По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Передача файлов на новый Windows Server может быть хлопотной, когда вы все настраиваете с нуля. По умолчанию можно перекидывать файлы через общий буфер обмена, но это не всегда удобно. Plesk, FTP или общий доступ к сетевым файлам могут быть не совсем готовы к использованию, или ваш интернет-провайдер может заблокировать эти веб-порты. Именно здесь нужна передача файлов через программу Remote Desktop Connection по протоколу RDP (Remote Desktop Protocol). Вы можете подключить жесткий диск своей рабочей станции, и он появится, когда вы войдете в систему. Эта программа поставляется со всеми операционными системами Windows. Нужно нажать кнопку «Пуск» и выполнить поиск «Подключение к удаленному рабочему столу» , и должен появиться компьютер с зелеными стрелками. Ну а если вы продвинутый администратор, то можете нажать «Пуск», затем «Выполнить», там набрать mstsc.exe и заем нажать ОК. Это программа, которую мы будем использовать. Настройка программы После запуска программы мы окажемся в ее упрощенном виде. Тут нам нужно выбрать пункт «Показать параметры» . Введите IP-адрес вашего сервера в поле «Компьютер» Далее нужно выбрать вкладку «Локальные ресурсы» и внизу в блоке «Локальные ресурсы» нажать «Подробнее» . Также в этом блоке можно включать и отключать доступ к принтерам и буферу обмена. Разверните раздел «Диски» и выберите «Локальный диск C:» (и любые другие диски, которые вам нужны). Нажимайте ОК и затем нажимайте «Подключить» . Для сохранения параметров подключения можно перейти на вкладку «Общие» и в блоке «Параметры подключения» нажмите «Сохранить» Готово! Теперь после подключения заходите в «Мой компьютер» и вы увидите ваш подключений диск. Теперь вы сможете видеть все свои файлы на своей локальной рабочей станции! Имейте в виду, что при передаче файлов этим методом существует ограничение на размер файла 2 ГБ. Кроме того, скорость передачи могут быть немного медленнее.
img
Vagrant является инструментом с помощью которого осуществляется создание и управление виртуальными машинами с помощью технологии виртуализации. Благодаря простому в использовании алгоритму и автоматизации процессов, Vagrant сокращает время настройки и оптимизации среды в которой вы будете работать. Погнали. Установка для Windows Установка Vagrant сама по себе очень проста, Вам необходимо скачать клиент с официального сайта для операционной системы, которую вы планируете юзать и запустить процесс установки. Для работы Vagrant также необходимо скачать VirtualBox с официального сайта. VirtualBox гипервизор, осуществляющий процесс виртуализации (опа, тавтология) систем Linux, macOS, Windows и других. Установка софта VirtualBox, как и самого Vagrant проста и не вызовет у вас никаких вопросов и проблем, а как только вы установите две программы, рекомендуется выполнить перезагрузку Вашей системы. Кстати, почитать об установке VirtualBox 6.0 на Linux вы можете в нашей статье После установки откройте командную строку и проверьте доступность Vagrant с помощью следующих строк кода: $ vagrant Usage: vagrant [options] <command> [] -v, --version Print the version and exit. -h, --help Print this help. # ... Первым шагом в настройке виртуальной машины с помощью Vagrant является создание Vagrantfile, который будет содержать все необходимые настройки. Введите следующую команду: mkdir vagrant_demo && cd vagrant_demo vagrant init ubuntu/trusty64 Vagrantfile - это файл Ruby, который описывает, как настроить и подготовить виртуальную машину. Однако, вместо создания виртуальной машины с нуля, софт предлагает вам воспользоваться базовыми образами для использования "шаблонов" виртуальной машины. Эти базовые образы в Vagrant называются "Vagrant box", которые добавляются в Vagrant с помощью инструмента vagrant box add, сохраняющего Vagrant box под определенным именем, предоставляя возможность использовать несколькими средами повторно. Круто, не правда ли? $ vagrant box add hashicorp/precise64 С помощью этой команды вы сможете загрузить готовый Vagrant box с названием "hashicorp/precision64" из каталога Vashgrant Cloud, предоставляемого разработчиками для обмена готовыми образами. Следует отметить