. Сброс DNS на MacOS Mojave (версия 10.14) Чтобы очистить кэш DNS на MacOS Mojave, используйте приложение Terminal: Запустите Terminal.app, используя ваш предпочтительный метод. Вы можете запустить приложение из Приложения -> Утилиты или нажать Ctrl + Space, чтобы запустить Spotlight и выполнить поиск терминала. Введите sudo killall -HUP mDNSResponder и нажмите Enter на клавиатуре. Введите пароль администратора для рассматриваемой учетной записи и нажмите Enter. После окончания процесса не будет никаких оповещений Команды для очистки DNS-кэша в старых версиях macOS и Mac OS X В таблице ниже перечислены команды для очистки кэша DNS в большинстве версий MacOS и Mac OS X. Вы можете скопировать и вставить их прямо из таблицы в свой терминал. Mac OS X или macOS версияКоманда терминалаMojave (version 10.14)High Sierra (version 10.13)Sierra (version 10.12)Mountain Lion (version 10.8)Lion (version 10.7)sudo killall -HUP mDNSRespondeEl Capitan (version 10.11)Mavericks (version 10.9)sudo dscacheutil -flushcache sudo killall -HUP mDNSResponderYosemite (version 10.10)sudo discoveryutil mdnsflushcache sudo discoveryutil udnsflushcachesSnow Leopard (version 10.6)Leopard (version 10.5)sudo dscacheutil -flushcacheTiger (version 10.4)lookupd -flushcache Как очистить кэш DNS в Linux Дистрибутивы Linux немного отличаются от компьютеров с Windows и Mac. Каждый дистрибутив Linux может использовать свою службу DNS. Некоторые дистрибутивы, такие как Ubuntu, вообще не имеют службы DNS по умолчанию. Это зависит от того, какая служба используется в вашем дистрибутиве и включена ли она по умолчанию. Некоторые из них - NCSD (Name Service Caching Daemon), dnsmasq и BIND (Berkely Internet Name Domain). Для каждого дистрибутива вам нужно запустить окно терминала. Нажмите Ctrl + Alt + T на клавиатуре и используйте соответствующую команду, чтобы очистить кэш DNS для службы, работающей в вашей системе Linux. Очистить локальный DNS-кэш NCSD Используйте эту команду для очистки DNS-кэша NCSD на вашем Linux-компьютере: sudo /etc/init.d/nscd restart Введите свой пароль, если это необходимо. Процесс останавливается, а затем запускает службу NCSD в течение нескольких секунд. Очистить локальный DNS-кэш dnsmasq Используйте эту команду для очистки DNS-кэша dnsmasq на вашем Linux-компьютере: sudo /etc/init.d/dnsmasq restart Введите пароль еще раз, если терминал попросит вас. Вы увидите ответ, когда служба останавится и запустится снова. Очистить локальный DNS-кэш BIND Если вы используете BIND для службы DNS, есть несколько команд, которые вы можете использовать для очистки его кеша DNS. Вам может потребоваться ввести пароль для завершения процесса. sudo /etc/init.d/named restart sudo rndc restart sudo rndc exec Примечание: BIND также позволяет указывать конкретные домены при выполнении сброса DNS. Просто добавьте flushname и имя домена в команду sudo rndc. Например:sudo rndc flushname wiki.merionet.ru
img
Для присоединения к другим телефонным станциям, в SoftX3000 создаются транковые группы разных типов. Для начала рассмотрим порядок создания SIP-транка, который чаще всего используется для подключения небольших АТС предприятий УПАТС. Для начала следует определиться с правилами нумерации транков и сопутствующих записей внутри нашей АТС. Например, пусть SIP-транки будут иметь нумерацию с 1 по 100, транки ОКС-7 со 101 п 199. В рамках одного транка все команды и записи удобно будет вести с одним номером, чтобы было проще ориентироваться в настройках позже. ADD OFC этой командой создаем направление. Здесь параметры имеют следующее назначение: Office direction number порядковый номер направления. На этот номер будем ссылаться в других команда и таблицах. Office direction name название направления. Для удобства идентификации можно указать любое название. Peer office type тип удаленной станции, может принимать значения: PBX - УПАТС СС местная сельская АТС CMPX местная городская и сельская АТС NATT междугородная АТС INTT международная АТС Peer office level - уровень противоположной станции по отношению к текущей. Значения: HIGH выше текущей станции SAME одного уровня LOW ниже текущей ADD SRT создаем подмаршрут, который будет привязан непосредственно к транку. Можно создать несколько подмаршрутов и объединить их в один маршрут: при проблемах с первым подмаршрутом в списке станция будет пытаться использовать следующий. Параметры команды: Sub-route number порядковый номер подмаршрута. Можно установить любой свободный номер, но предпочтительнее, чтобы он совпадал с номером OFC, заданный в предыдущей команде. Office direction number номер OFC, который задан в предыдущей команде. Sub-route name название подмаршрута любое удобное название. ADD RT создаем маршрут, в котором указываем один или несколько подмаршрутов, созданных предыдущей командой. Если указано несколько подмаршрутов, станция будет пытаться использовать первый в списке, если он не доступен, то следующий по списку. Параметры команды: Route number порядковый номер маршрута. Любое число, но, по договоренности, устанавливаем то же значение, что и в командах ранее. Route name произвольное название. 