По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Виртуализация серверов – это разделение одного физического сервера на несколько виртуальных серверов, каждый из которых работает под управлением собственной операционной системы. Эти операционные системы также известны, как «гостевые операционные системы». Они в свою очередь работают в другой операционной системе, которая также известна, как «хостовая операционная система». Каждый «гость», который работает таким образом, не знает о других «гостях», которые работают на том же хосте. Для того, чтобы обеспечить такую незаметность, используются различные методы виртуализации.  Разновидности виртуализации сервера: Гипервизор Гипервизор, или VMM (virtual machine monitor – монитор виртуальных машин), - это своего рода слой между операционной системой и оборудованием. Он обеспечивает работу необходимых служб и функций для того, чтобы несколько операционных систем могли работать без сбоев.  Он выявляет ловушки, отвечает на инструкции привилегированного процессора, организует очереди, выполняет диспетчеризацию и отвечает на аппаратные запросы. Операционная система хоста, которая управляет виртуальными машинами работает поверх гипервизора. Паравиртуализация Паравиртуализация основана на гипервизоре. В этой модели обрабатывается больше всего ресурсов, которые необходимы для эмуляции и организации программных ловушек в программно реализованной виртуализации. Гостевая операционная система перед установкой на виртуальную машину модифицируется и заново компилируется.  Производительность модифицированной гостевой операционной системы повышается, так как она взаимодействует напрямую с гипервизором, а потребление ресурсов эмуляцией сходит на нет.  Пример : Xen в основном используют паравиртуализацию, где для поддержки административной среды, также известной как домен 0, используется настраиваемая среда Linux. Преимущества: Проще Повышенная производительность Нет дополнительного потребления ресурсов, связанного с эмуляцией Недостатки: Необходима модификация гостевой операционной системы   Полная виртуализация Полная виртуализация очень похожа на паравиртуализацию. Она может эмулировать базовое аппаратное обеспечение, если это необходимо. Гипервизор перехватывает машинные операции, которые операционная система использует для выполнения операций ввода-вывода или изменения состояния системы. После того, как операции были перехвачены, они эмулируются в программном обеспечении, при этом коды состояния почти полностью можно сопоставить с теми, которые могли быть предоставлены реальным аппаратным обеспечением. Именно поэтому немодифицированная операционная система может работать поверх гипервизора.  Пример : данный метод использует VMWare ESX. В качестве административной ОС используется настраиваемая версия Linux, также известная как Service Console. Этот метод не такой быстрый, как паравиртуализация.  Преимущества : Не требуется модификация гостевой операционной системы Недостатки : Сложный метод Более медленный из-за наличия эмуляции Затрудняет установку нового драйвера устройства   Виртуализация с аппаратной поддержкой Если говорить о принципе работы, то этот метод аналогичен полной виртуализации и паравиртуализации, за исключением того факта, что он требует аппаратной поддержки. Большая часть потребляемых гипервизором ресурсов при перехвате и эмуляции операций ввода-вывода и кодов состояния, которые выполняются в гостевой ОС, покрывается аппаратным расширением архитектуры х86.  Здесь можно запустить и немодифицированную ОС, так как для обработки запросов на доступ к оборудованию, привилегированных и защищенных операций, а также для связи с виртуальной машиной будет использоваться аппаратная поддержка виртуализации.  Пример : аппаратную поддержку виртуализации обеспечивают такие технологии, как AMd – V Pacifica и Intel VT Vanderpool. Преимущества : Не требуется модификация гостевой операционной системы Гипервизор потребляет не так много ресурсов Недостатки : Требуется аппаратная поддержка   Виртуализация на уровне ядра Вместо того, чтобы использовать гипервизор, слой виртуализации запускает отдельную версию ядра Linux и рассматривает связанную с ней виртуальную машину как процесс из пользовательского пространства на физическом хосте. Это в какой-то степени упрощает запуск нескольких виртуальных машин на одном хосте. Для связи между основным ядром Linux и виртуальной машиной используется драйвер устройства.  