По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Первая часть тут. Вектор пути основан на хранении списка узлов, через которые проходит путь. Любой узел, который получает обновление с самим собой в пути, просто отбрасывает обновление, поскольку это не жизнеспособный путь. Рисунок 12 используется в качестве примера. На рисунке 12 каждое устройство объявляет информацию о местах назначения каждому соседнему устройству; для пункта назначения, прикрепленного к E: E будет анонсировать F с самим собой в источнике, поэтому с путем [E], как B, так и D. От B: B анонсирует F к A с путем [E, B]. Из D: D анонсирует F в C с путем [E, D]. От C: C анонсирует F к A с путем [E, D, C] Какой путь предпочтет A? В системе вектора пути может быть ряд метрик, включая длину пути, предпочтения политики и т. д. Например, предположим, что есть метрика, которая устанавливается локально на каждом узле, переносимом с каждым маршрутом. Эта локальная метрика переносится между узлами, но никак не суммируется при прохождении через сеть, и каждый узел может устанавливать эту метрику независимо от других узлов (при условии, что узел использует одну и ту же метрику по отношению к каждому соседу). Например, локальная метрика E объявляется B, который затем устанавливает свою собственную локальную метрику для этого пункта назначения и объявляет результирующий маршрут A и т. д. Чтобы определить лучший путь, каждый узел может затем Отбросить любое место назначения с идентификатором локального узла в пути. Сравнить метрику, выбрав наивысшую локальную метрику из полученных. Сравнить длину пути, выбрав самый короткий из полученных. Объявить только тот путь, который используется для пересылки трафика. Примечание.Не имеет значения, выбирает ли каждый узел самую высокую или самую низкую метрику. Важно только то, что каждый узел выполняет одно и то же действие во всей сети. Однако при сравнении путей узел всегда должен выбирать более короткий путь. Если каждый узел в сети всегда будет следовать этим трем правилам, то петля не образуется. Например: E объявляет F в B с путем [E] и метрикой 100. B объявляет F к A с путем [E, B] и метрикой 100. E объявляет F в D с путем [E] и метрикой 100. D объявляет F в C с путем [E, D] и метрикой 100. C объявляет F в A с путем [E, D, C] и метрикой 100. У A есть два пути, оба с одинаковой метрикой, и, следовательно, будет использовано второе правило, чтобы выбрать один путь, который является наиболее коротким. В этом случае A выберет путь через [E, B]. A будет объявлять маршрут, который он использует, к C, но если C следует тому же набору правил, у него также будет два пути с доступной метрикой 100, один с путем [E, B, A], а второй с путем [E, D, C]. В этом случае должен быть механизм разрешения конфликтов, который C использует внутри для выбора между двумя маршрутами. Неважно, что это за механизм разрешения конфликтов, если он постоянно применяется в узле. Независимо от того, какой путь выберет C, трафик к F не будет закольцован. Предположим, однако, несколько иное стечение обстоятельств: E объявляет F в B с путем [E] и метрикой 100. B объявляет F к A с путем [E, B] и метрикой 100. E объявляет F в D с путем [E] и метрикой 50. D объявляет F в C с путем [E, D] и метрикой 50. C объявляет F в A с путем [E, D, C] и метрикой 50. У A есть два пути: один с метрикой 100, а другой с метрикой 50. Следовательно: A выберет более высокую из двух метрик, путь через [E, B], и объявит этот маршрут C C выберет более высокую из двух метрик, путь через [E, B, A], и объявит этот маршрут D. D выберет более высокий из двух метрик, путь через [E, B, A, C], и объявит этот маршрут E. E отбросит этот маршрут, поскольку E уже находится на пути. Следовательно, даже если метрика перекрывает длину пути в (почти) каждом узле, цикл не образуется. Проблемы метрик Каждый алгоритм, обсуждавшийся до этого момента, использовал одну метрику для вычисления путей без петель, за исключением вектора пути, а