По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Все, что вам нужно знать о Linux, можно найти в man. Это интерфейс, используемый для просмотра справочных руководств системы, отсюда и название: man - сокращение от manual. Например, можно выполнить поиск команды для выполнения задачи, даже если неизвестно, как она называется. Но как найти само руководство? В этой статье расскажем о некоторых скрытых возможностях этой команды. Встроенное руководство Linux Существует старая шутка: единственная команда, которую нужно знать в Linux это man – точка входа в руководство пользователя. Несмотря на то, что тут есть доля правды, но даже сама команда man может ввести в тупик вначале. Вернее, поиск информации с помощью этой команды. Наверное, у всех был случай, когда знали, что вы хотите сделать, но не знали какая команда поможет выполнить поставленную задачу. Это похоже на то, как искать слово в словаре при том, не зная самого слова. Итак, как же можно найти, то что нужно? С man можно легко обойти эту сложность. Цифры - еще одна сложность перед новичками. Что они означают? Вы документации или в просторах Интернета часто можно увидеть такие ссылки, man (2) или man (5). Также можно встретить ссылки на команды, за которыми следуют цифры, такие как mount (2) и mount (8). Конечно, не может быть больше одной команды mount, верно? Как мы увидим, цифры важны и их понять относительно просто. Проще говоря, вести поиск по man достаточно легко если один раз понять, как это работает. На самом деле, есть несколько способов поиска и навигации в man. Как перейти к руководству Чтобы запустить руководство по какой либо-команде достаточно в командной строке набрать команду man, а затем через пробел название команды, по которой нужно руководство. После этого система запустить руководство по команде – конечно, если найдет. Давайте посмотрим, что покажет команда man по man: man man Ниже показано руководство по команде man: Как видно, это первая страница руководства man (1). Чтобы просмотреть другие страница выполните одно из следующих действий: Чтобы прокрутить по одной строчке: используйте колесо мыши, стрелки вверх или вниз и клавишу Enter. Для перехода на следующую страницу: Нажмите клавишу пробел, или же кнопки PgUp PgDown. Для перехода в начало и конец руководства: Клавиши Home и End Если нажать H (заглавная h), то можно перейти в раздел помощи, где можно найти альтернативные комбинации, которыми можно пользоваться для навигации. Чтобы выйти из руководства нажмите Q. Структура руководства В начале страницы можно увидеть Название (Name) и Описание (Synopsis). Есть определённые правила оформления страницы руководства. Есть руководства по командам, программам, функциям и т.д. Не во всех руководствах есть эти заголовки, так как некоторые из них применимы только к конкретным командам. Ниже приведён список заголовков, которые можно встретить в руководстве. Название (Name): название команды, по которой просматривается руководство Синопсис (Synopsis): Краткое описание команды и синтаксиса Конфигурация (Configuration): Детали настройки для устройства Описание (Description): Описание основного назначения программы Опции (Ключи): опции которые принимает команда Выходной статус (Exit Status): Возможные значения, возвращаемые командой при завершении работы Возвращаемое значение (Return Value): Если руководство запущено по какой-то библиотеке, то это указывает на значение, которое вернет библиотека функции, которая вызвала ее. Ошибки (Errors): Список всех значение, которые может принимать errno в случае ошибки выполнения команды Окружение (Environment): Список переменных окружения, которые относятся к команде или программе Файлы (Files): Список файлов, которые использует команда или программа, например, конфигурационный файл Атрибуты (Attributes): Список различных атрибутов команды Версии (Versions): Список изменений в ядре Linux или библиотеке, которую использует команда Соответствие (Conforming to): Описание любых стандартов, которым может соответствовать команда, например, POSIX. Заметки (Notes): Дополнительные заметки Баги (Bugs): Известные ошибки Примеры (Examples): Один или несколько примеров использования команды Авторы (Authors): Люди, которые разработали и поддерживают команду Просмотрите также (See Also): Рекомендуемые материалы по команде Разделы руководства Прокрутив ниже на несколько страниц увидите список разделов в данном руководстве: Это следующие разделы: Основные команды (General commands): Команды, которые используются в командной строке Системные вызовы (System calls): Функции ядра, которые может вызвать программа Функции библиотек (Library