По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодняшняя статья целиком посвящена новичкам, которые только делают первые шаги на этапе знакомства с операционной системой CentOS. В статье мы собрали топ – 20 команд, которые будут полезны в повседневной работе, управлении сервером и в базовом «траблшутинге». Команды Для подключения к серверу, воспользуйтесь любым SSH – клиентом (например, putty). В консоли клиента необходимо указать IP – адрес и выбрать чекбокс SSH Для подключения на пользователя root, воспользуйтесь командой su - Чтобы посмотреть содержимое директории, воспользуйтесь командой ls -al. Например, чтобы посмотреть все содержимое в директории IP – АТС Asterisk, дайте команду ls -al /etc/asterisk/ Если вы хотите перейти в другую директорию (папку), воспользуйтесь командой cd (change directory). Как пример cd /etc/asterisk/ Для удаления файлов, пользуйтесь командой rm. Например, команда rm –rf /var/spool/asterisk/monitor/2017/03/09/in-74996491913-79851234567-20170309-124606-1489052766.5.wav удалит входящий аудио – запись входящего звонка на номер 74996491913 с мобильного телефона 79851234567 от 09 марта 2017 года. Будьте аккуратны с этой командой :) Для просмотра или редактирования воспользуйтесь графическим редактором vim. Как пример vim /etc/asterisk/extensions_custom.conf Для начала редактирования файла нажмите O Сохранения нажмите Esc и :x! Для копирования файлов существует команда cp (copy). Как пример cp /etc/asterisk/extensions_custom.conf /home/admin/. Тем самым, в директорию /home/admin будет добавлен файл extensions_custom.conf. Чтобы сменить владельца файла, воспользуйтесь chown (change owner). Чтобы сменить владельца всех файлов в директории /etc/asterisk на пользователя asterisk дайте команду chown –R asterisk:asterisk /etc/asterisk Чтобы дать определенные права файлу существует команда chmod. Например, дадим максимальные права файлу /etc/asterisk/extensions_custom.conf командой chmod 777 /etc/asterisk/extensions_custom.conf. Более подробно про права в Linux можете почитать в этой статье. Для создания «символьной» ссылки на файл используйте команду ln. Например, ln –s /storage/test /etc/test. Важно! Файл /etc/test не должен быть создан до выполнения команды. Для перезагрузки нужных служб используется директория /etc/init.d/. Например, команда /etc/init.d/httpd restart перезагрузит WEB – сервер. Для выключения того или иного процесса, вы можете воспользоваться его PID. Чтобы его найти, дайте команду ps axu | grep -i asterisk | grep -v grep. PID процесса будет во второй колонке. Теперь, когда вы знаете PID процесса, дайте команду kill -0 #номер_процесса. Как пример, kill -9 1738. Чтобы узнать, какой из процессов больше всего «отъедает» ресурсы CPU воспользуйтесь командой top. Если вам необходимо настроить DNS сервера, то внесите изменения в файл /etc/resolv.conf. Например, откройте файл командой vim /etc/resolv.conf и добавьте в него DNS сервер: nameserver 8.8.8.8 Чтобы посмотреть загрузку оперативной памяти RAM в ОС CentOS, воспользуйтесь командой free -m. Вывод будет показан в мегабайтах, с указанием общего объема памяти, занятое и свободное пространство. Для проверки использования памяти на жестких дисках дайте команду df -h. Вы также увидите общий объем, занятое и свободное пространство. Для проверки использования памяти на жестких дисках дайте команду df -h. Вы также увидите общий объем, занятое и свободное пространство. Чтобы увидеть размер конкретной директории, воспользуйтесь командой du. Например, для определения размера директории /etc/asterisk/ воспользуйтесь du -sh /etc/asterisk/. Если вам необходимо узнать версию установленного пакет, воспользуйтесь командой rpm. Например, проверки версии yum дайте команду rpm -qa | grep -i yum. Узнать перечень полезных команд yum можно в этой статье.