вектор пути использует две метрики очень ограниченным образом, причем одна всегда предпочтительнее другой. Путь, по сути, можно рассматривать как «фактор разрешения конфликтов», который вступает в игру только тогда, когда основная метрика, которая никак не связана с путем (поскольку она не суммируется шаг за шагом в сети), не соответствует предотвратить петлю. Некоторые протоколы могут использовать несколько метрик, но они всегда будут каким-то образом комбинировать эти метрики, поэтому для поиска путей без петель используется только одна комбинированная метрика. Почему? С математической точки зрения, все методы, используемые для нахождения набора свободных от петель (или кратчайших) путей через сеть, разрешимы за полиномиальное или неэкспоненциальное время - или, скорее, они считаются проблемами класса P. Существует более широкий класс задач, содержащих P, который содержит любую задачу, решаемую с помощью (теоретической) недетерминированной машины Тьюринга. Среди NP-проблем есть набор задач, которые считаются NP-полными, что означает, что не существует известного эффективного способа решения проблемы. Другими словами, для решения проблемы необходимо перечислить все возможные комбинации и выбрать из этого набора наилучшее возможное решение. Проблема с множественными метриками классифицируется как NP-complete, и, следовательно, хотя и разрешима, она никоим образом не решаема, что позволяет использовать ее в коммуникационных сетях, близких к реальному времени. Алгоритмы непересекающихся путей Рассмотрим ситуацию медицинской операции, выполняемой роботом, который следует за руками живого хирурга на другом конце света. Возможно, что для того, чтобы такая система работала, требуется, чтобы пакеты доставлялись от датчиков на руках хирурга к роботу в реальном времени, по порядку, с минимальным значением параметра jitter или без него, и никакие пакеты нельзя отбрасывать. Это один из примеров. Конечно, он может быть расширен для других различных ситуаций, включая финансовые системы и другие механические системы управления, где требуется доставка пакетов в реальном времени без сбоев. В таких ситуациях часто требуется передать две копии каждого пакета, а затем позволить получателю выбрать пакет, наилучшим образом соответствующий характеристикам качества обслуживания (QoS) и потерям пакетов, необходимым для поддержки приложения. Однако все системы, рассмотренные до сих пор, могут найти только один путь без циклов и потенциально альтернативный путь (LFA и / или rLFA). Таким образом, с помощью алгоритмов непересекающихся путей решается следующая проблема: Как можно построить пути в сети таким образом, чтобы они использовали наименьшее количество перекрывающихся ресурсов (устройств и каналов), насколько это возможно (следовательно, максимально непересекающиеся или максимально избыточные)? В этой части лекций мы начнем с описания концепции двухсвязной сети, а затем рассмотрим два разных (но, казалось бы, связанных) способа вычисления непересекающихся топологий в двухсвязных сетях. Двухсвязные сети Двусвязная сеть - это любая сеть, в которой есть как минимум два пути между источником и местом назначения, которые не используют одни и те же устройства (узлы) или каналы (ребра). Обратите внимание на: Сеть является двусвязной по отношению к определенному набору источников и пунктов назначения; большинство сетей не имеют двух соединений для каждого источника и каждого пункта назначения. Небольшие блоки любой данной сети могут быть подключены двумя соединениями для некоторых источников и пунктов назначения, и эти блоки могут быть соединены между собой узкими одно- или двумя соединенными точками подключения. Часто проще всего понять двусвязность на реальном примере. На рисунке 13 показана сеть, с выделенными блоками. В блоке A есть как минимум два разных непересекающихся пути между X и F: [X, A, B, E, F] и [X, C, F] [X, A, B, F] и [X, C, F] В блоке B есть одна пара непересекающихся