По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Продолжаем рассказывать про механизмы QoS (Quality of Service) . Мы уже рассказаывали про то, какие проблемы могут быть в сети и как на них может повлиять QoS. В этой статье мы поговорим про механизмы работы QoS. Механизмы QoS В связи с тем, что приложения могут требовать различные уровни QoS, возникает множество моделей и механизмов, чтобы удовлетворить эти нужды. Рассмотрим следующие модели: Best Effort –негарантированная доставка используется во всех сетях по умолчанию. Положительная сторона заключается в том, что эта модель не требует абсолютно никаких усилий для реализации. Не используются никакие механизмы QoS, весь трафик обслуживается по принципу “пришел первым – обслужили первым”. Такая модель не подходит для современных сетевых сред; Integrated Services (IntServ) – эта модель интегрированного обслуживания использует метод резервирования. Например, если пользователь хотел сделать VoIP вызов 80 Кбит/с по сети передачи данных, то сеть, разработанная исключительно для модели IntServ, зарезервировала бы 80 Кбит/с на каждом сетевом устройстве между двумя конечными точками VoIP, используя протокол резервирования ресурсов RSVP (Resource Reservation Protocol) . На протяжении звонка эти 80 Кбит/с будут недоступны для другого использования, кроме как для VoIP звонка. Хотя модель IntServ является единственной моделью, обеспечивающей гарантированную пропускную способность, она также имеет проблемы с масштабируемостью. Если сделано достаточное количество резервирований, то сеть просто исчерпает полосу пропускания; Differentiated Services (DiffServ) – модель дифференцированного обслуживания является самой популярной и гибкой моделью для использования QoS. В этой модели можно настроить каждое устройство так, чтобы оно могло использовать различные методы QoS, в зависимости от типа трафика. Можно указать какой трафик входит в определенный класс и как этот класс должен обрабатываться. В отличие от модели IntServ, трафик не является абсолютно гарантированным, поскольку сетевые устройства не полностью резервируют полосу пропускания. Однако DiffServ получает полосу, близкую к гарантированной полосе пропускания, в то же время решая проблемы масштабируемости IntServ. Это позволило этой модели стать стандартной моделью QoS; Инструменты QoS Сами механизмы QoS представляют собой ряд инструментов, которые объединяются для обеспечения уровня обслуживания, который необходим трафику. Каждый из этих инструментов вписывается в одну из следующих категорий: Классификация и разметка (Classification and Marking) - Эти инструменты позволяют идентифицировать и маркировать пакет, чтобы сетевые устройства могли легко идентифицировать его по мере пересечения сети. Обычно первое устройство, которое принимает пакет, идентифицирует его с помощью таких инструментов, как списки доступа (access-list), входящие интерфейсы или deep packet inspection (DPI), который рассматривает сами данные приложения. Эти инструменты могут быть требовательны к ресурсам процессора и добавлять задержку в пакет, поэтому после того как пакет изначально идентифицирован, он сразу помечается. Маркировка может быть в заголовке уровня 2 (data link), позволяя коммутаторам читать его и/или заголовке уровня 3 (network), чтобы маршрутизаторы могли его прочитать. Для второго уровня используется протокол 802.1P, а для третьего уровня используется поле Type of Service. Затем, когда пакет пересекает остальную сеть, сетевые устройства просто смотрят на маркировку, чтобы классифицировать ее, а не искать глубоко в пакете; Управление перегрузками (Congestion Management)– Перегрузки возникают, когда входной буфер устройства переполняется и из-за этого увеличивается время обработки пакета. Стратегии очередей определяют правила, которые маршрутизатор должен применять при возникновении перегрузки. Например, если интерфейс E1 WAN был полностью насыщен трафиком, маршрутизатор начнет удерживать пакеты в памяти (очереди), чтобы отправить их, когда станет доступна полоса пропускания. Все стратегии очередей направлены на то, чтобы ответить на один вопрос: “когда есть доступная пропускная способность, какой пакет идет первым?“; Избегание заторов (Congestion Avoidance) – Большинство QoS механизмов применяются только тогда, когда в сети происходит перегрузка. Целью инструментов избегания заторов является удаление достаточного количества пакетов несущественного (или не очень важного) трафика, чтобы избежать серьезных перегрузок, возникающих в первую очередь; Контроль и шейпинг (Policing and Shaping) – Этот механизм ограничивает пропускную способность определенного сетевого трафика. Это полезно для многих типичных «пожирателей полосы» в сети: p2p приложения, веб-серфинг, FTP и прочие. Шейпинг также можно использовать, чтобы ограничить пропускную способность определенного сетевого трафика. Это нужно для сетей, где допустимая фактическая скорость медленнее физической скорости интерфейса. Разница между этими двумя механизмами заключается