По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет всем! Многие читатели просили написать статью по настройке китайских GSM-шлюзов GoIP. Ну что же – это она :) Мы постараемся как можно подробнее описать процесс настройки GSM-шлюза GoIP 1 и соединим его с IP-АТС Asterisk с помощью графического интерфейса FreePBX 14. Если у вас останутся вопросы или возникнут проблемы с настройкой, то мы поможем их решить в комментариях к данной статье! Вся линейка оборудования GoIP различается в зависимости от количества SIM-карт, которые они поддерживают, а следовательно, и возможных GSM каналов. Есть модели GoIP 1/4/8/16 и 32. $dbName_ecom = "to-www_ecom"; $GoodID = "3574205354"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); Пошаговое видео Немного теории GoIP 1, как и вся линейка оборудования GoIP – это межсетевой шлюз, который работает на стыке сетей IP и GSM. Сама аббревиатура GoIP означает GSM Over IP. Таким образом, любую сеть IP-телефонии можно связать с сетью подвижной сотовой связи - GSM и использовать её как выход на телефонную сеть общего пользования (ТфОП). Для того, чтобы GSM-шлюзом можно было пользоваться, в него нужно вставить простую SIM-карточку. Форм-фактор должен быть именно mini-SIM. Сейчас объясним совсем просто. У всех есть мобильный телефон. Чтобы с него можно было звонить и принимать вызовы, мы вставляем в него SIM-карту, которой присвоен номер. Встроенная антенна в нашем телефоне находит сотовую сеть и с помощью SIM-карточки идентифицируется в ней. Теперь мы можем звонить и принимать звонки на наш номер со всего мира. А теперь мы вытаскиваем SIM-карту из телефона и вставляем её в шлюз GoIP. Что поменялось? Да по сути - ничего. Шлюз также найдёт и также идентифицируется в сотовой сети. Останется только настроить его и “подружить” с нашей IP-АТС и мы сможем звонить c IP-телефона во внешний мир и принимать звонки от туда. Закрепим всё это схемой: Подготовка к настройке Для начала нужно вставить в шлюз SIM-карточку. На задней панели есть специальный слот, вставьте туда mini-SIM-карточку как показано на картинке ниже. Внимание! Прежде чем вставлять SIM-карты в шлюзы GoIP, слоты должны быть обесточены. Сделать это можно либо отключив питание шлюза, либо отключив питание соответствующего GSM модуля через веб - интерфейс Всё оборудование линейки GoIP настраивается с помощью встроенного графического интерфейса. Для того, чтобы в него попасть нужно подключить шлюз в сеть через один из Ethernet портов, расположенных на корпусе шлюза. Шлюз имеет 2 Ethernet порта: PC - порт может работать как в режиме моста, так и в режиме маршрутизатора. По умолчанию он находится в режиме маршрутизатора и ему присвоен адрес 192.168.8.1/24. Можно назначить на компьютере адрес из той же подсети, подключиться к шлюзу напрямую и получить доступ к веб интерфейсу по упомянутому адресу. В режиме моста шлюз можно подключить к локальной сети; LAN - порт для подключения к локальной сети. По умолчанию он получает адрес по DHCP и для того, чтобы выяснить какой адрес он получил, можно воспользоваться одним из следующих методов: Наберите номер SIM-карточки, которую вы вставили в шлюз. Как только будет ответ, наберите комбинацию *01. IP адрес, который получил шлюз, будет продиктован в трубку; Отправьте на номер SIM-карты SMS сообщение с текстом ###INFO###, в ответ шлюз пришлет адрес, который получил по DHCP. Если у вас есть доступ к DHCP серверу, вы можете узнать IP адрес шлюза через него; Как только вы узнали адрес шлюза, введите его в адресную строку Вашего браузера. Логин и пароль по умолчанию - admin/admin. Первая страница, которая переда нами откроется - это текущий статус шлюза. Если SIM-карта уже была вставлено, то мы увидим примерно следующее: Рассмотрим, что означают данные поля: CH/ Line - Номер канала и линии. У нас модель GoIP 1, поэтому мы видим статус только для одного поддерживаемого канала; M - Статус GSM модуля. Y - значит включён, N - выключен. Если нажать на Y - то данный модуль