путей из G в L: [G, K, L] и [G, H, L]. Непересекающихся путей к Z нет, так как этот узел односвязен. Между F и G также нет непересекающихся путей, так как они односвязны. Канал [F, G] можно рассматривать как узкую точку между этими двумя блоками топологии. В сети, показанной на рисунке 13, невозможно вычислить два непересекающихся пути между X и Z. Алгоритм непересекающегося пути Суурбалле В 1974 году Дж. Суурбалле опубликовал статью, описывающую, как использовать несколько запусков SPF-алгоритма Дейкстры для поиска нескольких непересекающихся топологий в сети. Алгоритм по существу вычисляет SPF один раз, удаляет подмножество линий, используемых в SPT, а затем вычисляет второй SPF по оставшимся линиям. Алгоритм Суурбалле труднее объяснить, чем проиллюстрировать на примере, поскольку он опирается на направленный характер связей, вычисляемых с помощью SPT. В качестве примеров используются рисунки 14-18. На рисунке 14 показано состояние операций после завершения первого запуска SPF и вычисления начального SPT. Обратите внимание на стрелки направления на линиях. Не принято думать, что SPT является направленным, но на самом деле это так, когда каждая линия ориентирована в сторону от источника или корня дерева. Когда F вычисляет дерево обратно к X, оно также создает направленное дерево со стрелками, указывающими в противоположном направлении. Ребра (или связи) на SPT называются ребрами дерева, а ребра (или связи), не входящие в результирующий SPT, называются ребрами не деревьев. На рис. 14 края дерева отмечены сплошным черным цветом со стрелками направления, а ребра не деревьев - более светлыми серыми пунктирными линиями. Второй шаг показан на рисунке 15. На рисунке 15 показано каждое звено с измененными затратами; каждая линия, которая была частью исходного SPT (каждое ребро дерева, показано сплошной линией), имеет две стоимости, по одной в каждом направлении, в то время как линии, которые изначально не были частью SPT (ребра, не входящие в состав дерева, показаны пунктирными линиями), имеют свои исходные расходы. Обратите внимание на стрелки, показывающие направление стоимости в каждом случае; это будет важно на следующем этапе расчета. Для расчета стоимости двух направленных линий для каждого ребра дерева: Именуем один конец линии символом u, а другой конец линии символом v. Обратите внимание, что уравнение выполняется в обоих направлениях. Вычтем стоимость источника до v из стоимости линии от u до v. Добавим стоимость из источника к u. Если источник s: d[sp](u,v) = d(u,v) ? d(s,v) + d(s,u) По сути, это устанавливает стоимость ребер дерева равной 0, как можно увидеть, выполнив математические вычисления для ссылки [B, E]: B - есть u, E - есть v, A - есть s d(u,v) = 2, d(s,v) = 3, d(s,u) = 1 2 ? 3 + 1 = 0 Однако для всех ребер, не входящих в дерево, будет установлена некоторая (обычно большая) ненулевая стоимость. Для сети на рисунке 15: Для линии [B, A] (примечание [A, B] не является линией в вычисляемом дереве направлений): B - есть u, A - есть v, A - есть s d(u,v) = 0, d(s,v) = 0, d(s,u) = 1 0 ? 0 + 1 = 1 Для линии [E,B]: E – есть u, B – есть v, A - есть s d(u,v) = 2, d(s,v) = 1, d(s,u) = 3 2 ? 1 + 3 = 4 Для линии [C,A]: C – есть u, A – есть v, A – есть s d(u,v) = 2, d(s,v) = 0, d(s,u) = 2 2 ? 0 + 2 = 4 Для линии [F,D]: F – есть u, D – есть v, A – есть s d(u,v) = 1, d(s,v) = 4, d(s,u) = 5 1 ? 4 + 5 = 2 Для линии [D,B]: D – есть u, B – есть v, A – есть s d(u,v) = 1, d(s,v) = 1, d(s,u) = 2 1 ? 