По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Ansible один из двух (наряду с SaltStack) наиболее популярных программных комплексов третьей волны, которые позволяют удалённо управлять конфигурациями. Тем не менее, в сегменте сетевого оборудования лидирует наш сегодняшний герой (если о ПО можно так сказать). В первую очередь это вызвано тем, что Ansible не поставит перед пользователем задачи устанавливать агент на хостинги, требующие от него управления. Тем паче ежели Ваш аппарат взаимодействует с ними через CLI, то Ansible это то, что доктор прописал. Одним выстрелом три "электронных зайца" Вообще, прежде чем знакомить уважаемых читателей со сценарием работы в данном программном комплексе, позвольте перечислить несколько его достоинств: Ansible позволяет параллельно подключать по SSH к устройствам (пользователь может сам определить их число). Ansible может передавать задачи на подключённые машины. Ansible способен разбивать машины, входящих в систему, на подгруппы и передавать специальных задачи для каждой подгруппы. Конечно, указаны не все достоинства Ansible. Просто в данных 3 пунктах, как мне кажется, отражена основная суть работы в данной среде. Выполняя эти три задачи, система автоматически освобождает Вас от головной боли по делегированию задач и функций в компании. Время деньги, как говорится. Сценарии Ну и переходим к основному блюду нашего материала - сценариям (playbook). Они состоят из двух частей набора команд для выполнения (play) и конкретных команд (task). Они выполняются друг за другом. Все записи данных осуществляются с помощью YAMLа. К несомненным плюсам его использования следует отнести то, что он гораздо лучше воспринимается людьми, нежели тот же самый JSON. Ежели Вы больше привыкли Вы к Python, то тут у Вас не возникнет проблем с адаптацией, так как синтаксис у них схожий. А вот так происходит процесс написания сценария (комментарии даны построчно к выводу): Имя сценария обязательный элемент для любого сценария; Сценарий применяется к машинам в подгруппе cisco-routers; Выключение режима сбора событий в конкретной машине (если не выключить данный режим, то система потратит много времени на решение ненужных задач); В разделе task указывается список команд для каждого конкретного случая; После чего происходит выполнение команды: PLAY [Run show commands on routers] *************************************************** TASK [run sh ip int br] *************************************************************** changed: [192.168.100.1] changed: [192.168.100.3] changed: [192.168.100.2] TASK [run sh ip route] **************************************************************** changed: [192.168.100.1] changed: [192.168.100.3] changed: [192.168.100.2] PLAY [Run show commands on switches] ************************************************** TASK [run sh int status] ************************************************************** changed: [192.168.100.100] TASK [run sh vlans] ******************************************************************* changed: [192.168.100.100] PLAY RECAP **************************************************************************** 192.168.100.1 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.100 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.2 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.3 : ok=2 changed=2 unreachable=0 failed=0 И запускаем проверку выполнения команд: SSH password: PLAY [Run show commands on routers] *************************************************** TASK [run s hip int br] *************************************************************** Changed: [192.168.100.1] => {“changed”: true, “rc”: 0, “stderr”: “Shared connection To 192.168.100.1 closed. ”, “stdout”: “ Interface IP-Address OK? Method Status Protocol Ethernet0/0 192. 