выключится, и перейдёт в статус N. Соответственно, чтобы включить его, нужно будет нажать N. Прежде чем вставлять или вытаскивать SIM-карту из рабочего шлюза, необходимо выключить GSM модуль; SIM - Статус наличия SIM-карты в слоте; GSM - Статус регистрации шлюза в сети GSM; VOIP - Статус регистрации в сети VoIP, то есть – регистрация на IP-АТС. Мы ещё не проводили никаких настроек, поэтому наш шлюз пока "не видит" IP-АТС; Status - Статус VoIP линии. Изменяется в зависимости от VoIP активностей, которые происходят на шлюзе. Может показывать активный звонок (CONNECTED), входящий звонок (INCOMMING), исходящий звонок через соответствующий GSM канал (DIALING) и другие. Статус IDLE означает, что на шлюзе нет текущих VoIP активностей на соответствующем GSM канале; SMS - Статус регистрации на сервере SMS; ACD(S)/ASR(%)/Duration(S)/Count - Показывают соответственно: среднюю продолжительность звонка, средний коэффициент успеха отвеченных вызовов, продолжительность вызова, текущее количество активных звонков и общее число; CDR Start- Время начала записей CRD; RSSI - Показатель уровня принимаемого сигнала; Carrier - Оператор сотовой связи. В нашем случае это МТС; BST ID - Идентификатор базовой станции; Idle - Время в минутах, прошедшее с момента последнего звонка; Remain - Возможное оставшееся время для совершения исходящих звонков; SMS Remain - Количество оставшихся SMS, которые можно отправить; Reset - Данная вкладка позволяет сбросить показатели полей, рассмотренных выше; Итак, прежде чем приступать к настройке, предлагаем обновить прошивку на нашем шлюзе до актуальной версии. Для этого открываем вкладку Tools → Online Upgrade. Выясняем текущую версию, а затем идём на сайт производителя - http://www.hybertone.com/en/news_detail.asp?newsid=21 и ищем более актуальную версию для своей модели (в нашем случае – GoIP 1): Копируем ссылку, для своей модели, вставляем её в строку Upgrade Site в интерфейсе нашего шлюза и жмём Start Внимание! В процессе обновления нельзя перезагружать или отключать питание шлюза! Дождитесь пока завершится процесс обновления, устройство перезагрузится автоматически. После перезагрузки, Вы увидите уведомление о том, что обновление прошло успешно и новую версию прошивки: Настройка на стороне GoIP Итак, прыгаем в Configurations → Preferences. Здесь меняем часовую зону и отключаем встроенный IVR. После завершения настроек на каждой вкладке интерфейса необходимо подтверждать изменения кнопкой Save Changes Далее переходим на вкладку Network и меняем настройки IP адресации на статические LAN Port → Static IP Теперь переходим на вкладку Basic VoIP и настраиваем подключение к серверу Asterisk. Endpoint Type оставляем как SIP Phone; Config Mode также не трогаем, оставляем Single Server Mode; В полях Authentication ID, Display Name и Phone Number обязательно нужно правильно указать название SIP-аккаунта, который мы потом заведём на FreePBX. Данные поля необходимы для успешной SIP регистрации. В нашем случае SIP-аккаунт называется goip-merion; В поле Password указываем пароль для доступа к транку. Точно такой же нам нужно будет ввести на при настройке на стороне FreePBX; Самый важный момент - SIP Registrar и SIP Proxy. Сюда вводим IP адрес нашего сервера Asterisk и порт, на котором он слушает Chan_SIP. По умолчанию, драйвер chan_sip работает на порту 5160; Проверить это можно через FreePBX в модуле Asterisk SIP Settings. Перейдите на вкладку Chan SIP Settings и проверьте поле Bind Port. Впишите тот порт, который там указан или же, измените его значение и впишите его на GoIP. Таким образом, если IP адрес Вашего Asterisk 192.168.12.34, то в поля SIP Registrar и SIP Proxy вводите 192.168.12.34:5160. Нажимаем Save Changes На вкладке Advanced VoIP есть важный момент. Обратите внимание на поле Signaling Port. Это порт, на котором шлюз слушает SIP, по умолчанию его значение 5060. При настройке транка на стороне FreePBX нужно будет это учесть. В поле Call OUT Auth Mode выберем