1 + 2 = 2 Следующий шаг, показанный на рисунке 16, состоит в том, чтобы удалить все направленные ребра, указывающие на источник, который лежит вдоль исходного SPT к определенному месту назначения (в данном случае Z), изменить направление ребер с нулевой стоимостью (линий) вдоль этого же пути, а затем снова запустить SPF Дейкстры, создав второй SPT на той же топологии. Возвращаясь к исходному SPT, путь от X до Z проходил по пути [A,B,D,F]. Таким образом, четыре ненулевых ребра (пунктирные линии), указывающие назад к источнику, А, вдоль этого пути были удалены. Вдоль того же пути [A, B,D,F] направление каждого ребра было изменено. Например, [A,B] первоначально указывало от A к B, а теперь указывает от B к A. Следующий шаг-запустить SPF по этому графику, помня, что трафик не может течь против направления линии. Полученное дерево показано на рисунке 17. На рисунке 17 показано исходное дерево и вновь вычисленное дерево, наложенные на исходную топологию в виде двух различных пунктирных линий. Эти две топологии все еще имеют общую связь [B,D], так что они еще не совсем разобщены. В этой точке есть два кратчайших пути от X до Z: [A,B,D,F] [A,C,D,B,E,F] Эти два графа объединяются, образуя набор ребер, и любые связи, которые включены в оба графа, но в противоположных направлениях, отбрасываются; комбинированный набор выглядит так: [A->B, B->E, E->F, A->C, C->D, D->F] Обратите внимание на направленность каждой линии связи еще раз - очень важно отсечь перекрывающуюся линию, которая будет указана как [B-> D] и [D-> B]. С помощью этого подмножества возможных ребер на графе можно увидеть правильный набор кратчайших путей: [A, B, E, F] и [A, C, D, F]. Алгоритм Суурбалле сложен, но показывает основные моменты вычисления непересекающихся деревьев, в том числе то, насколько сложно их вычислить. Максимально избыточные деревья Более простой альтернативой алгоритму Суурбалла для вычисления непересекающихся деревьев является вычисление максимально избыточных деревьев (Maximally Redundant Trees-MRT). Чтобы лучше понять MRT - это изучить Depth First Search (DFS), особенно нумерованный DFS. Рисунок 18 используется в качестве иллюстрации. На рисунке 18 левая сторона представляет простую топологию. Правая-ту же топологию, которая была пронумерована с помощью DFS. Предполагая, что алгоритм DFS, используемый для «обхода» дерева, всегда выбирает левый узел над правым, процесс будет выглядеть примерно так: 01 main { 02 dfs_number = 1 03 root.number = dfs_number 04 recurse_dfs(root) 05 } 06 recurse_dfs(current) { 07 for each neighbor of current { 08 child = left most neighbor (not visited) 09 if child.number == 0 { 10 dfs_number++ 11 child.number = dfs_number 12 if child.children > 0 { 13 recurse_dfs(child) 14 } 15 } 16 } 17 } Лучший способ понять этот код-пройти рекурсию несколько раз, чтобы увидеть, как она работает. Используя рисунок 18: При первом вызове recurse_dfs в качестве текущего узла устанавливается A или root. Оказавшись внутри recurse_dfs, выбирается крайний левый узел A или B. B не имеет номера при входе в цикл, поэтому оператор if в строке 09 верен. B назначается следующий номер DFS (строка 11). У B есть дочерние элементы (строка 12), поэтому recurse_dfs вызывается снова с B в качестве текущего узла. Оказавшись внутри (второго уровня) recurse_dfs, выбирается крайний левый сосед B, которым является E. E не имеет номера DFS, поэтому оператор if в строке 09 верен. E назначается следующий номер DFS (3) E не имеет дочерних элементов, поэтому обработка возвращается к началу цикла. F теперь является крайним левым соседом B, который не был посещен, поэтому он назначен дочернему элементу. F не имеет числа, поэтому оператор if в строке 09 верен. F назначается следующий номер DFS (4). У B больше нет дочерних элементов, поэтому цикл for в строке 07 завершается ошибкой, и программа recurse_dfs завершается. Однако на самом деле recurse_dfs не выходит - он просто «возвращается» к предыдущему уровню рекурсии, то есть к строке 14. Этот уровень рекурсии все еще обрабатывает соседей A. C - следующий сосед A, который не был затронут, поэтому дочерний элемент установлен в C. И так далее Изучение номеров узлов в правой части рисунка 18 приводит к следующим интересным наблюдениям: Если A всегда следует за возрастающим числом, чтобы достичь D,оно будет следовать по пути [A, C,G,D]. Если D всегда следует за уменьшающимся числом DFS, чтобы достичь A,он