Для виртуализации требуется аппаратная поддержка (Intel VT или AMD - V). В качестве контейнеров отображения и выполнения для виртуальных машин используется немного модифицированный процесс QEMU. Во многом виртуализация на уровне ядра – это специализированная форма виртуализации серверов.  Пример : пользовательский режим Linux (UML - User – Mode Linux) и Kernel Virtual Machine (KVM). Преимущества : Не требуется специальное программное обеспечение для администрирования Низкое потребление ресурсов Недостатки : Требуется аппаратная поддержка   Виртуализация на системном уровне или уровне ОС Эта модель запускает несколько различных (с логической точки зрения) сред на одном экземпляре ядра операционной системы. Иначе его называют «подходом на основе общего ядра», так как все виртуальные машины используют одно общее ядро операционной системы хоста. Эта модель основана на концепции изменения корневого каталога «chroot». сhroot начинает свою работу во время загрузки. Ядро использует корневые файловые системы для загрузки драйверов и выполнения других задач инициализации системы на ранних этапах. Затем оно переключается на другую корневую файловую систему с помощью команды chroot для того, чтобы организовать новую файловую систему на диске в качестве окончательной корневой файловой системы и продолжить инициализацию и настройку системы уже в этой файловой системе.  Механизм chroot виртуализации на системном уровне – это расширение этой концепции. Он позволяет системе запускать виртуальные серверы с их собственным набором процессов, которые выполняются относительно их собственных каталогов файловой системы.  Основное различие между виртуализацией на уровне системы и виртуализацией серверов состоит в том, что в одном случае можно запускать различные операционные системы в разных виртуальных системах, а в другом – нет. Если речь идет о виртуализации на системном уровне, то все виртуальные серверы должны использовать одну и ту же копию операционной системы, а если о виртуализации серверов, то здесь на разных серверах могут быть разные операционные системы (в том числе и разные версии одной операционной системы).  Пример : FreeVPS, Linux Vserver, OpenVZ и другие. Преимущества : Значительно проще, чем укомплектованные машины (включая ядро) Можно разместить гораздо больше виртуальных серверов Повышенная безопасность и улучшенная локализация Виртуализация операционной системы практически не потребляет дополнительных ресурсов Благодаря виртуализации операционной системы возможна динамическая миграция Может использоваться динамическая балансировка нагрузки контейнеров между узлами и кластерами При виртуализации операционной системы можно использовать метод копирования при записи (CoW - copy-on-write) на уровне файла. Он упрощает резервное копирование данных, экономит пространство и упрощает кэширование в сравнении с копированием при записи на уровне блока.  Недостатки : Возникшие проблемы с ядром или драйвером могут вывести из строя все виртуальные серверы  
img
Вам, как сетевому инженеру, крайне важно разбираться в том, каким образом вызовы VoIP влияют на пропускную способность канала в вашей компании. И по мере того, как работа из дома становится новой нормой, важность этого понимания возрастает еще больше. Расчет пропускной способности ваших IP-вызовов Cisco сводится к нескольким простым вычислениям. Такое уравнение поможет вам и вашей компании определить потребности сети. Эта статья разделена на 2 части. В первой объясняется терминология для проведения вычислений. Во второй – дается практический пример расчетов пропускной способности канала. Кроме того, мы поговорим о том, как разные протоколы влияют на ширину полосы, и где почитать подробнее о вычислениях. Что такое кодек? «Кодек» расшифровывается как «кодер/декодер». В принципе, его полное название должно помочь в понимании функций, но давайте поговорим о них подробнее. Когда человек осуществляет вызов через VoIP и разговаривает, его голос должен переводиться в нечто