опцию IP and Password, отметим опцию As Proxy и введём пароль. Такой же пароль потом будет необходимо ввести при настройке транка. Далее на очереди вкладка Media. На ней настроим интервал RTP портов как на Asterisk (10000-20000), а также приоритетность кодеков: Вкладку Call Out и Call Out Auth оставляем без изменений. На вкладке Call In меняем 2 параметра: CID Forward Mode - устанавливаем значение Use CID as SIP Caller ID для того, чтобы определялся номер звонящего; Forwarding to VoIP Number - вписываем сюда номер нашей IP-АТС, куда будут приходить входящие звонки. В нашем случае – это будет внутренний номер 175, который мы создадим на FreePBX; На этом, настройка на стороне шлюза GoIP закончена. Теперь переходим во FreePBX. Настройка на стороне FreePBX Прежде чем приступать к настройкам на стороне FreePBX, предлагаю внести IP-адрес шлюза в белый список fail2ban. В процессе регистрации от шлюза может прийти много неудачных попыток регистрации. Из-за этого он может быть просто заблокирован fail2ban’ом и Asterisk не сможет его даже пинговать. Чтобы этого избежать, рекомендую сделать следующее: Подключитесь к Asterisk через ssh и откройте для редактирования файл /etc/fail2ban/jail.local, например, с помощью vim: vim /etc/fail2ban/jail.local Найдите секцию [DEFAULT] и добавьте в опцию ignoreip адрес шлюза GoIP, который настроили ранее. Адреса можно добавлять через пробел в одну строку, можно также добавлять целые сети. На примере ниже, мы внесли адрес шлюза 192.168.12.34/24 Теперь мы готовы. Сначала настроим новый транк. Для этого открываем раздел Connectivity → Trunks → Add Trunk → Add SIP (chan_sip) Trunk. На вкладке General указываем название и вписываем номер, который присвоен SIM-карточке: Далее переходим на вкладку sip Settings → Outgoing. Указываем имя транка в Trunk Name и заполняем PEER Details следующим образом: Обратите внимание, что параметр port=5060, он должен совпадать с тем, что указан в Signaling Port на GoIP. Для удобства, приводим PEER Details ниже: host="IP Шлюза GoIP" port=5060 type=peer context=from-internal dtmfmode=rfc2833 disallow=all allow=alaw&ulaw insecure=very&port,invite qualify=yes defaultuser=goip-merion secret="Ваш Пароль" nat=no canreinvite=no Теперь переходим на вкладку sip Settings → Incoming. Указываем имя SIP-аккаунта USER Context, оно должно совпадать с Authentication ID, Display Name и Phone Number на GoIP. Затем заполняем USER Details следующим образом: type=friend host=dynamic secret="Ваш Пароль" context=from-trunk dtmfmode=rfc2833 canreinvite=no qualify=yes После выполненных настроек, рекомендую перезагрузить шлюз. После этого, в Asterisk Info у нас должно появиться что-то типа: Это значит, что регистрация шлюза прошла успешно. Обратите внимание, что мы уже создали внутренний номер 175. Если мы откроем статус GoIP, то также увидим там подтверждение того, что транк был успешно зарегистрирован: Нам осталось только создать исходящий маршрут и настроить отправку исходящих вызовов в транк к GoIP шлюзу: А также обозначить в нём правила набора: При этом, входящий маршрут нам не нужен, так как при настройке GoIP в разделе Call In → Forwarding to VoIP Number мы настроили приём всех входящих звонков на номер 175. На данном номере, мы зарегистрировали софтфон DrayTek, попробуем сделать исходящий вызов: Работает А теперь попробуем позвонить на номер SIM-карточки, которую мы вставили в шлюз: Вызов попадает на тот же DrayTek с номером 175. Номер звонящего определяется. На этом настройка шлюза GoIP 1 завершена. Надеюсь, что данная статья была Вам полезна. Пишите в комментарии, если столкнулись с проблемой!
img