будет следовать по пути [D, A]. Эти два пути на самом деле не пересекаются. Это свойство сохраняется для всех топологий, которым были присвоены номера в результате поиска DFS: путь, следующий за постоянно увеличивающимися числами, всегда будет не пересекаться с путем, который всегда следует за убывающими числами. Это именно то свойство, на котором MRT строят непересекающиеся пути. Однако проблема с нумерацией DFS заключается в том, что это трудно сделать почти в реальном времени. Должен быть какой-то избранный корень, трафик на локальном уровне неоптимален (во многом как Minimum Spanning Tree или MST), и любые изменения в топологии требуют перестройки всей схемы нумерации DFS. Чтобы обойти эти проблемы, MRT строит непересекающиеся топологии, используя тот же принцип, но другим способом. Рисунок 19 используется для пояснения. Первым шагом в построении MRT является поиск короткого цикла в топологии от корня (обычно эти петли обнаруживаются с помощью алгоритма SPF Дейкстры). В этом случае в качестве корня будет выбран A, а цикл будет [A, B, C, D]. Этот первый цикл будет использоваться как первая из двух топологий, скажем, красная топология. Обращение цикла к [A, D, C, B] создает непересекающуюся топологию, скажем, синюю топологию. Эта первая пара топологий через этот короткий цикл называется «ухом». Для расширения диапазона МРТ к первому добавляется второе ухо. Для этого открывается второй цикл, на этот раз через [A, D, F, E, B], а непересекающаяся топология - [A, B, E, F, D]. Возникает вопрос: какое из этих двух расширений топологии следует добавить к красной топологии, а какое - к синей? Здесь вступает в игру форма нумерации DFS. Каждому устройству в сети уже должен быть назначен идентификатор либо администратором, либо через какой-либо другой механизм. Эти идентификаторы должны быть уникальными для каждого устройства. В схеме нумерации DFS также существует концепция нижней точки, которая указывает, где на конкретном дереве прикрепляется этот узел, а также какие узлы присоединяются к дереву через этот узел. Учитывая эти уникальные идентификаторы и возможность вычислять нижнюю точку, каждый узел в сети может быть упорядочен так же, как ему был присвоен номер в процессе нумерации DFS. Ключ в том, чтобы знать, как порядок соответствует существующей красной и синей топологиям. Предположим, что нижняя точка B выше, чем C, если топология [A, B, C, D] является частью красной топологии. Для любого другого «уха» или петли в топологии, которая проходит через B и C, направление «уха», в котором B меньше C, должно быть помещено в красную топологию. Петля в обратном направлении должна быть размещена на синей топологии. Это объяснение является довольно поверхностным, но оно дает вам представление о том, как MRT образуют непересекающиеся топологии. Двусторонняя связь В этой и предыдущей лекциях было описано несколько различных способов вычисления пути без петель (или набора непересекающихся путей) через сеть. В каждом из этих случаев вычисленный путь является однонаправленным - от корня дерева до краев или достижимых мест назначения. Фактически, обратного пути не существует. Другими словами, источник может иметь возможность достичь пункта назначения по пути без петель, но может не быть обратного пути от пункта назначения к источнику. Это может быть необычный режим отказа в некоторых типах каналов, результат фильтрации информации о доступности или ряд других ситуаций в сети. Примечание. Двусторонняя связь не всегда нужна. Рассмотрим, например, случай с подводной лодкой, которая должна получать информацию о своей текущей задаче, но не может передавать какую-либо информацию, не раскрывая своего текущего местоположения. Желательна возможность отправлять пакеты устройствам, расположенным на подводной лодке, даже если к ним нет двусторонней связи. Плоскости управления должны быть модифицированы или специально спроектированы для обработки такого необычного случая, поскольку