и то, что имеется возможность добавления образов из локальных файлов или пользовательского URL. "Боксы" хранятся для каждого пользователя отдельно. Каждый проект Vagrant box создает новую копию "бокса" и никогда не изменяет исходный образ. Это означает, что если у вас есть два проекта, в которых используется один образ Vagrant box hashicorp/precision64, добавление файлов на одной виртуальной машине не повлияет на другую. Когда Vagrant box добавлен в Vagrant, вы можете настроить его для использования в качестве основы. Откройте Vagrantfile и измените содержимое на следующее: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" end Вы можете указать версию "бокса", указав config.vm.box_version, например: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" config.vm.box_version = "1.1.0" end Также возможно указать URL-адрес, используя config.vm.box_url: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" config.vm.box_url = "https://vagrantcloud.com/hashicorp/precise64" end Загружаем первую виртуальную машину Vagrant и вводим команду: $ vagrant up В течении минуты работа этой команды завершится, загрузив для Вас виртуальную машину с Ubuntu. Процесс загрузки будет выглядеть примерно следующим образом: Чтобы проверить его работоспособность производится подключение SSH к виртуальной машине: $ vagrant ssh. Эта команда переведет вас в полноценный SSH-сеанс. Теперь у Вас есть возможность взаимодействия с виртуальной машиной. Сеанс SSH может быть завершен с помощью сочетания клавиш CTRL + D. vagrant@precise64:~$ logout Connection to 127.0.0.1 closed. По окончанию работы с виртуальной машиной следует запустить команду vagrant destroy и Vagrant прекратит использование любых ресурсов, потребляемых виртуальной машиной. Установка на Ubuntu: Устанавливаем Virtualbox, который, кстати, сразу доступен в репозиториях Ubuntu: >sudo apt install virtualbox Совет: Следует отметить, что Vagrant и Virtualbox, доступные в репозиториях Ubuntu могут быть не самой актуальной версии, для установки последних версий этих программ, загрузите их с официальных сайтов разработчиков. Чтобы убедиться, что установка прошла успешно с помощью следующей команды мы можем проверить версию программы Vagrant: vagrant --version Вы должны увидеть примерно следующее: Vagrant 2.0.2 Убедившись, что Vagrant установлен в системе Ubuntu, мы можем создать среду разработки, которая является наиболее распространенным вариантом использования данной программы. Первым шагом является создание каталога, который будет корневым каталогом проекта. И делаем файл Vagrantfile. Создайте каталог проекта и переключитесь на него: mkdir ~/my-first-vagrant-project cd ~/my-first-vagrant-project Следующим шагом является инициализация нового Vagrantfile с помощью команды vagrant init. В этом примере мы у нас CentOS 7. Запустите следующую команду, чтобы инициализировать новый Vagrantfile: vagrant init centos/7 A `Vagrantfile` has been placed in this directory. You are now ready to `vagrant up` your first virtual environment! Please read the comments in the Vagrantfile as well as documentation on `vagrantup.com` for more information on using Vagrant. Запустив vagrant up, мы получаем возможность создать и настроить среду в соответствии с Vagrantfile. vagrant up ==> default: Configuring and enabling network interfaces... default: SSH address: 192.168.121.74:22 default: SSH username: vagrant default: SSH auth method: private key ==> default: Rsyncing folder: /home/linuxize/Vagrant/my-first-vagrant-project/ => /vagrant Как видно из приведенной выше информации, Vagrant также внедряет каталог проекта в /vagrant на виртуальной машине, что позволяет вам работать с файлами вашего проекта на вашем хост-компьютере. Чтобы войти в среду, просто запустите ее с помощью команды: vagrant ssh Остановка работы среды: vagrant halt Следующая строка остановит работу среды, а также очистит всю информацию, которая была необходима для ее работы: vagrant destroy Благодаря нашей статье, вы увидели процесс установки и настройки виртуальной машины на свой компьютер на Windows или Ubuntu 18.04, а также в статье наглядно продемонстрирован процесс создания и настройки виртуальной машины. Профит!