В этой статье мы рассмотрим IPv6 (Internet Protocol version 6), причины, по которым он нам нужен, а также следующий аспект: различия с IPv4. Пока существует Интернет, используется протокол IPv4 для адресации и маршрутизации. Однако проблема с IPv4 заключается в том, что у нас закончились адреса. Так что же случилось с IPv4? Что же пошло не так? У нас есть 32 бита, которые дают нам 4 294 467 295 IP-адресов. Когда появился Интернет, мы получили сети класса А, В или С. Класс С дает нам блок из 256 IP-адресов, класс B - это 65.535 IP-адресов, а класс A даже 16 777 216 IP-адресов. Крупные компании, такие как Apple, Microsoft, IBM и др. имеют одну или несколько сетей класса А. Но действительно ли им нужно 16 миллионов IP-адресов? Большинство из этих IP-адресов не были использованы. Поэтому мы начали использовать VLSM, чтобы использовать любую маску подсети, которая нам нравится, и создавать более мелкие подсети, а не только сети класса A, B или C. У нас также имеется NAT и PAT, следовательно, мы имеем много частных IP-адресов за одним публичным IP-адресом. Тем не менее интернет вырос так, как никто не ожидал 20 лет назад. Несмотря на все наши крутые трюки, такие как VLSM и NAT/PAT, нам нужно было больше IP-адресов, и поэтому родился IPv6. А что случилось с IPv5? Хороший вопрос ... IP-версия 5 была использована для экспериментального проекта под названием "Протокол интернет-потока". Он определен в RFC, если вас интересуют исторические причины: http://www.faqs.org/rfcs/rfc1819.html IPv6 имеет 128-битные адреса по сравнению с нашими 32-битными IPv4-адресами. Имейте в виду, что каждый дополнительный бит удваивает количество IP-адресов. Таким образом мы переходим от 4 миллиардов к 8 миллиардам, 16,32,64 и т. д. Продолжайте удвоение, пока не достигнете 128-битного уровня. Просто вы увидите, сколько IPv6-адресов это даст нам: 340,282,366,920,938,463,463,374,607,431,768,211,456; Можем ли мы вообще произнести это? Давайте попробуем вот это: 340 - ундециллионов; 282 - дециллионов; 366 - нониллионов; 920 - октиллионов; 938 - септиллионов; 463 - секстиллионов; 463 - квинтильонов; 374 - квадрильонов; 607 - триллионов; 431 - биллионов; 768 - миллионов; 211 - тысяч; 456. Это умопомрачительно... это дает нам достаточное количество IP-адресов для сетей на Земле, Луне, Марсе и остальной Вселенной. IPv6-адреса записываются в шестнадцатеричном формате. IPv4 и IPv6 несовместимы друг с другом, поэтому многие протоколы были обновлены или заменены для работы с IPv6, вот некоторые примеры: OSPF был обновлен с версии 2 (IPv4) до версии 3 (IPv6); ICMP был обновлен до версии ICMP 6; ARP был заменен на NDP (Neighborhood Discovery Protocol). Заголовок пакета IPv6 содержит адреса источника и назначения, но по сравнению с IPv4 он стал намного проще: Вместо того чтобы уже добавлять все поля в заголовок, заголовок IPv6 использует "следующий заголовок", который ссылается на необязательные заголовки. Поскольку заголовок намного проще, маршрутизаторам придется выполнять меньше работы. А как насчет маршрутизации? Есть ли разница между IPv4 и IPv6? Давайте рассмотрим варианты маршрутизации: Static Routing; RIPng; OSPFv3; MP-BGP4; EIGRP. Вы все еще можете использовать статическую маршрутизацию, как и в IPv4, ничего нового здесь нет. RIP был обновлен и теперь называется RIPng или RIP Next Generation. OSPF для IPv4 на самом деле является версией 2, а для IPv6 у нас есть версия 3. Это отдельный протокол, он работает только на IPv6. Есть только незначительные изменения, внесенные в OSPFv3. BGP (Border Gateway Protocol) - это протокол маршрутизации, который объединяет Интернет вместе.MP-BGP расшифровывается как Multi-Protocol BGP, и он может маршрутизировать IPv6. EIGRP также поддерживает IPv6. Просто имейте в виду, что OSPF и EIGRP поддерживают IPv6, но это отдельные протоколы. Если у вас есть сеть с IPv4 и IPv6, вы будете запускать протокол маршрутизации для IPv4 и еще один для IPv6. Запуск IPv4 и IPv6 одновременно называется двойным стеком. Поскольку эти два протокола несовместимы, в будущем будет происходить переход с IPv4 на IPv6. Это означает, что вы будете запускать оба протокола в своей сети и, возможно, однажды вы сможете отключить IPv4, так как весь интернет будет настроен на IPv6. Давайте взглянем на формат IPv6-адреса: 2041:0000:140F:0000:0000:0000:875B:131B