1 st sub-route первый подмаршрут. Указываем номер подмаршрута, созданного в предыдущей команде. Остальные параметры необходимы, если создано несколько подмаршрутов и необходимо настроить параметры выбора между ними. ADD RTANA правило выбора маршрута. Эта таблица определяет по какому маршруту будет направлен вызов, основываясь на многочисленных параметрах вызова, среди которых: категория абонента, тип А-номера, дополнительный атрибут абонента прочие. Параметры команды: Route selection code код выбора маршрута. На этот код ссылается запись в таблице префиксов CNACLD Route selection source code этот код является одним из параметров callsrc. Caller category категория абонента, задается при создании абонента в командах ADD VSBR или ADD MSBR. Caller category категория абонента, устанавливается в командах ADD VSBR или ADD MSBR в параметре Subscriber type. Так же можно применить данное свойство для транзитных вызовов, задав категорию в команде ADD CNACLR. Service attribute указывает, какие типы вызовов могут использовать данный маршрут (INTT - международные, NATT - междугородные, CITY - местные, ALL - любые) Caller access если необходимо, чтобы маршрут могли выбрать только абоненты ISDN, выбрать ISDN, если только не ISDN-абоненты, то NONISDN. Transmission capability тип поддерживаемого трафика (голос, данные, видео и прочее) Time index временной индекс. Если в станции используется маршрутизация по временным меткам. Если не используется, устанавливается значение по-умолчанию 0. Route number номер маршрута, который задан в команде ADD RT. Signaling as prior приоритет выбора подмаршрута в соответствии с типом сигнализации. Nature of callee address indicator тип вызываемого номера (International, National, Subscriber, ALL) Customized caller type дополнительный параметр абонента, который задается в командах ADD VSBR или ADD MSBR (Customized subscriber type) Called number Plan identity план нумерации вызываемого номера. Чтобы вызов прошел по данному маршруту, должны совпасть все условия. Чтобы какое-то условие игнорировалось при выборе маршрута, необходимо установить значение в ALL или значение по-умолчанию. Применение Пример 1 Допустим, у нас есть направление OFC=1, на которое ссылается подмаршрут SRT=1, на который, в свою очередь, ссылается маршрут RT=1. Допустим, это присоединение УПАТС, и все вызовы на это направление с любых источников должны проходить без ограничений. В таком случае создадим правило RTANA со следующими параметрами: В данном случае: Route selection code = 1 код выбора маршрута, который нужно указать в команде ADD CNACLD Route number указание на созданный ранее маршрут RT=1 Route selection source code параметр, задаваемый в callsrc. Значение остальных параметров установлены так, что при их любом значении вызов будет смаршрутизирован. Пример 2 Допустим, направление из предыдущего примера является выходом на оператора междугородной связи и доступ к нему могут получать лишь те абоненты, которые заключили с ним договор. Эти абоненты имеют отличительный признак - Customized subscriber type=8. В таком случае устанавливаем в параметре Customized caller type значение CUST8, и абоненты, у которых этот параметр отличается от CUST8 не смогут использовать данный маршрут. По такому же принципу работает ограничение и по другим параметрам. Пример 3 Если ограничивающие параметры не применимы для вызова (например, Customized subscriber type невозможно задать для вызовов, приходящих с другого транка), то и ограничения данных вызовов не произойдет. Чтобы ограничить транзитные вызовы со входящих транков, необходимо создать дополнительный callsource и задать в нем произвольный Route selection source code, отличный от значения по-умолчанию: Теперь, если мы назначим входящем транку созданный callsrc, то сможем применять Route selection source code для маршрутизации, указывая его в команде RTANA. Пример 4 Так же мы можем создать несколько правил RTANA с одним и тем же Route selection code, но разными параметрами, как в примере ниже: Здесь приведено правило RTANA для звонков на междугородные направления, а выбора маршрута осуществляется в зависимости от различных параметров вызова (в частности, Caller category и Customize subscriber type). ADD SIPTG создает транк-группу, в которой задается