в том, что shaping формирует очередь из избыточного трафика, чтобы выслать его позже, тогда как policing обычно сбрасывает избыточный трафик; Эффективность линков (Link Efficiency) – Эта группа инструментов сосредоточена на доставке трафика наиболее эффективным способом. Например, некоторые низкоскоростные линки могут работать лучше, если потратить время на сжатие сетевого трафика до его отправки (сжатие является одним из инструментов Link Efficiency); Механизмы Link Efficiency При использовании медленных интерфейсов возникают две основных проблемы: Недостаток полосы пропускания затрудняет своевременную отправку необходимого объема данных; Медленные скорости могут существенно повлиять на сквозную задержку из-за процесса сериализации (количество времени, которое маршрутизатору требуется на перенос пакета из буфера памяти в сеть). На этих медленных линках, чем больше пакет, тем дольше задержка сериализации; Чтобы побороть эти проблемы были разработаны следующие Link Efficiency механизмы: Сжатие полезной нагрузки (Payload Compression) – сжимает данные приложения, оправляемые по сети, поэтому маршрутизатор отправляет меньше данных, по медленной линии; Сжатие заголовка (Header Compression) – Некоторый трафик (например, такой как VoIP) может иметь небольшой объем данных приложения (RTP-аудио) в каждом пакете, но в целом отправлять много пакетов. В этом случае количество информации заголовка становится значимым фактором и часто потребляет больше полосы пропускания, чем данные. Сжатие заголовка решает эту проблему напрямую, устраняя многие избыточные поля в заголовке пакета. Удивительно, что сжатие заголовка RTP, также называемое сжатым транспортным протоколом реального времени (Compressed Real-time Transport Protocol - cRTP) уменьшает 40-байтовый заголовок до 2-4 байт!; Фрагментация и чередование (Link Fragmentation and Interleaving) - LFI решает проблему задержки сериализации путем измельчения больших пакетов на более мелкие части до их отправки. Это позволяет маршрутизатору перемещать критический VoIP-трафик между фрагментированными частями данных (которые называются «чередованием» голоса); Алгоритмы очередей Постановка в очереди (queuing) определяет правила, которые маршрутизатор должен применять при возникновении перегруженности. Большинство сетевых интерфейсов по умолчанию используют базовую инициализацию First-in, First-out (FIFO) . В этом методе сначала отправляется любой пакет, который приходит первым. Хотя это кажется справедливым, не весь сетевой трафик создается равным. Основная задача очереди - обеспечить, чтобы сетевой трафик, обслуживающий критически важные или зависящие от времени бизнес-приложения, отправлялся перед несущественным сетевым трафиком. Помимо очередности FIFO используются три первичных алгоритма очередности: Weighted Fair Queuing (WFQ)– WFQ пытается сбалансировать доступную полосу пропускания между всеми отправителями равномерно. Используя этот метод, отправитель с высокой пропускной способностью получает меньше приоритета, чем отправитель с низкой пропускной способностью; Class-Based Weighted Fair Queuing (CBWFQ) – этот метод массового обслуживания позволяет указать гарантированные уровни пропускной способности для различных классов трафика. Например, вы можете указать, что веб-трафик получает 20 процентов полосы пропускания, тогда как трафик Citrix получает 50 процентов пропускной способности (вы можете указать значения как процент или конкретную величину полосы пропускания). Затем WFQ используется для всего неуказанного трафика (остальные 30 процентов в примере); Low Latency Queuing (LLQ) - LLQ часто упоминается как PQ-CBWFQ, потому работает точно так же, как CBWFQ, но добавляется компонент приоритета очередей (Priority Queuing - PQ). Если вы указываете, что определенный сетевой трафик должен идти в приоритетную очередь, то маршрутизатор не только обеспечивает пропускную способность трафика, но и гарантирует ему первую полосу пропускания. Например, используя чистый CBWFQ, трафику Citrix может быть гарантированно 50% пропускной способности, но он может получить эту полосу пропускания после того, как маршрутизатор обеспечит некоторые другие гарантии трафика. При использовании LLQ приоритетный трафик всегда отправляется перед выполнением любых других гарантий. Это очень хорошо работает для VoIP, делая LLQ предпочтительным алгоритмом очередей для голоса; Существует много других алгоритмов для очередей, эти три охватывают методы, используемые большинством современных сетей
img