Во-первых, он шестнадцатеричный и гораздо длиннее, чем IPv4-адрес. Существует восемь частей, состоящих из 4 шестнадцатеричных цифр каждая, поэтому 128-битный адрес может быть представлен 32-битными шестнадцатеричными символами. Если вы забыли, как работает шестнадцатеричный код, взгляните на таблицу ниже: В шестнадцатеричной системе счисления мы считаем от 0 до F точно так же, как мы считали бы от 0 до 15 в десятичной системе счисления: A = 10; B = 11; C = 12; D = 13; E = 14; F = 15. Использование шестнадцатеричного кода помогает сделать наши адреса короче, но ввод адреса IPv6 - это все еще большая работа. Представьте себе, что вы звоните другу и спрашиваете его, может ли он пинговать IPv6-адрес 2041:0000:140F:0000:0000:0000:875B:131B, чтобы узнать, может ли он достучаться до своего шлюза по умолчанию. Чтобы облегчить нам работу с такими адресами, можно сделать IPv6-адреса короче. Вот пример: Оригинальный: 2041: 0000:140F:0000:0000:0000:875B:131B Сокращенный: 2041: 0000:140F:: 875B:131B Если есть строка нулей, вы можете удалить их, заменив их двойным двоеточием (::). В приведенном выше IPv6-адресе удалены нули, сделав адрес немного короче. Вы можете сделать это только один раз. Мы можем сделать этот IPv6 адрес еще короче используя другой трюк: Сокращенный: 2041: 0000:140F:: 875B:131B; Еще короче: 2041:0:140F:: 875B:131B Если у вас есть блок с 4 нулями, вы можете удалить их и оставить там только один ноль. Мы также можем удалить все впередистоящие нули: Оригинальный: 2001:0001:0002:0003:0004:0005:0006:0007; Сокращенный: 2001:1:2:3:4:5:6:7 Подытожим небольшие правила: Строку нулей можно удалить, оставив только двоеточие (::). Вы можете сделать только это однажды.; 4 нуля можно удалить, оставив только один ноль. Впередиидущие нули могут быть удалены в пределах одного блока.; Вы не можете удалить все нули, иначе ваше устройство, работающее с IPv6 не поймет, где заполнить нули, чтобы снова сделать его 128-битным.; Вычисление префикса IPV6 мы пропустим, так как ресурсов, рассказывающих об этом в сети Интернет, специальных книгах полно. Нет смысла повторяться. Потребуется некоторое время, чтобы привыкнуть к IPv6-адресации и поиску префиксов, но чем больше вы этим занимаетесь, тем дальше становиться проще. В оставшейся части этой статьи мы еще немного поговорим о различных типах адресации IPv6. IPv4-адреса организованы с помощью "системы классов", где класс A, B и C предназначены для одноадресных IP-адресов, а класс D-для многоадресной передачи. Большинство IP-адресов в этих классах являются публичными IP-адресами, а некоторые-частными IP-адресами, предназначенными для наших внутренних сетей. Нет такой вещи, как классы для IPv6, но IANA действительно зарезервировал определенные диапазоны IPv6 для конкретных целей. У нас также есть частные и публичные IPv6-адреса. Первоначально идея IPv4 заключалась в том, что каждый хост, подключенный к Интернету, будет иметь общедоступный IP-адрес. Каждая компания получит сеть класса А, В или С, и сетевые инженеры в компании будут дополнительно подсоединять ее так, чтобы каждый хост и сетевое устройство имели общедоступный IP-адрес. Проблема, однако, заключается в том, что адресное пространство IPv4 было слишком маленьким, и выдавать полные сети A, B или C было не очень разумно. Даже если вам требуется только небольшое количество IP-адресов, вы все равно получите сеть класса C, которая дает вам 254 пригодных для использования IP-адреса. Компания, которой требуется 2.000 IP-адресов, получит класс B, который дает вам более 65.000 IP-адресов. Поскольку у нас заканчивались IP-адреса, мы начали использовать такие вещи, как VLSM (избавляясь от идеи класса A, B, C) и настраивали частные IP-адреса в наших локальных сетях, а вместо этого использовали NAT/PAT. Протокол IPv6 предлагает два варианта для одноадресной рассылки: Global Unicast; Unique Local. Раньше существовал третий диапазон адресов, называемый "site local", который начинался с FEC0:: / 10. Этот