обычно для правильной работы сети требуется двустороннее соединение. Еще одна проблема, с которой должны столкнуться плоскости управления в области вычислительных трактов, - это обеспечение сквозной двусторонней связи. Уровень управления может решить эту проблему несколькими способами: Некоторые плоскости управления просто игнорируют эту проблему, что означает, что они предполагают, что какой-то другой протокол, например транспортный протокол, обнаружит это состояние. Плоскость управления может проверить наличие этой проблемы во время расчета маршрута. Например, при вычислении маршрутов с использованием алгоритма Дейкстры можно выполнить проверку обратной связи при вычислении путей без петель. Выполнение этой проверки обратной линии связи на каждом этапе вычислений может гарантировать наличие двусторонней связи. Плоскость управления может предполагать двустороннюю связь между соседями, обеспечивая сквозную двустороннюю связь. Плоскости управления, которые выполняют явные проверки двусторонней связи для каждого соседа, могут (как правило) безопасно предполагать, что любой путь через этих соседей также поддерживает двустороннюю связь.
img
Всем привет! В одной из прошлых статей мы писали об организации офисной IP-DECT телефонной сети на базе решения Grandstream DP715. Так вот на днях к нам приехал его “старший брат” - Grandstream DP750 с трубками DP720. Поэтому сейчас будет небольшой анпакинг. Потом мы настроим базу и трубки, а также зарегистрируем их на IP-АТС Asterisk 13. /p> $dbName_ecom = "to-www_ecom"; $GoodID = "3437215979"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); Обзор База DP750 и трубки DP720 поставляются в фирменной коробке от производителя. В отличие от DP715, база DP750 больше не является ещё и зарядным стаканом для трубок. В комплект поставки базы DP750 входит: Сама база DP750; Зарядное устройство на 5В; Ethernet – кабель; Руководство по быстрой установке; Лицензионное соглашение На крышке базы DP750 расположены: Индикатор питания; Индикатор доступности сети; Индикатор регистрации SIP-аккаунта; Индикатор занятости линии. Мигает, если занята хотя бы одна линия; Индикатор радио-сигнала. Мигает, если база готова принимать регистрацию трубки Мы, как назло, забыли сфотографировать базу включённой, чтобы продемонстрировать индикацию :( На боковой панели располагаются: Разъём для подключения блока питания; Кнопка сброса к заводским настройкам; Физический интерфейс для Fast Ethernet; И физическая кнопка для ввода базы в режим поиска трубки. Запомните её, в процессе регистрации трубок на базе она нам очень понадобится и не раз :) Используется также для “пинга” зарегистрированных трубок. В комплект поставки трубок DP720 входит: Сама трубка DP720; 2 батарейки типа ААА (аккумуляторы); Задняя крышка отсека для батареек и зажим для крепления на поясе; Зарядный стакан; Блок питания на 5В; Руководство Вот так это выглядит в собранном состоянии: Настройка Итак, перейдём к настройке. Сначала выясним IP-адрес базы, который она по умолчанию получит по DHCP. Для этого берём одну трубку, нажимаем на кнопку слева от центральной, далее Settings → Registration начнётся поиск базы. После этого на базе зажимаем на 15 секунд ту самую кнопку для ввода базы в режим поиска, пока индикатор радио сигнала не начнёт мигать. Через некоторое время трубка зарегистрируется на базе. У неё пока может не быть SIP-аккаунта, а база пока может не знать об IP-АТС. Теперь мы можем узнать IP-адрес базы. Берём трубку, далее Status и стрелочками листаем до IP-адреса. После чего вбиваем его в адресную строку браузера: Логин и пароль по умолчанию admin/admin Первое, на что обращаешь внимание – это полностью переработанный дизайн web-интерфейса по сравнению с DP715. На вкладке STATUS пока может быть пусто. Настроим SIP-профиль для нашей базы, т.