img
Первоначально BGP был разработан как протокол Внешнего шлюза (Exterior Gateway Protocol - EGP), что означает, что он предназначался для подключения сетей или автономных систем (AS), а не устройств. Если BGP является EGP, это должно означать, что другие протоколы маршрутизации, такие как RIP, EIGRP, OSPF и IS-IS, должны быть протоколами внутренних шлюзов (Interior Gateway Protocols- IGP). Четкое определение внутренних и внешних шлюзов оказалось полезным при проектировании и эксплуатации крупномасштабных сетей. BGP является уникальным среди широко распространенных протоколов в том, что касается расчета пути без петель. Существует три широко используемых протокола векторов расстояний (Spanning Tree, RIP и EIGRP). Существует два широко используемых протокола состояния канала связи (OSPF и IS-IS). И есть еще много примеров этих двух типов протоколов, разработанных и внедренных в то, что можно было бы считать нишевыми рынками. BGP, однако, является единственным широко развернутым протоколом вектора пути. Каковы наиболее важные цели EGP? Первый - это, очевидно, выбор путей без петель, но это явно не означает кратчайшего пути. Причина, по которой кратчайший путь не так важен в EGP, как в IGP, заключается в том, что EGP используются для соединения объектов, таких как поставщики услуг, поставщики контента и корпоративные сети. Подключение сетей на этом уровне означает сосредоточение внимания на политике, а не на эффективности - с точки зрения сложности, повышение состояния с помощью механизмов политики при одновременном снижении общей оптимизации сети с точки зрения передачи чистого трафика. BGP-пиринг BGP не обеспечивает надежной передачи информации. Вместо этого BGP полагается на TCP для передачи информации между одноранговыми узлами BGP. Использование TCP гарантирует: Обнаружение MTU обрабатывается даже для соединений, пересекающих несколько переходов (или маршрутизаторов). Управление потоком осуществляется базовым транспортом, поэтому BGP не нуждается в непосредственном управлении потоком (хотя большинство реализаций BGP действительно взаимодействуют со стеком TCP на локальном хосте, чтобы повысить пропускную способность, в частности, для BGP). Двусторонняя связь между одноранговыми узлами обеспечивается трехсторонним рукопожатием, реализованным в TCP. Несмотря на то, что BGP полагается на базовое TCP-соединение для многих функций, которые плоскости управления должны решать при построении смежности, по-прежнему существует ряд функций, которые TCP не может предоставить. Следовательно, необходимо более подробно рассмотреть процесс пиринга BGP. Рисунок 1 позволяет изучить этот процесс. Сеанс пиринга BGP начинается в состоянии ожидания (idle state). A отправляет TCP open на порт 179. B отвечает на временный порт (ephemeral port) на A. После завершения трехстороннего подтверждения TCP (сеанс TCP успешен), BGP перемещает состояние пиринга для подключения. Если пиринговый сеанс формируется через какой-либо тип фильтрации на основе состояния, такой как брандмауэр, важно, чтобы открытое TCP-сообщение передавалось «изнутри» фильтрующего устройства. В случае сбоя TCP-соединения состояние пиринга BGP переводится в активное. A отправляет BGP open в B и переводит B в состояние opensent. В этот момент A ожидает от B отправки сообщения keepalive. Если B не отправляет сообщение keepalive в течение определенного периода, A вернет сеанс обратно в состояние ожидания (idle state). Открытое сообщение содержит ряд параметров, например, какие семейства адресов поддерживают два спикера BGP и hold timer. Это называется согласованием возможностей. Самый низкий (минимальный) hold timer из двух объявленных выбирается в качестве hold timer для однорангового сеанса. Когда B отправляет A сообщение keepalive, A переводит B в состояние openconfirm. На этом этапе A отправит B сообщение keepalive для проверки соединения. Когда A и B получают сообщения поддержки активности друг друга, пиринговый сеанс переходит в established state. Два узла BGP обмениваются маршрутами, поэтому их таблицы обновлены. A и B обмениваются только своими лучшими путями, если какая-либо форма многонаправленного распространения BGP не поддерживается и не настроена на двух спикерах. Чтобы уведомить A, что он завершил отправку всей своей локальной таблицы, B отправляет A сигнал End of Table (EOT) или End of RIB (EOR). Существует два типа пиринговых отношений BGP: одноранговые узлы BGP в одной и той же автономной системе (AS, что обычно означает