количество каналов, код источника вызова (для входящих вызовов), и номер подмаршрута, к которому привязана транк-группа. Trunk group number порядковый номер транк-группы Call source code код источника вызова, используется для маршрутизации входящих вызовов Sub-route number номер подмаршрута, указываем созданный ранее подмаршрут Maximum caller number restriction максимальное количество вызовов в транке. При достижении этого количества вызовов в транке, все последующие вызовы отбрасываются. Stop call restriction при снижении количества вызовов до числа, указанного в этой команде, ограничение вызовов, сработавшее по предыдущему параметру, снимается ADD SIPIPPAIR задает параметры непосредственного стыка с противоположным оборудованием (ip-адрес удаленной станции, локальный порт для приема сигнализации) Trunk group number порядковый номер транк-группы, указываем номер из предыдущей команды IFMI module number номер модуля IFMI в системе, можно узнать, дав команду LST BRD Local server port порт приема сигнализации SIP Remote URI 1 ip-адрес противоположной станции. Если sip-транк настраивается через SBC, здесь указывается loopback-интерфейс, который назначен транку.` ADD CNACLD этой командой задается префикс выхода на созданную транк-группу. Local DN set номер Local DN set, в которой будет находится префикс набора. Как правило, в станции только один Local DN set, указываем его номер Call prefix префикс набора, по которому вызовы будут направляться в созданное нами направление Service attribute тип исходящего вызова, принимает значения: LCO (Intra-officce) внутренние вызовы станции, LC (Local), LCT (Local toll) местные, NTT (National toll) междугородные (федеральные), ITT (International toll) международные, EMC экстренные вызовы. Route selection code код выбора маршрута, номер, указанный в команде RTANA. Minimum number length минимальная длина номера по данному префиксу Maximum number length максимальная длина номера по данному префиксу Charging selection code код источника тарификации. Настройка SIP -транка в пограничном контроллере сессий Huawei SE 2200 Общие правила настройки sip-транка в SBC Interface LoopBack 1 интерфейс, который указываем в SoftX3000 как противоположную станцию description test - trunk справочное название интерфейса ip address 192.168.33.1 255.255.255.255 адрес созданного интерфейса Interface LoopBack 2 интерфейс, который указываем в противоположной станции как адрес SoftX3000 description test - trunk справочное название интерфейса ip address 192.168.44.1 255.255.255.255 адрес созданного интерфейса acl number 3011 создаем список доступа rule 0 permit ip source 192168.55.1 0 разрешаем трафик от адреса противоположной станции rule 5 permit ip source 192.168.22.0 0.0.0.255 разрешаем трафик от SoftX3000 и сопутствующего оборудования (в этой сети, вероятно, так же будет UMG и прочее оборудование в составе SoftX3000) rule 10 deny ip запретить все прочие адреса Выше обозначенная группа команд необходима для обеспечения безопасности, на нашей сети используются другие методы и эти команды не используются и не проверялись автором. Здесь они приведены для полной информации о правильной последовательности настройки. sbc wellknowport clientaddr 192.168.33.1 sip 5060 разрешаем прием сигнализации SIP по порту 5060 на адресе 192.168.33.1 (от SoftX3000) sbc wellknowport clientaddr 192.168.44.1 sip 5060 разрешаем прием сигнализации SIP по порту 5060 на адресе 192.168.44.1 (от противоположной станции) sbc wellknowport softxaddr 192.168.22.1 sip 5060 обозначаем адрес SoftX3000. (Если SBC уже настроен ранее и работает, данная команда уже, вероятно, есть в конфигурации) sbc mapgroup intercom - ip 1001 создаем mapgroup в сторону SoftX3000 description == test - trunk == - справочное название clientaddr 192.168.44.1 адрес в сторону противоположной станции match acl 3011 проверка адресов согласно списка acl 3011 serveraddr 192.168.33.1 адрес в сторону SoftX softxaddr 192.168.22.1 - адрес SoftX3000 media - clientaddr 192.168.44.1 адрес в сторону противоположной станции media - serveraddr 192.168.33.1 адрес в сторону SoftX enable команда на активацию mapgroup sbc mapgroup intercom - ip 1002 создаем mapgroup в сторону противоположной станции description ==test-trunk== clientaddr 192.168.33.1 адрес в сторону SoftX match acl 3011 - проверка адресов согласно списка acl 3011 serveraddr 192.168.44.1 адрес в сторону противоположной станции softxaddr 192.168.55.1 - адрес противоположной станции media - clientaddr 192.168.33.1 адрес в сторону SoftX media - serveraddr 192.168.44.1 адрес в сторону противоположной станции enable команда на активацию mapgroup
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59