functions): общий набор функций и возможностей, используемых программами Форматы файлов и соглашения (File formats and conventions): Форматы файлов как passwd, cron table, tar архивы Специальные файлы (Special files): обычно устройства, например, найденные в /dev, и их драйверы. Игры (Games): Описание команд, например, fortuna, которая при запуске показывает цитаты из БД Дополнительно (Miscellaneous): Описание таких вещей как inodes, параметры загрузку Администрирование системы (System administration): Команды и демоны, зарезервированные для использования root-ом. Распорядок ядра (Kernel Routines): Информация, касающаяся внутренних операций ядра. Сюда входят функциональные интерфейсы и переменные, которые могут быть использованы программистами, которые разрабатывает драйвера устройств. Цифры в скобках рядом с командой указывают на раздел руководства. Например, man (1) означает первый раздел руководства, которая описывает работу команды man. На скриншоте выше видна ссылка на man (7). Это значит, что подробную информацию о команде можно найти в другом разделе. Когда впервые открываем руководство по команде, оно показывает man (1). Если ввели команду man без указания раздела, команда будет искать переданные параметр во всех разделы по очереди и конечно же первым выведет первый раздел. Если нужно найти информацию в конкретном разделе нужно передать команде номер этого раздела. Например, чтобы открыть седьмой раздел руководства по команде man введем следующую команду: man 7 man Руководство откроется с седьмого раздела: Эта страница руководства содержит инструкции по созданию руководства. Она описывает формат файлов и макросы, которые можно использовать для автоматизации части работы. man (1) же в начале руководства описывает как вообще использовать саму команду man. Поиск записей в разделах В основном, если нужно просто узнать, как пользоваться той или иной командой, не надо указывать номер раздела. man найдёт стандартную запись в первом разделе руководства, которая описывает как нужно пользоваться командой. Иногда же, в поиске нестандартной информации, нужно открыть конкретный раздел, содержащий запись по команде. В Linux легко можно найти разделы, в которых встречается нужная записб. Каждое руководство обладает названием и кратким описанием. Ключ –f (whatis) ведёт поиск по заголовкам и возвращает все вхождения. Например, введем следующую команду: man -f man Команда нашла два совпадения для команды man с разделами и кратким описанием. Однако будьте осторожны - некоторые записи имеют одинаковое название, но описывают разные команды и функции. Например, введём следующую команду: man -f printf Как видно, для команды printf были найдены две записи: одна в первом разделе, и другая в третьем разделе. Однако это разные команды. Информация в разделе 1 описывает команду printf командной строки, которая форматирует данные при выводе в окно терминала. В третьем же разделе описывается семейство функций библиотеки printf в языке программирования C. Также возможен поиск по кратким описаниям, а также заголовкам страниц. Для этого используется параметр -k (apropos). Это также будет искать соответствия искомому термину поиска внутри других, более длинных слов. Вводим следующее: man -k printf Многие из этих команд описаны в одних и тех же информационных страницах, поскольку их основные функциональные возможности в основном одинаковы. Справочная страница для vprintf описывает функциональность 10 команд, перечисленных на рисунке выше. Эту функцию можно использовать для поиска информации, для выполнения конкретной задачи, даже если не знаете имя команды, которую хотите использовать. Допустим, нужно изменить пароль учетной записи пользователя. Мы можем искать любые команды, которые упоминают "user" в заголовках или описаниях страницы. Затем его можно пропустить через функцию grep для поиска записей, содержащих слово "password". Для этого нужно ввести следующую команду: man -k 'user ' | grep password Так как слово user мы выделили одинарными кавычками и в конце поставили пробел, команда будет искать только слово “user”, а не “users”. Бегло просмотрев результат, можно заметить, что самая подходящая команда это passwd. Так как правило использования указано в первом разделе руководства, не нужно указывать конкретный раздел: man passwd Допустим на нужна команда, которая выводит количество слове в текстовом файле. Набираем в командной строке, что-то подобное: man –k word | grep count Чтобы узнать все, что нужно знать о подсчете слов, введите следующую команду: man wc Говоря о wc, мы также можем в качестве значения передать параметру –k точку ., что означает любой символ. А