набор маршрутизаторов в одном административном домене, хотя это довольно общее определение) называются внутренними одноранговыми узлами BGP (internal BGP - iBGP) и Одноранговые узлы BGP между автономными системами называются внешними (или внешними - exterior) узлами BGP (eBGP). Хотя два типа пиринговых отношений BGP построены одинаково, у них разные правила объявления. Процесс выбора оптимального пути BGP Поскольку BGP предназначен для соединения автономных систем, алгоритм наилучшего пути ориентирован в первую очередь на политику, а не на отсутствие петель. Фактически, если вы изучите какое-либо стандартное объяснение процесса наилучшего пути BGP, то, является ли конкретный путь свободным от петель, вообще не будет учитываться в процессе принятия решения. Как же тогда BGP определяет, что конкретный узел объявляет маршрут без петель? Рисунок 2 демонстрирует это. На рисунке 2 каждый маршрутизатор находится в отдельной AS, поэтому каждая пара спикеров BGP будет формировать сеанс пиринга eBGP. A, который подключен к 2001: db8: 3e8: 100 :: / 64, объявляет этот маршрут к B и C. Объявления маршрута BGP несут ряд атрибутов, одним из которых является путь AS. Перед тем, как A объявит 100 :: / 64 для B, он добавляет свой номер AS в атрибут AS Path. B получает маршрут и объявляет его D. Перед объявлением маршрута к D он добавляет AS65001 к AS Path. Тогда путь AS, прослеживающийся от A до C, на каждом шаге выглядит примерно так: Получено B: [AS65000] Получено C: [AS65000, AS65001] Получено D: [AS65000, AS65001, AS65003] Когда D получил маршрут от B, он анонсирует его обратно в C (в BGP нет split horizon). Предположим, что C, в свою очередь, объявляет обратный маршрут к A по какой-то причине (в этой ситуации это не так, потому что путь через A был бы лучшим путем к месту назначения, а просто для демонстрации предотвращения петель), A будет проверять AS Path и обнаружение его локальной AS находится в AS Path. Это явно петля, поэтому A просто игнорирует маршрут. Поскольку этот маршрут игнорируется, он никогда не помещается в таблицу топологии BGP. Следовательно, с использованием процесса наилучшего пути BGP сравниваются только маршруты без петель. В большинстве реализаций процесс наилучшего пути BGP состоит из 13 шагов (первый шаг реализуется не всегда, так как это локальное решение со стороны узла BGP): Выбирается маршрут с наибольшим весом. Некоторые реализации не используют вес маршрута. Выбирается маршрут с наивысшим местным предпочтением (local preference- LOCAL PREF). Local preference собой политику выхода локальной AS - какую точку выхода из доступных точек выхода предпочел бы владелец этой AS, как и узел BGP. Предпочитайте маршрут с локальным происхождением, то есть на этом узле BGP. Этот шаг редко используется в процессе принятия решения. Предпочитайте путь с самым коротким AS Path. Этот шаг предназначен для выбора наиболее эффективного пути через объединенную сеть, выбора пути, который будет проходить через наименьшее количество автономных систем для достижения пункта назначения. Операторы часто добавляют записи AS Path, чтобы повлиять на этот шаг в процессе принятия решения. Предпочитайте путь с наименьшим значением координат. Маршруты, которые перераспределяются из IGP, предпочтительнее маршрутов с неизвестным происхождением. Этот шаг редко оказывает какое - либо влияние на процесс принятия решений. Предпочитайте путь с самым низким multiexit discriminator (MED). MED представляет входную политику удаленной AS. Таким образом, MED сравнивается только в том случае, если от одной и той же соседней AS было получено несколько маршрутов. Если один и тот же маршрут получен от двух разных соседних автономных систем, MED игнорируется. Предпочитайте маршруты eBGP маршрутам iBGP. Предпочитайте маршрут с наименьшей стоимостью IGP до следующего перехода. Если политика локального выхода не задана (в форме локального предпочтения), и соседняя AS не установила политику входа (в форме MED), то путь с ближайшим выходом из локального маршрутизатора выбирается как точка выхода. Определите, следует ли устанавливать несколько путей в таблице маршрутизации (настроена некоторая форма multipath). При сравнении двух внешних маршрутов (полученных от однорангового узла eBGP) предпочтите самый старый маршрут или маршрут, изученный первым. Это правило предотвращает отток маршрутов только потому, что маршруты обновляются. Предпочитайте маршрут, полученный от однорангового узла с наименьшим идентификатором маршрутизатора. Это