168.100.1 YES NVRAM up up Ethernet0/1 192.168.200.1 YES NVRAM up up Loopback0 10.1.1.1 YES manual up up ”, “stdout_lines “: [“”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/1 192.168.200.1 YES NVRAM up up “, “Loopaback0 10.1.1.1 YES manual up up “]} А что внутри? А теперь поговорим о начинке сценария. Основу составляют переменные. Это могут быть данные о машине, выводы команд, а также их можно вводить вручную. Главное не забывать правила написания имён. Их всего два: имена всегда должны состоять из букв, цифр и нижнего подчёркивания; имена всегда должны начинаться с буквы. Переменные могут быть определены разными способами: Инвентарным файлом [cisco-routers] 192.168.100.1 192.168.100.2 192.168.100.3 [cisco-switches] 192.168.100.100 [cisco-routers:vars] ntp_server=192.168.255.100 log_server=10.255.100.1 PLAYBOOKом -name: Run show commands on router: hosts: cisco-routers gather_facts: false vars: ntp_server: 192.168.255.100 log_server: 10.255.100.1 tasks: -name: run sh ip int br raw: s hip int br | ex unass -name: run s hip route raw: sh ip route Специальными файлами, созданными для групп: [cisco-routers] 192.168.100.1 192.168.100.2 192.168.100.3 [cisco-switches] 192.168.100.100 Или группами каталогов |– group_vars _ | |– all.yml | | |–cisco-routers.yml | Каталог с переменными для групп устройств | |–cisco-switches.yml _| | |–host vars _ | |–192.168.100.1 | | |–192.168.100.2 | | |–192.168.100.3 | Каталог с переменными для устройств | |–192.168.100.100 _| | |–myhosts | Инвертарный файл Команда register позволяет сохранять результаты выполнений модулей в переменные. После чего переменная может быть использована в шаблонах, принятиях решений о выполнении заданного сценария. --- - name: Run show commands on routers hosts: cisco-routers gather_facts: false tasks: -name: run s hip int br raw: s hip int br | ex unass register: sh_ip_int_br_result --- debug отображает информацию в стандартном потоке вывода в виде произвольной строки, переменной или фактах о машине. --- - name: Run show commands on routers hosts: cisco-routers gather_facts: false tasks: -name: run s hip int br raw: sh ip int br | ex unass register: sh_ip_int_br_result -name: Debug registered var debug: var=sh_ip_int_br_result.stdout_lines После чего результатом работы станет следующее: SSH password: PLAY [Run show commands on routers] *************************************************** TASK [run sh ip int br] *************************************************************** changed: [192.168.100.1] changed: [192.168.100.2] changed: [192.168.100.3] TASK [Debug registered var] *********************************************************** ok: [192.168.100.1] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/1 192.168.200.1 YES NVRAM up up “, “Loopback0 10.1.1.1 YES manual up up “ ] } ok: [192.168.100.2] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/2 192.168.200.1 YES NVRAM administratively down down “, “Loopback0 10.1.1.1 YES manual up up “ ] } ok: [192.168.100.3] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.3 YES NVRAM up up “, “Ethernet0/2 192.168.200.1 YES NVRAM administratively down down “, “Loopback0 10.1.1.1 YES manual up up “, “Loopback10 10.255.3.3 YES manual up up “ ] } PLAY RECAP **************************************************************************** 192.168.100.1 : ok=2 changed=1 unreachable=0 failed=0 192.168.100.2 : ok=2 changed=1 unreachable=0 failed=0 192.168.100.3 : ok=2 changed=1 unreachable=0 failed=0 Вместо заключения Можно ещё долго приводить примеры работы в системе, но ещё один факт так сказать "вишенка на торте". К плюсам Ansible следует отнести и то, что заданную команду система может выполнять практически до бесконечности. Пока не наступит требуемый результат трансформации не прекратятся. Пользователю можно не беспокоиться - программа сама всё сделает за Вас, а Вы можете заниматься другими делами.