затем передать вывод команде wc, которой передадим еще и параметр –l (lines), на выводе мы получим число страниц руководства. Чтобы сделать все это введем команду: man -k . | wc -l Итого, у нас 6 706 страниц руководства, но не пусть вас не путает, если у вас это число отличается, так как объем руководства напрямую зависит от установленных в системе программ и предустановленных справочников. Поиск по руководству Также есть возможность вести поиск по самому руководству. Например, давайте рассмотрим руководство по команде history: man history Чтобы вести поиск в следующих страницах от текущей вводим символ прямой косой черты / и набираем искомое слово. Результат этих действий будет отображаться внизу командной строки. Чтобы начать поиск нажимаем Enter. Система выведет и выделит первое совпадение по искомому слову: Чтобы перейти к следующему результату нажмите n, а чтобы перейти к предыдущим результатам – N. Включить или выключить подсветку найденного слова можно сочетанием клавиш Esc+U. Если же дошли до конца руководства, но не нашли нужную информацию, то можно вести поиск в обратном направлении. Для этого нажимаем ? и набираем нужный текст: Также можно перемещаться вперед и назад по найденным результатам. Есть другой способ поиска по руководству. Он скрывает все строки, которые не содержат совпадения с искомым словом, поэтому лучше использовать номера строк с этим методом. Если набрать –N и нажать Enter во время просмотра руководства, то радом со строками отобразятся номера строк. Теперь нажимаем на &, набираем искомое слово и нажимаем Enter. Теперь отобразятся только строки, в которых найдено искомая фраза: Просмотре вывод можно найти наиболее интересные результаты. Мы видим, что строка 292 наиболее подходящая и хотим просмотреть данный раздел руководства. Чтобы показать все снова держим нажатым & и нажимаем Enter. Теперь набираем номер строки: 292, а затем букву «g», чтобы перейти к указанной строке. Как только мы нажмем «g» нас перебросит на 292 строку (именно поэтому на скриншоте выше не показана буква «g»). Чтобы убрать нумерацию строк достаточно набрать –n и нажать Enter. Прочитайте волшебное руководство На страницах руководства много полезной информации. Даже у команд, которые вы думаете, вы хорошо знаете, есть такие возможности, о которых вы никогда не слышали. Вы также определенно найдете команды, о существовании которых вы не знали. С таким количеством различных способов поиска и отслеживания информации, потрясающе иметь под рукой такую команду.
img
Все мы знаем, что время – самый ценный ресурс. Сегодня мы рассмотрим 5 способов, которые помогут сэкономить немного времени, при работе в командной строке Cisco IOS. Не будем терять время и рассмотрим их! exec-timeout 0 0 Эта команда позволяет не терять соединение с вашим роутером или коммутатором при достижении времени таймаута, выставив его на ноль минут и ноль секунд. Если ее применить на консольных линиях и VTY, то IOS интерпретирует это, как никогда не истекающий таймаут. Конечно, ни в коем случае нельзя использовать эту команду в продакшне из соображений безопасности, но она прекрасно подойдет, чтобы сэкономить ваше время в лаборатории, избавив от необходимости повторного входа на несколько устройств в течение дня. logging synchronous Наверняка вы были в ситуации, когда посреди набора вашей команды Cisco IOS чувствовала сильную необходимость отправить сообщение Syslog в консоль? :) Это может сильно отвлекать. Способ предотвращения такого вторжения заключается в применении команды logging synchronous. После ввода этой команды, если IOS понадобится отправить Syslog сообщение, то после его отправки, консоль вернет в сеанс терминала то, что вы уже набрали, чтобы продолжить там, где вы остановились. no ip domain-lookup Эта команда позволяет отключить интерпретацию команды как DNS имя, если в ней была сделана ошибка. Еще два менее радикальных метода как обойти это можно найти в этой статье. alias exec В качестве еще одного способа экономии времени можно создать несколько команд псевдонимов (alias). Это относительно короткие команды, которые транслируются в IOS в длинные команды. Например, если вам часто приходится смотреть конфигурацию протоколов маршрутизации при помощи команды show run | s router, то можно создать ее короткую версию используя команду alias exec src show run | s router. Теперь вместо всей длинной команды нам нужно будет набрать просто ее псевдоним – src. Сохраненная начальная конфигурация И в качестве окончательного способа по экономии времени можно рассмотреть сохранения начальной конфигурации в текстовый файл и вставить текст при запуске оборудования «из коробки» или после сброса. Например, можно завести документ со всеми командами из этой статьи и вставлять его в начале работы. conf t line con 0 exec-timeout 0 0 logging synchronous exit line vty 0 15 exec-timeout 0 0 logging synchronous exit no ip domain-lookup alias exec src show run | s router alias exec sib show ip interface brief end Надеемся, что это поможет сохранить вам пару драгоценных минут!