диапазон изначально предназначался для использования во внутренних сетях, но был удален из стандарта IPv6. Global Unicast передачи IPv6 похожи на публичные IPv4-адреса. Каждая компания, которая хочет подключиться к интернету с помощью IPv6, получит блок IPv6-адресов, которые они могут дополнительно разделить на более мелкие префиксы, чтобы все их устройства имели уникальный IPv6-адрес. Зарезервированный блок называется префиксом глобальной маршрутизации. Поскольку адресное пространство IPv6 настолько велико, каждый может получить префикс глобальной маршрутизации. Давайте посмотрим, как назначаются префиксы IPv6-адресов. Допустим, компания получает префикс 2001:828:105:45::/64. Как они его получили? Мы пройдемся по этой картине сверху вниз: IANA отвечает за распределение всех префиксов IPv6. Они будут назначать реестрам различные блоки. ARIN - для Северной Америки, RIPE -для Европы, Ближнего Востока и Центральной Азии. Всего таких реестров насчитывается 5. IANA присваивает 2001: 800:: /23 RIPE и 2001: 0400::/23 ARIN (и многие другие префиксы).; ISP, который попадает под реестр RIPE, запрашивает блок пространства IPv6. Они получают от них 2001: 0828:: / 32, которые в дальнейшем могут использовать для клиентов.; ISP дополнительно подсоединит свое адресное пространство 2001:0828::/32 для своих пользователей. В этом примере клиент получает префикс 2001:828:105::/48.; IANA зарезервировала определенные диапазоны адресов IPv6 для различных целей, точно так же, как это было сделано для IPv4. Первоначально они зарезервировали IPv6-адреса, которые с шестнадцатеричными 2 или 3 являются global unicast адресами. Это можно записать как 2000:: / 3. В настоящее время они используют все для global unicast рассылки, которая не зарезервирована для других целей. Некоторые из зарезервированных префиксов являются: FD: Unique Local; FF: Multicast; FE80: Link-Local. Обсудим префиксы local и link-local В моем примере клиент получил 2001: 828:105:: / 48 от провайдера, но прежде чем я смогу что-либо сделать с этим префиксом, мне придется разбить на подсети его для различных VLAN и point-to-point соединений, которые у меня могут быть. Подсети для IPv6 - это примерно то же самое, что и для IPv4, но математика в большинстве случаев проще. Поскольку адресное пространство настолько велико, почти все используют префикс /64 для подсетей. Нет смысла использовать меньшие подсети. При использовании IPv4 у нас была часть "сеть" и "хост", а класс A, B или C определяет, сколько битов мы используем для сетевой части: Когда мы используем подсети в IPv4 мы берем дополнительные биты от части хоста для создания большего количества подсетей: И, конечно, в результате у нас будет меньше хостов на подсеть. Подсети для IPv6 используют аналогичную структуру, которая выглядит следующим образом: Префикс global routing был назначен вам провайдером и в моем примере клиент получил его 2001:828:105::/48. Последние 64 бита называются идентификатором интерфейса, и это эквивалентно части хоста в IPv4. Это оставляет нас с 16 битами в середине, которые я могу использовать для создания подсетей. Если я хочу, я могу взять еще несколько битов из идентификатора интерфейса, чтобы создать еще больше подсетей, но в этом нет необходимости. Используя 16 бит, мы можем создать 65.536 подсетей ...более чем достаточно для большинства из нас. И с 64 битами для идентификатора интерфейса на подсеть, мы можем иметь восемнадцать квинтиллионов, четыреста сорок шесть квадриллионов, семьсот сорок четыре триллиона, семьдесят четыре миллиарда, семьсот девять миллионов, пятьсот пятьдесят одну тысячу, шестьсот с чем-то хостов на подсеть. Этого должно быть более чем достаточно! Использование 64-битного идентификатора интерфейса также очень удобно, потому что он сокращает ваш IPv6-адрес ровно наполовину! Допустим, наш клиент с префиксом 2001: 828: 105:: / 48 хочет создать несколько подсетей для своей внутренней сети. Какие адреса мы можем использовать? 