просто средство разрешения конфликтов для предотвращения оттока в таблице маршрутизации. Предпочитайте маршрут с наименьшей длиной кластера. Предпочитайте маршрут, полученный от однорангового узла с наименьшим адресом пиринга. Это, опять же, просто тай-брейк, выбранный произвольно, чтобы предотвратить ненужные связи и вызвать отток в таблице маршрутизации, и обычно используется, когда два одноранговых узла BGP соединены по двум параллельным каналам. Хотя это кажется долгим процессом, почти каждое решение наилучшего пути в BGP сводится к четырем факторам: локальному предпочтению (local preference), MED, длине AS Path и стоимости IGP. Правила объявления BGP BGP имеет два простых правила для определения того, где объявлять маршрут: Объявляйте лучший путь к каждому пункту назначения каждому узлу eBGP. Объявляйте лучший путь, полученный от однорангового узла eBGP, для каждого однорангового узла iBGP. Еще один способ сформулировать эти два правила: никогда не объявлять маршрут, полученный от iBGP, другому узлу iBGP. Рассмотрим рисунок 3. На рисунке 3 A и B - это одноранговые узлы eBGP, а B и C, а также C и D - одноранговые узлы iBGP. Предположим, A объявляет 2001: db8: 3e8: 100 :: / 64 для B. Поскольку B получил это объявление маршрута от однорангового узла eBGP, он объявит 100 :: / 64 на C, который является одноранговым узлом iBGP. C, изучив этот маршрут, не будет объявлять маршрут к D, поскольку C получил маршрут от однорангового узла iBGP, а D также является одноранговым узлом iBGP. Таким образом, на этом рисунке D не узнает о 100 :: / 64. Это не очень полезно в реальном мире, однако ограничение присутствует не просто так. Рассмотрим, как BGP предотвращает образование петель маршрутизации - передавая список автономных систем, через которые прошел маршрут, в самом объявлении маршрута. При объявлении маршрута от одного спикера iBGP к другому AS Path не изменяется. Если узлы iBGP объявляют маршруты, полученные от одноранговых узлов iBGP, одноранговым узлам iBGP, петли маршрутизации могут быть легко сформированы. Одним из решений этой проблемы является простое построение многоуровневых пиринговых отношений между B и D (помните, что BGP работает поверх TCP. Пока существует IP-соединение между двумя узлами BGP, они могут построить пиринговые отношения). Предположим, что B строит пиринговые отношения с D через C, и ни B, ни D не строят пиринговые отношения с C. Что произойдет, когда трафик переключается на 100 :: / 64 посредством D на C? Что будет с пакетами в этом потоке на C? У C не будет маршрута к 100 :: / 64, поэтому он сбросит трафик. Это может быть решено несколькими способами - например, B и D могут туннелировать трафик через C, поэтому C не обязательно должен иметь доступность к внешнему пункту назначения. BGP также можно настроить для перераспределения маршрутов в любой основной запущенный IGP (это плохо - не делайте этого). Для решения этой проблемы были стандартизированы рефлекторы маршрутов BGP. Рисунок 4 иллюстрирует работу отражателей маршрута. На рисунке 4 E сконфигурирован как рефлектор маршрута. B, C и D настроены как клиенты рефлектора маршрутов (в частности, как клиенты E). A объявляет маршрут 2001: db8: 3e8: 100 :: / 64 к B. B объявляет этот маршрут E, потому что он был получен от однорангового узла eBGP, а E является одноранговым узлом iBGP. E добавляет новый атрибут к маршруту, список кластеров, который указывает путь обновления в AS через кластеры отражателя маршрута. Затем E объявит маршрут каждому из своих клиентов. Предотвращение зацикливания в этом случае обрабатывается списком кластеров. Подведение итогов о BGP Хотя изначально BGP был разработан для соединения автономных систем, его использование распространилось на центры обработки данных, передачу информации о виртуальных частных сетях. Фактически, использование BGP практически безгранично. Постепенно BGP превратился в очень сложный протокол. BGP можно описать как: Проактивный протокол, который узнает о достижимых местах назначения через конфигурацию, локальную информацию и другие протоколы. Протокол вектора пути, который объявляет только лучший путь к каждому соседу и не предотвращает образование петель в автономной системе (если не развернуты рефлекторы маршрута или какая-либо дополнительная функция) Выбор путей без петель путем изучения пути, по которому может быть достигнут пункт назначения Проверка двустороннего подключения и MTU за счет использования TCP в качестве основы для передачи информации.