понятное для компьютера. Кодек – это часть программного обеспечения, которая и выполняет цифровое преобразование голоса или любого другого звука. Давайте вкратце обсудим, как это происходит. Основная функция кодека – преобразование голоса в цифровой сигнал. Голос – это звуковая волна, а компьютер может получить лишь часть, или выборку, этой волны с помощью математического процесса под названием интерполяция. Иначе говоря, кодек разрезает волную на несколько выборок, а затем приблизительно рассчитывает оставшуюся часть волны. Потом он берет этот примерный расчет и переводит его в бинарные данные, которые вновь преобразуются в голос. Теперь, когда мы поняли, как работает кодек, настало время поговорить о четырех примерах, которыми мы будем пользоваться в вычислениях. 4 кодека VoIP для Cisco 4 кодека VoIP для Cisco – это G.711, G.729, G.7622 и ILBC. Для каждого кодека существует своя величина выборки. Величина выборки кодека (Codec Sampling Size) – это количество байт, которое используется для оцифровки образца сигнала. Поговорим об этом подробнее, начиная с G.711. Что такое G.711? Кодек G.711 – это кодек, который специализируется на ясности и производительности. Именно поэтому у него высокая скорость передачи данных, или битрейт (64 000 КБ от пропускной способности сети), а величина выборки кодека – целых 80 байт. В основном, он используется для VoIP, но подходит также и для факсов. Что такое G.729? Кодек G.729 – это идеальное решение при ограниченной пропускной способности канала. Например, он хорошо подходит для малых бизнесов. Однако крупные компании, одновременно обслуживающие многих клиентов, быстро столкнутся с ограничениями G.729. Этот кодек занимает 8 000 КБ полосы и ограничивается только VoIP. Что такое G.722? G.722 похож на G.711. Величина выборки тоже 80 байт, а скорость передачи данных – 64 кбит/сек. Основное отличие заключается в том, что в G.722 доступна более широкая речевая полоса частот на 50-7000 Гц, тогда как речевая полоса в G.711 варьирует от 200 до 3000 Гц. G.722 хорошо подходит для случаев, когда звук должен быть особенно точным. Что такое iLBC? ILBC расшифровывается как Internet Low Bitrate Codec, или интернет-кодек с низкой скоростью передачи данных. Его битрейт составляет порядка 15 кбит/сек, а величина выборки кодека – 38 байт. Самое лучшее в iLBC – его способность снижать качество речи при потере большого количества блоков данных (фреймов). Теперь, когда мы детально разобрались в 4 разных протоколах, давайте вернемся к разговору о том, как рассчитать пропускную способность канала для каждого из них. Расчет пропускной способности канала Рассчитать пропускную способность канала можно в несколько простых шагов. Первым делом обозначьте все необходимые переменные. Обязательные переменные перечислены ниже: кодек и скорость передачи данных величина выборки кодека интервал выборки кодека средняя оценка разборчивости речи (MOS) размер полезной части голосового пакета Обратите внимание на четвертую переменную – среднюю оценку разборчивости речи. Она оценивает качество звука (от 1 до 5) при использовании конкретного кодека. Рассмотрим пример в таблице: Кодек и битрейт Величина выборки кодека Интервал выборки кодека Средняя оценка разборчивости речи Размер полезной части голосового пакета Пропускная способность для Ethernet G.711 (64 кбит/сек)  80  10  4,1  160  87,2 G.729 (8 кбит/сек)  10  10  3,92  20  31,2 G.722 (64 кбит/сек)  80  10  4,13  160  87,2 ILBC (15,2 кбит/сек)  38  10  4,14  38  38,4 Помните, что наша цель – найти самое последнее число из таблица, то есть пропускную способность для Ethernet. Основное уравнение принимает вид: Общая пропускная способность = Размер пакета х Пакетов в секунду Но выполнить расчеты по этой формуле не так уж просто, поскольку в таблице данных отсутствуют значения «Размер пакета» и «Пакетов в секунду». Давайте рассчитаем пропускную способность для кодека G.711 со скоростью передачи данных в 87,2 кб/сек. Вычисление размера пакета Для начала определим размер пакета для отдельного вызова VoIP. Выражение для определения этого параметра принимает вид: Размер выборки в байтах = (Размер пакета x пропускная способность кодека) / 8 Переменную «Размер выборки в байтах» можно