img
Первоначально BGP был разработан как протокол Внешнего шлюза (Exterior Gateway Protocol - EGP), что означает, что он предназначался для подключения сетей или автономных систем (AS), а не устройств. Если BGP является EGP, это должно означать, что другие протоколы маршрутизации, такие как RIP, EIGRP, OSPF и IS-IS, должны быть протоколами внутренних шлюзов (Interior Gateway Protocols- IGP). Четкое определение внутренних и внешних шлюзов оказалось полезным при проектировании и эксплуатации крупномасштабных сетей. BGP является уникальным среди широко распространенных протоколов в том, что касается расчета пути без петель. Существует три широко используемых протокола векторов расстояний (Spanning Tree, RIP и EIGRP). Существует два широко используемых протокола состояния канала связи (OSPF и IS-IS). И есть еще много примеров этих двух типов протоколов, разработанных и внедренных в то, что можно было бы считать нишевыми рынками. BGP, однако, является единственным широко развернутым протоколом вектора пути. Каковы наиболее важные цели EGP? Первый - это, очевидно, выбор путей без петель, но это явно не означает кратчайшего пути. Причина, по которой кратчайший путь не так важен в EGP, как в IGP, заключается в том, что EGP используются для соединения объектов, таких как поставщики услуг, поставщики контента и корпоративные сети. Подключение сетей на этом уровне означает сосредоточение внимания на политике, а не на эффективности - с точки зрения сложности, повышение состояния с помощью механизмов политики при одновременном снижении общей оптимизации сети с точки зрения передачи чистого трафика. BGP-пиринг BGP не обеспечивает надежной передачи информации. Вместо этого BGP полагается на TCP для передачи информации между одноранговыми узлами BGP. Использование TCP гарантирует: Обнаружение MTU обрабатывается даже для соединений, пересекающих несколько переходов (или маршрутизаторов). Управление потоком осуществляется базовым транспортом, поэтому BGP не нуждается в непосредственном управлении потоком (хотя большинство реализаций BGP действительно взаимодействуют со стеком TCP на локальном хосте, чтобы повысить пропускную способность, в частности, для BGP). Двусторонняя связь между одноранговыми узлами обеспечивается трехсторонним рукопожатием, реализованным в TCP. Несмотря на то, что BGP полагается на базовое TCP-соединение для многих функций, которые плоскости управления должны решать при построении смежности, по-прежнему существует ряд функций, которые TCP не может предоставить. Следовательно, необходимо более подробно рассмотреть процесс пиринга BGP. Рисунок 1 позволяет изучить этот процесс. Сеанс пиринга BGP начинается в состоянии ожидания (idle state). A отправляет TCP open на порт 179. B отвечает на временный порт (ephemeral port) на A. После завершения трехстороннего подтверждения TCP (сеанс TCP успешен), BGP перемещает состояние пиринга для подключения. Если пиринговый сеанс формируется через какой-либо тип фильтрации на основе состояния, такой как брандмауэр, важно, чтобы открытое TCP-сообщение передавалось «изнутри» фильтрующего устройства. В случае сбоя TCP-соединения состояние пиринга BGP переводится в активное. A отправляет BGP open в B и переводит B в состояние opensent. В этот момент A ожидает от B отправки сообщения keepalive. Если B не отправляет сообщение keepalive в течение определенного периода, A вернет сеанс обратно в состояние ожидания (idle state). Открытое сообщение содержит ряд параметров, например, какие семейства адресов поддерживают два спикера BGP и hold timer. Это называется согласованием возможностей. Самый низкий (минимальный) hold timer из двух объявленных выбирается в качестве hold timer для однорангового сеанса. Когда B отправляет A сообщение keepalive, A переводит B в состояние openconfirm. На этом этапе A отправит B сообщение keepalive для проверки соединения. Когда A и B получают сообщения поддержки активности друг друга, пиринговый сеанс переходит в established state. Два узла BGP обмениваются маршрутами, поэтому их таблицы обновлены. A и B обмениваются только своими лучшими путями, если какая-либо форма многонаправленного распространения BGP не поддерживается и не настроена на двух спикерах. Чтобы уведомить