img
Перед начало убедитесь, что ознакомились с материалом про построение деревьев в сетях. Правило кратчайшего пути, является скорее отрицательным, чем положительным экспериментом; его всегда можно использовать для поиска пути без петель среди набора доступных путей, но не для определения того, какие другие пути в наборе также могут оказаться свободными от петель. Рисунок 4 показывает это. На рисунке 4 легко заметить, что кратчайший путь от A до пункта назначения проходит по пути [A, B, F]. Также легко заметить, что пути [A, C, F] и [A, D, E, F] являются альтернативными путями к одному и тому же месту назначения. Но свободны ли эти пути от петель? Ответ зависит от значения слова "без петель": обычно путь без петель - это такой путь, при котором трафик не будет проходить через какой-либо узел (не будет посещать какой-либо узел в топологии более одного раза). Хотя это определение в целом хорошее, его можно сузить в случае одного узла с несколькими следующими переходами, через которые он может отправлять трафик в достижимый пункт назначения. В частности, определение можно сузить до: Путь является свободным от петель, если устройство следующего прыжка не пересылает трафик к определенному месту назначения обратно ко мне (отправляющему узлу). В этом случае путь через C, с точки зрения A, можно назвать свободным от петель, если C не пересылает трафик к месту назначения через A. Другими словами, если A передает пакет C для пункта назначения, C не будет пересылать пакет обратно к A, а скорее пересылает пакет ближе к пункту назначения. Это определение несколько упрощает задачу поиска альтернативных путей без петель. Вместо того, чтобы рассматривать весь путь к месту назначения, A нужно только учитывать, будет ли какой-либо конкретный сосед пересылать трафик обратно самому A при пересылке трафика к месту назначения. Рассмотрим, например, путь [A, C, F]. Если A отправляет пакет C для пункта назначения за пределами F, переправит ли C этот пакет обратно в A? Доступные пути для C: [C, A, B, F], общей стоимостью 5 [C, A, D, E], общей стоимостью 6 [C, F], общей стоимостью 2 Учитывая, что C собирается выбрать кратчайший путь к месту назначения, он выберет [C, F] и, следовательно, не будет пересылать трафик обратно в A. Превращая это в вопрос: почему C не будет перенаправлять трафик обратно в A? Потому что у него есть путь, стоимость которого ниже, чем у любого пути через A до места назначения. Это можно обобщить и назвать downstream neighbor: Любой сосед с путем, который короче локального пути к месту назначения, не будет возвращать трафик обратно ко мне (отправляющему узлу). Или, скорее, учитывая, что локальная стоимость представлена как LC, а стоимость соседа представлена как NC, тогда: Если NC LC, то тогда neighbor is downstream. Теперь рассмотрим второй альтернативный путь, показанный на рисунке 4: [A, D, E, F]. Еще раз, если A отправляет трафик к пункту назначения к D, будет ли D зацикливать трафик обратно к A? Имеющиеся у D пути: [D, A, C, F], общей стоимостью 5 [D, A, B, F], общей стоимостью 4 [D, E, F], общей стоимостью 3 Предполагая, что D будет использовать кратчайший доступный путь, D будет пересылать любой такой трафик через E, а не обратно через A. Это можно обобщить и назвать альтернативой без петель (Loop-Free Alternate -LFA): Любой сосед, у которого путь короче, чем локальный путь к месту назначения, плюс стоимость доступа соседа ко мне (локальный узел), не будет возвращать трафик обратно ко мне (локальному узлу). Или, скорее, учитывая, что локальная стоимость обозначена как LC, стоимость соседа обозначена как NC, а стоимость обратно для локального узла (с точки зрения соседа) - BC: Если NC + BC LC, то сосед - это LFA. Есть две другие модели, которые часто используются для объяснения Loop-Free Alternate: модель водопада и пространство P/Q. Полезно посмотреть на эти модели чуть подробнее. Модель водопада (Waterfall (or Continental Divide) Model). Один из способов предотвратить образование петель в маршрутах, рассчитываемых плоскостью управления, - просто не объявлять маршруты соседям, которые пересылали бы трафик обратно мне (отправляющему узлу). Это называется разделенным горизонтом (split horizon). Это приводит к концепции трафика, проходящего через сеть, действующую как вода водопада или вдоль русла ручья, выбирая путь наименьшего сопротивления к месту назначения, как показано на рисунке 5. На рисунке 5, если трафик входит в сеть в точке C (в источнике 2) и направляется за пределы E, он будет течь по правой стороне кольца. Однако, если трафик входит в сеть в точке A и предназначен для выхода за пределы E, он будет проходить по левой стороне кольца. Чтобы предотвратить зацикливание трафика, выходящего за пределы E, в этом кольце, одна простая вещь, которую может сделать плоскость управления, - это либо не позволить A объявлять пункт назначения в C, либо не позволить C объявлять пункт назначения в A. Предотвращение одного из этих двух маршрутизаторов от объявления к другому называется разделенным горизонтом (split horizon), потому что это останавливает маршрут от распространения через горизонт, или, скорее, за пределами точки, где любое конкретное устройство знает, что трафик, передаваемый по определенному каналу, будет