е укажем как найти IP-АТС. Для этого заходим во вкладку PROFILE → General Settings и в поле SIP Server указываем адрес нашей IP-АТС и порт, на который она принимает регистрации. На данном этапе, рекомендуем позаботиться о том, чтобы на Вашей IP-АТС уже был заведён внутренний номер для трубок, которые Вы хотите зарегистрировать. Как создать внутренний номер на FreePBX 13, можно почитать в нашей статье. Если внутренние номера готовы, то переходим на вкладку DECT, далее SIP Account Settings и заполняем в соответствии с настройками внутреннего номера, который мы завели на IP-АТС. В нашем случае, это номер 124 – User1. На забываем нажимать Save and Apply Теперь берём трубку и вводим её в режим регистрации - нажимаем на кнопку слева от центральной, далее Settings → Registration начнётся поиск базы. Подходим к базе и зажимаем кнопку для ввода в режим регистрации. Напомним, зажимать нужно в течение 15 секунд, пока индикатор не начнёт мигать. Через какое-то время, трубка зарегистрируется на базе и вы увидите имя внутреннего номера на дисплее. Если регистрируется подряд несколько трубок, то может потребоваться перезагрузить базу. Проверить, что трубка успешно зарегистрировалась, теперь можно на вкладке STATUS
img
Дистрибутив FreePBX Distro это наиболее удобная и проверенная сборка, включающая в себя операционную систему CentOS, саму IP-PBX Asterisk и графический интерфейс администрирования FreePBX. Для установки достаточно лишь записать дистрибутив на носитель и загрузить сервер с него, либо, в случае виртуального сервера, подключить ISO файл через соответствующий виртуальный привод. Пошаговое видео Установка Важно: На сервере должно присутствовать подключение к сети интернет. Если вы производите установку с USB, вы можете столкнуть с ошибкой "kickstart". Разработчик рекомендует пропускать эту ошибку, нажимая Enter. На данном этапе инсталлятор предложит нам следующие опции: Full Install (полная установка) - это наиболее используемая при инсталляции опция. Если сервер, на котором производится установка имеет два жестких диска, то FreePBX Distro автоматически соберет их в RAID 1. Наличие двух жестких дисков наиболее предпочтительно, так как в случае, если один из них выйдет из строя, IP – АТС продолжит свою работу. Full Install – No RAID (Полная установка без сборки RAID) – в рамках данной опции, будет произведена установка без конфигурации RAID 1. Full Install – Advanced (Полная установка с дополнительными опциями) - данный вариант установки подразумевает ручную разметку диска и создание RAID – массивов. HA Install – Requires 250G or larger disk (создание отказоустойчивого кластера) - эта опция необходима тем, кто собирается собрать отказоустойчивый кластер из двух серверов. Необходим коммерческий модуль High Availability Далее, инсталлятор будет загружать необходимые пакеты из интернета. Обычно это занимает около 3-5 минут. После завершения загрузки необходимых пакетов, первым делом необходимо будет сконфигурировать сетевые параметры. Рекомендуется оставить параметры по умолчанию, нажимаю клавишу «TAB» до того, как меню выбора остановится на кнопке «OK». После этого нажмите ENTER После нажатия клавиши «ОК», инсталлятор будет производить сетевые настройки Далее, необходимо выбрать временную зону сервера. Нажмите «TAB», и в поле выбора Time Zone стрелками на клавиатуре выберите необходимую зону. После выбора, убедитесь, что меню выбора подсвечивает необходимую вам временную зону, нажмите «TAB», выбрав кнопку OK, а затем нажмите ENTER Установщик предложит вам выбрать пароль для root пользователя. Придумайте стойкий к взлому пароль, затем нажмите «OK» После этого, будет запущен процесс установки. Обычно, это занимает около 10-15 минут. По факту установки, сервер произведет перезагрузку. Появится окно логина и пароля. Введите логин «root» и пароль, указанный на этапе установки. Готово. FreePBX Distro установлен. Теперь вы можете конфигурировать свою IP - PBX. А о том, как это сделать "шаг за шагом" читайте по ссылке ниже: Настройка FreePBX 13 с нуля
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59