A, что он завершил отправку всей своей локальной таблицы, B отправляет A сигнал End of Table (EOT) или End of RIB (EOR). Существует два типа пиринговых отношений BGP: одноранговые узлы BGP в одной и той же автономной системе (AS, что обычно означает набор маршрутизаторов в одном административном домене, хотя это довольно общее определение) называются внутренними одноранговыми узлами BGP (internal BGP - iBGP) и Одноранговые узлы BGP между автономными системами называются внешними (или внешними - exterior) узлами BGP (eBGP). Хотя два типа пиринговых отношений BGP построены одинаково, у них разные правила объявления. Процесс выбора оптимального пути BGP Поскольку BGP предназначен для соединения автономных систем, алгоритм наилучшего пути ориентирован в первую очередь на политику, а не на отсутствие петель. Фактически, если вы изучите какое-либо стандартное объяснение процесса наилучшего пути BGP, то, является ли конкретный путь свободным от петель, вообще не будет учитываться в процессе принятия решения. Как же тогда BGP определяет, что конкретный узел объявляет маршрут без петель? Рисунок 2 демонстрирует это. На рисунке 2 каждый маршрутизатор находится в отдельной AS, поэтому каждая пара спикеров BGP будет формировать сеанс пиринга eBGP. A, который подключен к 2001: db8: 3e8: 100 :: / 64, объявляет этот маршрут к B и C. Объявления маршрута BGP несут ряд атрибутов, одним из которых является путь AS. Перед тем, как A объявит 100 :: / 64 для B, он добавляет свой номер AS в атрибут AS Path. B получает маршрут и объявляет его D. Перед объявлением маршрута к D он добавляет AS65001 к AS Path. Тогда путь AS, прослеживающийся от A до C, на каждом шаге выглядит примерно так: Получено B: [AS65000] Получено C: [AS65000, AS65001] Получено D: [AS65000, AS65001, AS65003] Когда D получил маршрут от B, он анонсирует его обратно в C (в BGP нет split horizon). Предположим, что C, в свою очередь, объявляет обратный маршрут к A по какой-то причине (в этой ситуации это не так, потому что путь через A был бы лучшим путем к месту назначения, а просто для демонстрации предотвращения петель), A будет проверять AS Path и обнаружение его локальной AS находится в AS Path. Это явно петля, поэтому A просто игнорирует маршрут. Поскольку этот маршрут игнорируется, он никогда не помещается в таблицу топологии BGP. Следовательно, с использованием процесса наилучшего пути BGP сравниваются только маршруты без петель. В большинстве реализаций процесс наилучшего пути BGP состоит из 13 шагов (первый шаг реализуется не всегда, так как это локальное решение со стороны узла BGP): Выбирается маршрут с наибольшим весом. Некоторые реализации не используют вес маршрута. Выбирается маршрут с наивысшим местным предпочтением (local preference- LOCAL PREF). Local preference собой политику выхода локальной AS - какую точку выхода из доступных точек выхода предпочел бы владелец этой AS, как и узел BGP. Предпочитайте маршрут с локальным происхождением, то есть на этом узле BGP. Этот шаг редко используется в процессе принятия решения. Предпочитайте путь с самым коротким AS Path. Этот шаг предназначен для выбора наиболее эффективного пути через объединенную сеть, выбора пути, который будет проходить через наименьшее количество автономных систем для достижения пункта назначения. Операторы часто добавляют записи AS Path, чтобы повлиять на этот шаг в процессе принятия решения. Предпочитайте путь с наименьшим значением координат. Маршруты, которые перераспределяются из IGP, предпочтительнее маршрутов с неизвестным происхождением. Этот шаг редко оказывает какое - либо влияние на процесс принятия решений. Предпочитайте путь с самым низким multiexit discriminator (MED). MED представляет входную политику удаленной AS. Таким образом, MED сравнивается только в том случае, если от одной и той же соседней AS было получено несколько маршрутов. Если один и тот же маршрут получен от двух разных соседних автономных систем, MED игнорируется. Предпочитайте маршруты eBGP маршрутам iBGP. Предпочитайте маршрут с наименьшей стоимостью IGP до следующего перехода. Если политика локального выхода не задана (в форме локального предпочтения), и соседняя AS не установила политику входа (в форме MED), то путь с ближайшим выходом из локального маршрутизатора выбирается как точка выхода. Определите, следует ли устанавливать несколько путей в таблице маршрутизации (настроена некоторая форма multipath). При сравнении двух внешних маршрутов (полученных от однорангового узла eBGP) предпочтите самый старый маршрут или маршрут, изученный первым. Это правило предотвращает отток маршрутов только потому, что маршруты