img
Привет всем! В сегодняшней статье мы хотим рассказать об одном крайне полезном трюке, который поможет сохранить время Вам и клиентам, позвонившим в Вашу компанию. Демонстрировать этот функционал мы будем на IP-АТС Asterisk через графический интерфейс FreePBX 14. Данная статья будет особенно актуальна для тех, кто пользуется переадресацией входящих звонков на мобильный телефон. Возможно, кто-то уже использует данный способ, но многие могут о нем и не знать. Кейс Итак, представим себе такую гипотетическую ситуацию: К нам в компанию позвонил клиент; Звонок поступил на ринг группу 345, в которой находится 3 внутренних номера; Звонки с этих внутренних номеров переадресовываются на мобильные номера менеджеров; И вот на своём мобильном телефоне звонок клиента принял менеджер Алексей; Они общаются, и тут у клиента возникает вопрос к инженеру, клиент просит перевести его на инженера; Алексей может находиться вне офиса и не за стационарным телефоном и не может перевести звонок клиента обратно; Он просит клиента перезвонить на общий номер компании и донабрать внутренний номер инженера; Ситуация вполне нормальная, но мы вынуждены просить нашего клиента звонить повторно, донабирать номер, тратить свое время и так далее. Вот бы было здорово иметь возможность перевести звонок клиента на нужный номер прямо с мобильного? А ещё лучше, если мы сможем поговорить с человеком, на которого нужно перевести звонок и узнать не занят ли он, прежде чем делать трансфер! Такая возможность есть и сейчас мы объясним как её реализовать. Решение Дело в том, что когда звонки с нашей IP-АТС переводятся на мобильный телефон, то канал между ними не разрывается. Например, если у вас включена запись, то вы можете увидеть, что такие звонки также записываются. А значит, мы можем контролировать такие звонки на любом устройстве, даже на мобильном телефоне. Делать трансфер, ставить на ожидание, парковать и так далее. Для того, чтобы открылась возможность сделать трансфер на другой номер, находясь в звонке, нужно передать приложению Asterisk Dial() нужный аргумент. Во FreePBX это настраивается в Settings → Advanced Settings в разделе Dialplan and Operational. Здесь есть два поля - Asterisk Dial Options, в котором можно добавить аргументы Dial() при совершении внутренних звонков и Asterisk Outbound Trunk Dial Options, который отвечает за обработку аргументов Dial() при совершении внешних звонков через транк, как раз это поле нам и нужно. По умолчанию в данном поле всего один аргумент - большая буква T. Этот аргумент позволяет позвонившей стороне сделать трансфер используя feature code - ## Сервисный код ## соответствует функции “слепого” трансфера -In-Call Asterisk Blind Transfer Однако, когда мы принимаем звонок на мобильном телефоне, то являемся вызываемой стороной, поэтому нам нужен другой аргумент – маленькая буква t. С помощью данного аргумента, мы сможем делать трансфер находясь в звонке, используя всё тот же feature code - ##. Итак, можно добавить аргумент t в поле Asterisk Outbound Trunk Dial Options, но тогда этот функционал распространится на все транки, которые созданы на вашей IP-АТС. Есть более безопасный способ включить трансфер на принимающей стороне. Для этого переходим в Connectivity → Trunks и в настройках транка на вкладке General ищем опцию Asterisk Trunk Dial Options По умолчанию, в данной опции мы так же увидим аргумент T, так как стоит параметр System, который просто подтягивает значения аргумента из Asterisk Outbound Trunk Dial Options в Advanced Settings Выбрав параметр Override, мы можем записать сюда какие угодно аргументы и они будут действовать только для данного конкретного транка. Запишем сюда маленькую t. Итак, теперь, если Вы приняли вызов на мобильном телефоне, а человек, с которым Вы разговариваете