зациклен. Split horizon реализуется только за счет того, что устройству разрешается объявлять о доступности через интерфейсы, которые оно не использует для достижения указанного пункта назначения. В этом случае: D использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E C использует D для достижения пункта назначения, поэтому он не будет объявлять о доступности D B использует E для достижения пункта назначения, поэтому он не будет объявлять о доступности в направлении E A использует B для достижения пункта назначения, поэтому он не будет объявлять о доступности B Следовательно, A блокирует B от знания альтернативного пути, который он имеет к месту назначения через C, а C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петель пересекает этот разделенный горизонт. точка в сети. На рис. 12-5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направляемый в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. C, в терминах LFA, является нижестоящим соседом A. Следовательно, A блокирует B от знания об альтернативном пути, который он имеет к месту назначения через C, и C блокирует D от знания об альтернативном пути, который он имеет к месту назначения через A. Альтернативный путь без петли будет пересекать эту точку split horizon в сети. На рисунке 5 A может вычислить, что стоимость пути C меньше стоимости пути A, поэтому любой трафик A, направленный в C к месту назначения, будет перенаправлен по какому-то другому пути, чем тот, о котором знает A. В терминах LFA, С является нижестоящим соседом (downstream neighbor) A. P/Q пространство Еще одна модель, описывающая, как работают LFA, - это пространство P / Q. Рисунок 6 иллюстрирует эту модель. Проще всего начать с определения двух пространств. Предполагая, что линия связи [E, D] должна быть защищена от сбоя: Рассчитайте Shortest Path Tree из E (E использует стоимость путей к себе, а не стоимость от себя, при вычислении этого дерева, потому что трафик течет к D по этому пути). Удалите линию связи [E,D] вместе с любыми узлами, доступными только при прохождении через эту линию. Остальные узлы, которых может достичь E, - это пространство Q. Рассчитайте Shortest Path Tree из D. Удалите канал [E, D] вместе со всеми узлами, доступными только при прохождении по линии. Остальные узлы, которых может достичь D, находятся в пространстве P. Если D может найти маршрутизатор в пространстве Q, на который будет перенаправляться трафик в случае отказа канала [E, D]- это LFA. Удаленные (remote) Loop-Free Alternates Что делать, если нет LFA? Иногда можно найти удаленную альтернативу без петель (remote Loop-Free Alternate - rLFA), которая также может передавать трафик к месту назначения. RLFA не подключен напрямую к вычисляющему маршрутизатору, а скорее находится на расстоянии одного или нескольких переходов. Это означает, что трафик должен передаваться через маршрутизаторы между вычисляющим маршрутизатором и remote next hop. Обычно это достигается путем туннелирования трафика. Эти модели могут объяснить rLFA, не обращая внимания на математику, необходимую для их расчета. Понимание того, где кольцо "разделится" на P и Q, или на две половины, разделенные split horizon, поможет вам быстро понять, где rLFA можно использовать для обхода сбоя, даже если LFA отсутствует. Возвращаясь к рисунку 6, например, если канал [E, D] выходит из строя, D должен просто ждать, пока сеть сойдется, чтобы начать пересылку трафика к месту назначения. Лучший путь от E был удален из дерева D из-за сбоя, и E не имеет LFA, на который он мог бы пересылать трафик. Вернитесь к определению loop-free path, с которого начался этот раздел-это любой сосед, к которому устройство может перенаправлять трафик без возврата трафика. Нет никакой особой причины, по которой сосед, которому устройство отправляет пакеты в случае сбоя локальной линии связи, должен быть локально подключен. В разделе "виртуализация сети" описывается возможность создания туннеля или топологии наложения, которая может передавать трафик между любыми двумя узлами сети. Учитывая возможность туннелирования трафика через C, поэтому C пересылает трафик не на основе фактического пункта назначения, а на основе заголовка туннеля, D может пересылать трафик непосредственно на A, минуя петлю. Когда канал [E, D] не работает, D может сделать следующее: Вычислите ближайшую точку в сети, где трафик может быть туннелирован и не вернется к самому C. Сформируйте туннель к этому маршрутизатору. Инкапсулируйте трафик в заголовок туннеля. Перенаправьте трафик. Примечание. В реальных реализациях туннель rLFA будет рассчитываться заранее, а не рассчитываться во время сбоя. Эти туннели rLFA не обязательно должны быть видимы для обычного процесса пересылки. Эта информация предоставлена для ясности того, как работает этот процесс, а не сосредоточен на том, как он обычно осуществляется. D будет перенаправлять трафик в пункт назначения туннеля, а не в исходный пункт назначения - это обходит запись локальной таблицы переадресации C для исходного пункта назначения, что возвращает трафик обратно в C. Расчет таких точек пересечения будет обсуждаться в чуть позже в статьях, посвященных первому алгоритму кратчайшего пути Дейкстры.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59