16 бит дает нам 4 шестнадцатеричных символа. Таким образом, все возможные комбинации, которые мы можем сделать с этими 4 символами, являются нашими возможными подсетями. Все, что находится между 0000 и FFFF, является допустимыми подсетями: 2001:828:105:0000::/64; 2001:828:105:0001::/64; 2001:828:105:0002::/64; 2001:828:105:0003::/64; 2001:828:105:0004::/64; 2001:828:105:0005::/64; 2001:828:105:0006::/64; 2001:828:105:0007::/64; 2001:828:105:0008::/64; 2001:828:105:0009::/64; 2001:828:105:000A::/64; 2001:828:105:000B::/64; 2001:828:105:000C::/64; 2001:828:105:000D::/64; 2001:828:105:000E::/64; 2001:828:105:000F::/64; 2001:828:105:0010::/64; 2001:828:105:0011::/64; 2001:828:105:0012::/64; 2001:828:105:0013::/64; 2001:828:105:0014::/64; И так далее. Всего существует 65 535 возможных подсетей, поэтому, к сожалению, я не могу добавить их все в статью...теперь мы можем назначить эти префиксы различным соединениям типа point-to-point, VLAN и т. д.
img
Будьте осторожны с тем, какие ссылки вы открываете и по каким сайтам переходите - это может быть мошенничество! Фишинг - это мошенническая деятельность, направленная на выманивание вашей личной информации, такой как номера кредитных карт, пароли и другие важные данные. Это также можно описать как кражу личных данных или как разновидность социальной инженерии. Мошеннические схемы часто опираются на строки в электронных письмах, веб-сайтах или в чате, которые, исходят от службы такой, как ваш банк, поставщик платежных карт или ваша социальная сеть. Цель социальной инженерии обычно состоит в том, чтобы незаметно установить шпионское ПО или обмануть вас, раскрыв ваши пароли или другую личную информацию. Никогда не отвечайте на запросы об обновлении информации вашей учетной записи, если вы сами их не запрашивали. Такие сообщения могут быть попытками мошенничества, направленного на кражу вашей личности. Большинство уважаемых компаний никогда не отправляют незапрашиваемые сообщения с запросом вашего пароля или другой личной информации. И помните, если что-то звучит слишком хорошо, чтобы быть правдой, это, вероятно, не так. Как вы можете защитить себя от мошеннической информации? Последующие советы могут помочь избежать мошенничества в интернете: Держите брандмауэр включенным. Всегда поддерживайте свое программное обеспечение и операционную систему в актуальном состоянии. Всегда держите свой антивирус в актуальном состоянии. Уделите достаточно внимания ссылкам на сайт! Поскольку многие мошенники в интернете полагаются на то, что пользователь нажимает на ссылку, это очень хороший способ защитить себя, просто обращая внимание на то, что вы нажимаете в электронной почте, в чате или на веб-сайтах. Если вы получили письмо, которое вы не ожидали, и оно содержит ссылку, и вы хотите ее открыть, напишите ссылку непосредственно в свой веб-браузер. Если веб-ссылка приходит с сайта, который вы часто посещаете, используйте свои интернет-закладки для доступа к сайту. Удалить спам! Не открывайте его и не отвечайте на него, даже если вы хотите, чтобы вас удалили из списка рассылки. Когда вы отвечаете, вы подтверждаете отправителю, что ваша учетная запись активна. Будьте осторожны при предоставлении ваших личных или финансовых данных в интернете. Не заполняйте формы в электронных письмах, которые запрашивают у вас личную или финансовую информацию. Используйте надежные пароли и избегайте использования одних и тех же паролей для разных интернет-банков и других важных учетных записей. Регулярно проверяйте свои банковские выписки и немедленно сообщайте о платежах, на которые вы не дали своего согласия. Ни при каких обстоятельствах не оплачивайте счета или не выполняйте другие финансовые операции на общедоступном компьютере, если вы находитесь в открытой общедоступной беспроводной сети. Если вам все-таки нужно войти на общедоступном компьютере, отдайте предпочтение тому, который требует пароля, это повышает безопасность.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59