просит перевести его на другого сотрудника, Вы можете просто: Нажать ## на своём мобильном телефоне, после чего Вы услышите в трубке сообщение “перевод”; Набрать нужный номер (например - 529). В это время позвонивший будет слышать музыку на ожидании; Вызов автоматически завершится, а звонок будет переадресован тому, чей номер Вы набрали; Profit; А помните мы говорили, что можно ещё поговорить с тем, кому нужно перевести вызов, прежде чем его переводить, чтобы уточнить не занят ли этот человек? Так вот такая возможность при принятии звонка на мобильном тоже есть! Если мы откроем возможные сервисные коды (feature code) функций трансфера, то увидим, что их два - ## - In-Call Asterisk Blind Transfer, который мы уже знаем, и *2 - функция консультативного трансфера - In-Call Asterisk Attended Transfer. Таким образом, можно также пользоваться консультативным трансфером, в этом случае нужно: Нажать *2 на своём мобильном телефоне, после чего Вы услышите в трубке сообщение “перевод”; Набрать нужный номер (например - 529). В это время позвонивший будет слышать музыку на ожидании; Дождаться, пока человек, которому нужно перевести вызов, ответит и узнать у него можно ли делать перевод. Если он сбросит или не возьмёт трубку, то ваш разговор с ожидающим на линии абонентом возобновится и Вы сможете объяснить ему, что соединиться не удалось; Если человек, которому нужно перевести вызов готов поговорить с ожидающим на линии абонентом, то нужно просто завершить вызов. Тогда разговор продолжится уже между ними; Кстати! Номер, который Вы набираете после того или иного сервисного кода, не обязательно должен быть внутренним. Это может быть любой другой номер (например, мобильный - *289012345678). Главное набирать его в таком формате, чтобы Ваша IP-АТС могла до него дозвониться.
img
В этой статье мы рассмотрим протокол маршрутизации Cisco EIGRP. EIGRP (Enhanced Interior Gateway Routing Protocol) - это протокол расширенной векторной маршрутизации, который должен устанавливать отношения соседства перед отправкой обновлений. Из-за этого первое, что нам нужно сделать, это проверить, правильно ли работает соседство. Если это так, мы можем продолжить, проверив, объявляются сети или нет. В этой статье рассмотрим все, что может пойти не так с EIGRP, как это исправить и в каком порядке. Давайте начнем с проверки соседства! Существует ряд элементов, которые вызывают проблемы соседства EIGRP: Неизвестная подсеть: соседи EIGRP с IP-адресами, которые не находятся в одной подсети. Несоответствие значений K: по умолчанию пропускная способность и задержка включены для расчета метрики. Мы можем включить нагрузку и надежность, но мы должны сделать это на всех маршрутизаторах EIGRP. Несоответствие AS: номер автономной системы должен совпадать на обоих маршрутизаторах EIGRP, чтобы сформировать соседство. Проблемы уровня 2: EIGRP работает на уровне 3 модели OSI. Если уровни 1 и 2 не работают должным образом, у нас будут проблемы с формированием соседства. Проблемы со списком доступа: возможно, кто-то создал список доступа, который отфильтровывает многоадресный трафик. EIGRP по умолчанию использует 224.0.0.10 для связи с другими соседями EIGRP. NBMA: по умолчанию Non Broadcast Multi Access сети, такие как Frame Relay, не разрешают широковещательный или многоадресный трафик. Это может препятствовать тому, чтобы EIGRP формировал соседние отношения EIGRP. OFF1(config)#int f0/0 OFF1(config-if)#ip address 192.168.12.1 255.255.255.0 OFF1(config-if)#router eigrp 12 OFF1(config-router)#network 192.168.12.0 OFF2(config)#int f0/0 OFF2(config-if)#ip address 192.168.21.2 255.255.255.0 OFF2(config)#router eigrp 12 OFF2(config-router)#network 192.168.21.0 Ошибку неверной подсети легко обнаружить. В приведенном выше примере у нас есть 2 маршрутизатора, и вы можете видеть, что были настроены