img
Усаживайтесь на кушетку поудобнее. Зачем, в первую очередь, вы хотите сменить mac – адрес у вашего сервера на базе Linux? Может хотите блочить его на фаерволе, или попробовать совершить «магию» с лицензиями, которые привязаны к маку? В целом, дело ваше. Мы покажем способ, как это сделать. Давайте по шагам. Находим текущий mac – адрес сетевого интерфейса Сначала давайте посмотрим на текущий mac вашего сервера. Сделать это можно командой: ip link show Вывод сервера будет примерно таким. Он будет содержать параметры (mac - адреса всех ваших интерфейсов): 1: lo: mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eno1: mtu 1500 qdisc fq_codel state DOWN mode DEFAULT group default qlen 1000 link/ether 45:c6:f6:a7:12:30 brd ff:ff:ff:ff:ff:ff 3: enp0s12e2: mtu 1500 qdisc noqueue state UP mode DORMANT group default qlen 1000 link/ether 33:23:f8:8b:d7:65 brd ff:ff:ff:ff:ff:ff Как мы видим, например, у интерфейса enp0s12e2 текущий mac – адрес это 33:23:f8:8b:d7:65 . Давайте поменяем его. Меняем MAC с помощью Macchanger. Установка Macchanger - это ну очень простая утилита, чтобы смотреть, менять и управлять MAC – адресами на ваших сетевых интерфейсах. Она доступна на почти всех Linux – подобных системах. Например, чтобы установить Macchanger на Fedora, CentOS или RHEL используйте команду:/p> sudo dnf install macchanger А если у вас Debian, Ubuntu, Linux Mint или даже Kali Linux, то установить ее можно вот так: sudo apt install macchanger Как использовать Macchanger Помните имя интерфейса, которое мы обсудили чуть раньше? Ага, мы про enp0s12e2 Например, чтобы присвоить этому интерфейсу рандомный mac, используйте команду: sudo macchanger -r enp0s12e2 После смены, проверьте, что мак – адрес поменялся командой: ip addr Он стал другим, не так ли? Теперь, чтобы присвоить конкретный (нужный вам) мак интерфейсу, примените команду: macchanger --mac=XX:XX:XX:XX:XX:XX Где, как не сложно догадаться, XX:XX:XX:XX:XX:XX - mac, который вам нужен. Кстати, если вы поняли, что сделали что-то не то, то вернуть mac – адрес устройства к его изначальному значению можно вот так: macchanger -p enp0s12e2 Меняем MAC с помощью iproute Делать это через macchanger, честно говоря, правильнее. Однако, если не получилось/не хотите, то можно поступить вот так. Первое, выключаем интерфейс: sudo ip link set dev enp0s12e2 down Далее, присваиваем новый mac выключенному интерфейсу: sudo ip link set dev enp0s12e2 address XX:XX:XX:XX:XX:XX Не забываем включить интерфейс обратно: sudo ip link set dev enp0s12e2 up Смотрим статус: ip link show enp0s12e2 Итоги В статье мы обсудили два способа смены адреса: через утилиту macchanger и встроенную команду ip. Мы рекомендуем использовать macchanger, как более надежный способ. Однако, решать вам.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59