Session Border Controller (контроллер граничных сессий) - сетевое устройство, которое может обеспечить безопасность VoIP, а так же соединять несовместимые (разнородные) сигнальные протоколы и медиа потоки, поступающие от различных устройств. SBC – устройства используются в корпоративных сетях и сетях провайдеров услуг и, как правило, развертываются на границе сети (точка входа провайдера в корпоративный контур). В основном, несмотря на способность устройств поддерживать H.323, SCCP и прочие, фокус работы SBC сделан на обеспечении безопасности SIP – протокола, а так же сопряжении различных версий SIP. Основная идея SBC защищает от атак сеть телефонии и соответствующие сервера, выполняя роль B2BUA (back-to-back user agent), схожую по типу работы с SIP прокси – сервером. Контроллер терминирует каждую сессию (завершает), а затем заново ее инициирует, выступая в роли агентского сервера UAS (User Agent Server) и агентским клиентом UAC (User Agent Client), работая с каждым из «плеч» вызова по отдельности. На базе собственных мощностей SBC реализует списки контроля доступа ACL, ограничение DDOS атак, а так же анализ пакетов на предмет искажения информации с целью нанести ущерб. Анализируя SIP, SBC анализирует заголовки и поле полезной нагрузки. Особенно это актуально в SDP – сообщениях, к которым может применяться множество правил модификации. Помимо сигнальной информации, SBC обрабатывает RTP потоки, тем самым, обеспечивает не только шифрование медиа, но и выполняет функции транскодинга (преобразования потока из одного кодека в другой) в случаях, когда две стороны SIP – коммуникации не могут согласовать параметры передачи данных в сообщениях SDP. Кстати, на SBC обычно реализуют так называемый SIP forking, который позволяет дублировать сессию на третье устройство, например, такое как система записи телефонных разговоров. В современных версиях SBC, сигнальная информация и потоки изолированы друг от друга (с точки зрения обработки устройством) – это обеспечивает высокие параметры масштабирования. Давайте рассмотрим на примеры схемы ниже принцип работы SBC:
img
Привет, друг! Мы подготовили удобную инструкцию по установке и настройке SFTP-сервера Linux. Что такое SFTP? SFTP - это безопасный протокол передачи файлов - «Secure SHell» File Transfer Protocol. То есть это версия FTP, которая для безопасности поверх использует SSH. FTP делает то же самое, но без шифрования, поэтому использовать SFTP предпочтительнее. Установка SFTP-сервера на Linux Чтобы выполнить эти шаги, вам нужно иметь права sudo. SFTP прост в установке, но сначала необходимо установить OpenSSH со стороны сервера и SSH-пакет со стороны клиента. Чтобы установить OpenSSH на сервер, используйте следующую команду: sudo apt install openssh-server [Ubuntu/Debian] sudo yum –y install openssh-server openssh-clients [CentOS/RHEL] Вам также понадобится SSH на компьютере, с которого вы хотите получать доступ к серверу SFTP. sudo apt install ssh [Ubuntu/Debian] Теперь все готово для настройки SFTP. Этап 1: Создание групп, пользователей, каталогов Для безопасного использования SFTP, лучше всего создать группы и пользователей, которые будут использовать только эту службу. Создадим группу с названием sftpg, при помощи комыды groupadd: sudo groupadd sftpg Далее создадим пользователя seenisftp, и добавим его в группу. sudo useradd -g sftpg seenisftp sudo passwd seenisftp В команде useradd параметр -g указывает группе, какого пользователя нужно добавить. Предположим, что вы хотите использовать каталог /data/ в качестве корневого для sftp, а /data/USERNAME - для каждого пользователя. Поэтому, когда пользователи входят через sftp, они должны будут оказаться в каталоге /data/USERNAME. Также создадим ограничение при котором пользователи смогут читать файлы из этого каталога, но загружать их смогут только в каталог uploads. Cоздадим каталоги и изменим их доступ: sudo mkdir -p /data/seenisftp/upload sudo chown -R root.sftpg /data/seenisftp sudo chown -R seenisftp.sftpg /data/seenisftp/upload Важно: убедитесь, что владелец /data/USERNAME и есть root, это обязательно для изменения корневого каталога в SFTP Этап 2: Настройка sshd_config Далее нужно настроить сервер так, чтобы когда пользователь, из группы sftpg, входил в систему, он попадал в sftp вместо обычной оболочки, в которую попадает через ssh. Добавьте следующий фрагмент кода в файл /etc/ssh/sshd_config: Match Group sftpg ChrootDirectory /data/%u ForceCommand internal-sftp ChrootDirectory позволяет создать необходимый каталог в качестве корневого узла (/ каталог) в дереве каталогов. Вошедший в систему пользователь не сможет увидеть ничего выше этого каталога и это не даст ему получить доступ к файлам других пользователей. %u - это escape код для заполнения его текущим именем пользователяm, во время входа в систему. Этап 3: Перезагрузите службу Чтобы выполнить внесенные в sshd_config изменения, перезапустите службу: sudo systemctl restart sshd Доступ к SFTP через командную строку Linux Заходите в SFTP также как в SSH: sftp seenisftp@merionet.ru Примеры команд SFTP Синтаксис команд SFTP: COMMAND [SOURCE] [DESTINATION] Параметрами могут быть либо локальные, либо удаленные системные пути. GET - загрузка содержимого с удаленного сервера в локальную систему. GET poster.img ~/Pictures PUT - загрузка содержимого из локальной системы в удалённую. PUT ~/Pictures/picture2.jpg uploads/ RM – предназначен для удаления файлов в удалённой системе. RM uploads/picture3.jpg
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59