обновляются. Предпочитайте маршрут, полученный от однорангового узла с наименьшим идентификатором маршрутизатора. Это просто средство разрешения конфликтов для предотвращения оттока в таблице маршрутизации. Предпочитайте маршрут с наименьшей длиной кластера. Предпочитайте маршрут, полученный от однорангового узла с наименьшим адресом пиринга. Это, опять же, просто тай-брейк, выбранный произвольно, чтобы предотвратить ненужные связи и вызвать отток в таблице маршрутизации, и обычно используется, когда два одноранговых узла BGP соединены по двум параллельным каналам. Хотя это кажется долгим процессом, почти каждое решение наилучшего пути в BGP сводится к четырем факторам: локальному предпочтению (local preference), MED, длине AS Path и стоимости IGP. Правила объявления BGP BGP имеет два простых правила для определения того, где объявлять маршрут: Объявляйте лучший путь к каждому пункту назначения каждому узлу eBGP. Объявляйте лучший путь, полученный от однорангового узла eBGP, для каждого однорангового узла iBGP. Еще один способ сформулировать эти два правила: никогда не объявлять маршрут, полученный от iBGP, другому узлу iBGP. Рассмотрим рисунок 3. На рисунке 3 A и B - это одноранговые узлы eBGP, а B и C, а также C и D - одноранговые узлы iBGP. Предположим, A объявляет 2001: db8: 3e8: 100 :: / 64 для B. Поскольку B получил это объявление маршрута от однорангового узла eBGP, он объявит 100 :: / 64 на C, который является одноранговым узлом iBGP. C, изучив этот маршрут, не будет объявлять маршрут к D, поскольку C получил маршрут от однорангового узла iBGP, а D также является одноранговым узлом iBGP. Таким образом, на этом рисунке D не узнает о 100 :: / 64. Это не очень полезно в реальном мире, однако ограничение присутствует не просто так. Рассмотрим, как BGP предотвращает образование петель маршрутизации - передавая список автономных систем, через которые прошел маршрут, в самом объявлении маршрута. При объявлении маршрута от одного спикера iBGP к другому AS Path не изменяется. Если узлы iBGP объявляют маршруты, полученные от одноранговых узлов iBGP, одноранговым узлам iBGP, петли маршрутизации могут быть легко сформированы. Одним из решений этой проблемы является простое построение многоуровневых пиринговых отношений между B и D (помните, что BGP работает поверх TCP. Пока существует IP-соединение между двумя узлами BGP, они могут построить пиринговые отношения). Предположим, что B строит пиринговые отношения с D через C, и ни B, ни D не строят пиринговые отношения с C. Что произойдет, когда трафик переключается на 100 :: / 64 посредством D на C? Что будет с пакетами в этом потоке на C? У C не будет маршрута к 100 :: / 64, поэтому он сбросит трафик. Это может быть решено несколькими способами - например, B и D могут туннелировать трафик через C, поэтому C не обязательно должен иметь доступность к внешнему пункту назначения. BGP также можно настроить для перераспределения маршрутов в любой основной запущенный IGP (это плохо - не делайте этого). Для решения этой проблемы были стандартизированы рефлекторы маршрутов BGP. Рисунок 4 иллюстрирует работу отражателей маршрута. На рисунке 4 E сконфигурирован как рефлектор маршрута. B, C и D настроены как клиенты рефлектора маршрутов (в частности, как клиенты E). A объявляет маршрут 2001: db8: 3e8: 100 :: / 64 к B. B объявляет этот маршрут E, потому что он был получен от однорангового узла eBGP, а E является одноранговым узлом iBGP. E добавляет новый атрибут к маршруту, список кластеров, который указывает путь обновления в AS через кластеры отражателя маршрута. Затем E объявит маршрут каждому из своих клиентов. Предотвращение зацикливания в этом случае обрабатывается списком кластеров. Подведение итогов о BGP Хотя изначально BGP был разработан для соединения автономных систем, его использование распространилось на центры обработки данных, передачу информации о виртуальных частных сетях. Фактически, использование BGP практически безгранично. Постепенно BGP превратился в очень сложный протокол. BGP можно описать как: Проактивный протокол, который узнает о достижимых местах назначения через конфигурацию, локальную информацию и другие протоколы. Протокол вектора пути, который объявляет только лучший путь к каждому соседу и не предотвращает образование петель в автономной системе (если не развернуты рефлекторы маршрута или какая-либо дополнительная функция) Выбор путей без петель путем изучения пути, по которому может быть достигнут пункт назначения Проверка двустороннего подключения и MTU за счет использования TCP в качестве основы для передачи информации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59