взять из таблицы (см. «Размер полезной части голосового пакета), а пропускная способность кодека берется из первого столбца. Теперь наше выражение выглядит так: 160 байт = (размер пакета x 64 000) / 8 Обратите внимание, что мы делим правую часть на 8, потому как все вычисляется в битах, а итоговый ответ нужно получить в байтах. Далее умножим каждую часть на 8, чтобы убрать 8 из знаменателя. Получается следующее: 1280 = (размер пакета x 64 000) И, наконец, найдем размер пакета, разделив каждую часть на 64 000. В результате мы нашли размер пакета в 0,02 или 20 мс. То есть голосовую выборку для пропускной способности в 20 мс. Например, это количество времени, которое требуется, чтобы произнести букву «П» в слове «Привет», – именно это мы и вычисляли. Добавление потребления ресурсов в объем выборки Вы же помните, что VoIP не происходит в вакууме. Множество других процессов приводят к дополнительному потреблению ресурсов. Вернемся к нашему размеру полезной части голосового пакета в 160 байт. Один только Ethernet добавит к этой цифре еще 18 байт. Затем, как мы знаем, IP, UDP и протоколы RTP не останутся в стороне и добавят лишние 40 байт. Получается, что настоящий размер выборки становится 160 + 40 + 218 – это общий размер выборки в 218 байт. Расчет общей пропускной способности Теперь мы дошли до финальной части. Ранее уже говорилось, что общая пропускная способность равна размеру пакета х количество пакетов в секунду. Мы нашли наш размер выборки – 20 мс. Чтобы найти количество пакетов, передаваемых по проводам за этой время, воспользуемся следующим уравнением: 1000 мс / размер пакета = 1000 мс / 20 мс = 50 пакетов в секунду. Мы рассчитали, что размер пакета (он же размер выборки) равен 218 байт. И теперь можно получить ответ: Общая пропускная способность = 218 байт x 50 пакетов Общая пропускная способность = 10 900 байт/сек Переведем это число в килобайты, разделив его на 8. В результате мы получаем 87,2 кб/сек. Заключение В статье было много специальной лексики и математических расчетов. Но, разобравшись в этом, вы станете бесценным членом команды сетевых инженеров и сможете работать с VoIP-технологиями Cisco.
img
Всем привет! Сегодня мы расскажем про то, как подключить FTP-сервер к Deployment Service (DLS), который может использоваться для загрузки прошивок для телефонов, мелодий для звонка, фоновых изображений и прочего. Также рассмотрим процесс установки прошивки на телефон семейства OpenStage. /p> Добавление FTP После входа в DLS переходим во вкладку Deployment Service → Administration → FTP Server Configuration и нажимаем на кнопку New, расположенную внизу. Затем указываем все необходимые атрибуты для подключения: IP адрес сервера, его имя, протокол, путь до файлов прошивок, порт, логин и пароль. После заполнения нажимаем Save. Найти добавленный FTP-сервер можно перейдя во вкладку Search и найти его либо по его реквизитам, либо в общем списке серверов. На этой странице в таблице внизу отображаются прошивки для телефонов, которые находятся на сервере, в папке, которую мы указывали ранее. Если новый файл прошивки закинули на сервер, то для того чтобы он появился в таблице нужно нажать на кнопку Start Scan. Установка прошивки на телефон Теперь, когда FTP-сервер вместе со всеми файлами подключен, установим новую прошивку на телефон. Для этого переходим во вкладку Deployment Service → Software Deployment → Deploy Workpoints. Тут указываем необходимые для поиска данные и нажимаем Search После того как мы нашли необходимый телефон нажимаем Deploy и в появившемся окне выбираем нужную версию и снова нажимаем на кнопку Deploy. Если необходимо установить прошивку, тип которой отличается от той которая стоит на данный момент (например, если стоит SIP, а нужно поставить HFA), то ставим галочку в Derestrict and deploy independent of the device type. Прошивка типа HFA используется для подключения телефона к станции HiPath (HFA = HiPath Feature Access) Затем появляется еще одно окно с настройками применения прошивки в котором мы нажимаем ОК. После этих манипуляций начнется установка прошивки на телефон, в процессе которой он перезагрузится и затем телефон будет готов к использованию.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59