разные подсети на каждом интерфейсе. После включения EIGRP всплывают следующие ошибки: Оба маршрутизатора жалуются, что находятся не в одной подсети. OFF2(config-router)#int f0/0 OFF2(config-if)#ip address 192.168.12.2 255.25 OFF2(config)#router eigrp 12 OFF2(config-router)#no network 192.168.21.0 OFF2(config-router)#network 192.168.12.0 Мы изменили IP-адрес на OFF2 и убедились, что для EIGRP правильно настроена команда network. Вуаля! Теперь у нас есть соседство EIGRP. Проверим это с помощью команды show ip eigrp neighbors. Извлеченный урок: убедитесь, что оба маршрутизатора находятся в одной подсети. Case #2 На этот раз IP-адреса верны, но мы используем разные значения K с обеих сторон. OFF1 включил пропускную способность, задержку, нагрузку и надежность. OFF2 использует только пропускную способность и задержку. Эту ошибку легко обнаружить, поскольку сообщение в консоли гласит "Несоответствие K-значений" на обоих маршрутизаторах. Мы можем проверить нашу конфигурацию, посмотрев ее на обоих маршрутизаторах. Как вы видите, что значения K были изменены на OFF1. OFF2(config)#router eigrp 12 OFF2(config-router)#metric weights 0 1 1 1 1 0 Давайте убедимся, что значения K одинаковы на обоих маршрутизаторах, так как мы изменили их на OFF2. После изменения значений K у нас появилось соседство EIGRP-соседей. Еще одна проблема решена! Извлеченный урок: убедитесь, что значения K одинаковы на всех маршрутизаторах EIGRP в одной и той же автономной системе. Case #3 Давайте продолжим со следующей ошибкой ... Вот еще один пример типичной проблемы. Несоответствие номера AS. Когда мы настраиваем EIGRP, мы должны ввести номер AS. В отличие от OSPF (который использует ID процесса) этот номер должен быть одинаковым на обоих маршрутизаторах. В отличие от других неверных настроек конфигурации EIGRP, эта проблема не выдает сообщение об ошибке. Используем команду show ip eigrp neighbors и видим, что соседей нет. Внимательно изучите выходные данные, чтобы обнаружить различия, и вы увидите, что маршрутизаторы используют разные номера AS. Если посмотреть на работающую конфигурацию, и мы увидим то же самое. Давайте изменим номер AS на OFF2. После смены номера AS все заработало как положено. Извлеченный урок: убедитесь, что номера AS одинаковые, если вы хотите соседства EIGRP. Case #4 И последнее, но не менее важное: если вы проверили номер AS, значения K, IP-адреса и у вас все еще нет работающего соседства EIGRP, вам следует подумать о безопасности. Возможно, access-list блокирует EIGRP и/или многоадресный трафик. Следующая ситуация: опять два маршрутизатора EIGRP и отсутствие соседства. Что здесь происходит? Мы видим, что нет соседей ... Если вы посмотрите на вывод команды show ip protocols, то увидите, что сеть была объявлена правильно. Если вы посмотрите внимательно на OFF2, вы увидите, что у нас есть пассивный интерфейс. Удалим настройки пассивного интерфейса! OFF2(config)#router eigrp 12 OFF2(config-router)#no passive-interface fastEthernet 0/0 Еще одна неправильная настройка создала нам проблемы, но мы ее решили. Задача решена! Извлеченный урок: не включайте пассивный интерфейс, если вы хотите установить соседство EIGRP. Case #5 В приведенном выше примере у нас есть те же 2 маршрутизатора, но на этот раз кто-то решил, что было бы неплохо настроить список доступа на OFF2, который блокирует весь входящий многоадресный трафик. Здесь можно запутаться. На OFF1 мы видим, что он считает, что установил соседство EIGRP с OFF2. Это происходит потому, что мы все еще получаем пакеты EIGRP от OFF2. Используем команду debug eigrp neighbors, чтобы посмотреть, что происходит. Очевидно, что OFF1 не получает ответ от своих hello messages, holdtime истекает, и это отбрасывает установление соседства EIGRP. Быстрый способ проверить подключение - отправить эхо-запрос по адресу многоадресной рассылки 224.0.0.10, который использует EIGRP. МЫ видим, что мы ответа нет от этого запроса. Рекомендуется проверить, есть ли в сети списки доступа. Так, так! Мы нашли что-то ... Этот список доступа блокирует весь многоадресный трафик. Давайте сделаем настройку, которая разрешит EIGRP. OFF2(config)#ip access-list extended BLOCKMULTICAST OFF2(config-ext-nacl)#5 permit ip any host 224.0.0.10 Мы создаем специальное правило, которое будет разрешать трафик EIGRP. Как мы видим, что трафик EIGRP разрешен - это соответствует правилу, которое мы выше создали. Оба маршрутизатора теперь показывают рабочее соседство EIGRP. Эхо-запрос, который мы только что отправили, теперь работает. Извлеченный урок: не блокируйте пакеты EIGRP! Case #6 Рассмотрим очередную ситуацию, в которой нет соседства EIGRP. На картинке выше мы имеем сеть Frame Relay и один канал PVC между OFF1 и OFF2. Вот соответствующая конфигурация: Оба маршрутизатора настроены для Frame Relay, а EIGRP настроен. Видно, что нет соседей ... это не хорошо! Можем ли мы пропинговать другую сторону? Пинг проходит, поэтому мы можем предположить, что PVC Frame Relay работает. EIGRP, однако, использует многоадресную передачу, а Frame Relay по умолчанию - NBMA. Можем ли мы пропинговать адрес многоадресной рассылки EIGRP 224.0.0.10? Здесь нет ответа на наш вопрос, по крайней мере, теперь мы знаем, что unicast трафик работает, а multicast не работает. Frame Relay может быть настроен для point-to-point или point-to-multipoint соединения. Физический интерфейс всегда является интерфейсом frame-relay point-tomultipoint, и для него требуются frame-relay maps, давайте проверим это: Мы видим, что оба маршрутизатора имеют DLCI-to-IP карты, поэтому они знают, как связаться друг с другом. Видим, что они используют ключевое слово "статический", а это говорит о том, что это сопоставление было кем-то настроено и не изучено с помощью Inverse ARP (в противном случае вы увидите "динамический"). Мы не видим ключевое слово "broadcast", которое требуется для пересылки широковещательного или многоадресного трафика. На данный момент у нас есть 2 варианта решения этой проблемы: Настроить EIGRP для использования одноадресного трафика вместо многоадресного. Проверить конфигурацию Frame Relay и убедится, что многоадресный трафик не перенаправляется. Давайте сначала сделаем unicast настройку EIGRP: OFF1(config)#router eigrp 12 OFF1(config-router)#neighbor 192.168.12.2 serial 0/0 OFF2(config)#router eigrp 12 OFF2(config-router)#neighbor 192.168.12.1 serial 0/0 Нам нужна команда neighbor для конфигурации EIGRP. Как только вы введете эту команду и нажмете enter, вы увидите это: Задача решена! Теперь давайте попробуем другое решение, где мы отправляем multicast трафик по PVC Frame Relay: OFF1(config)#router eigrp 12 OFF1(config-router)#no neighbor 192.168.12.2 serial 0/0 OFF2(config)#router eigrp 12 OFF2(config-router)#no neighbor 192.168.12.1 serial 0/0 Если это не работает ... не исправляйте это... , но не в этот раз! Пришло время сбросить соседство EIGRP. OFF1(config)#interface serial 0/0 OFF1(config-if)#frame-relay map ip 192.168.12.2 102 broadcast OFF2(config)#interface serial 0/0 OFF2(config-if)#frame-relay map ip 192.168.12.1 201 broadcast Broadcast - это ключевое волшебное слово здесь. Это разрешит широковещательный и многоадресный трафик. После изменения конфигурации frame-relay map появляется соседство EIGRP! Это все, что нужно сделать. Извлеченный урок: проверьте, поддерживает ли ваша сеть Frame Relay broadcast или нет. Настройте EIGRP для использования unicast передачи или измените конфигурацию Frame Relay для поддержки широковещательного трафика. Продолжение цикла про поиск и устранение неисправностей протокола EIGRP можно почитать тут.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59