По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Docker - программное обеспечение с открытым исходным кодом, предназначенное для упрощения и ускорения разработки приложений. Это набор продуктов PaaS (Platform as a Service) - Платформа как услуга, которые создают изолированные виртуализированные среды для создания, развертывания и тестирования приложений. Несмотря на то, что программное обеспечение относительно просто в управлении, существуют некоторые специфичные для Docker термины, в которых путаются новые пользователи. Докерфайлы, образы, контейнеры, тома и другая терминология должны быть освоены раз и навсегда. Понимание элементов Docker ускорит обучение работе с ним. Первый вопрос, который задают многие пользователи: "В чем разница между образом Docker и контейнером?" Что такое Docker Image Образ Docker (Docker Image) - это неизменяемый файл, содержащий исходный код, библиотеки, зависимости, инструменты и другие файлы, необходимые для запуска приложения. Из-за того, что образы предназначены только для чтения их иногда называют снимками (snapshot). Они представляют приложение и его виртуальную среду в определенный момент времени. Такая согласованность является одной из отличительных особенностей Docker. Он позволяет разработчикам тестировать и экспериментировать программное обеспечение в стабильных, однородных условиях. Так как образы являются просто шаблонами, их нельзя создавать или запускать. Этот шаблон можно использовать в качестве основы для построения контейнера. Контейнер - это, в конечном счете, просто образ. При создании контейнера поверх образа добавляет слой, доступный для записи, что позволяет менять его по своему усмотрению. Образ - это шаблон, на основе которого создается контейнер, существует отдельно и не может быть изменен. При запуске контейнерной среды внутри контейнера создается копия файловой системы (docker образа) для чтения и записи. Можно создать неограниченное количество образов Docker из одного шаблона. Каждый раз при изменении начального состояния образа и сохранении существующего состояния создается новый шаблон с дополнительным слоем поверх него. Таким образом, образы Docker могут состоять из ряда слоев, каждый из которых отличается от предыдущего. Слои образа представляют файлы, доступные только для чтения, поверх которых при создании контейнера добавляется новый слой. Что такое Docker Container? Контейнер Docker (Docker Container) - это виртуализированная среда выполнения, в которой пользователи могут изолировать приложения от хостовой системы. Эти контейнеры представляют собой компактные портативные хосты, в которых можно быстро и легко запустить приложение. Важной особенностью контейнера является стандартизация вычислительной среды, работающей внутри контейнера. Это не только гарантирует, что ваше приложение работает в идентичных условиях, но и упрощает обмен данными с другими партнерами по команде. Контейнеры работают автономно, изолированно от основной системы и других контейнеров, и потому ошибка в одном из них не влияет на другие работающие контейнеры, а также поддерживающий их сервер. Docker утверждает, что эти блоки «обеспечивают самые сильные возможности изоляции в отрасли». Поэтому при разработке приложения вам не придется беспокоиться о безопасности компьютера. В отличие от виртуальных машин, где виртуализация выполняется на аппаратном уровне, контейнеры виртуализируются на уровне приложений. Они могут использовать одну машину, совместно использовать ее ядро и виртуализировать операционную систему для выполнения изолированных процессов. Это делает контейнеры чрезвычайно легкими, позволяя сохранять ценные ресурсы. Образа Docker в сравнении с Docker контейнерами Говоря о разнице между образами и контейнерами, было бы неверно противопоставлять их друг-другу. Оба элемента тесно связаны между собой и являются основными шестерёнками Docker. Из определения терминов образ и контейнер выше, легко установить связь между ними: образы могут существовать без контейнеров, тогда как для существования контейнеров необходимо запустить образ. Поэтому контейнеры зависят от изображений и используют их для создания среды выполнения и запуска приложения. Эти две концепции существуют как важные компоненты (или, скорее, фазы) в процессе запуска контейнера Docker. Наличие рабочего контейнера является конечной «фазой» этого процесса, указывая, что он зависит от предыдущих этапов и компонентов. Именно поэтому образ docker по существу управляют контейнерами и формируют их. Из Dockerfile к образу и контейнеру Все начинается с последовательности инструкций, определяющих способ построения определенного образа Docker – Dockerfile. Данный файл автоматически выполняет команды скрипта и создает образ Docker. Для создания образа из Dockerfile используется команда docker build. Затем образ используется в качестве шаблона, который разработчик может скопировать и использовать для запуска приложения. Приложению необходима изолированная среда для выполнения - контейнер. Эта среда - не просто виртуальное «пространство». Она полностью зависит от образа, на базе которого была создана. Исходный код, файлы, зависимости и двоичные библиотеки, которые находятся в образе Docker, составляют контейнер. Чтобы создать слой контейнера из образа, используйте команду docker create. Наконец, после запуска контейнера из существующего образа вы запускаете его службу и запускаете приложение. Создание образа из контейнера. Если вы вносите изменения в исходный образ и хотите сохранить его для дальнейшей работы, можно сохранить измененный образ, сделав снимок текущего состояния контейнера. Таким образом, слой контейнера прикрепляется поверх образа, в конечном итоге создавая новый неизменяемый образ. В результате получается два образа Docker, полученные из одной файловой системы. Заключение Данная статья должна помочь понять, что такое образ Docker, что такое контейнер и как они связаны. Если поймете процесс создания контейнера, поймете разницу между образом и контейнером.
img
Если вы специалист по безопасности, то вам потребуется часто анализировать хосты, если будет замечена подозрительная активность. Чтобы дольше оставаться незамеченными, злоумышленники зачастую используют совершенно легитимные инструменты и процессы, которые можно найти в любой ОС Microsoft Windows. Поэтому важно понимать, как Windows обрабатывает процессы и какие встроенные инструменты может использовать специалист по безопасности для анализа активностей на хосте. Процессы, потоки и службы В Windows, когда приложение запущено, оно создает процесс. Обычно приложение может иметь один или несколько выделенных ему процессов. Процесс - это все ресурсы, необходимые для обеспечения возможности выполнения/запуска приложения в операционной системе хоста. Представьте, что вы открываете диспетчер задач, чтобы проверить производительность вашего компьютера. Операционная система создаст процесс со всеми необходимыми ресурсами для этого приложения. На следующем рисунке показаны текущие процессы на компьютере с Windows 10: Как показано на предыдущем рисунке, диспетчер задач - это служебная программа, которая предоставляет информацию о процессах, службах и производительности устройства. На вкладке «Процессы» вы увидите список всех запущенных в данный момент приложений в операционной системе хоста, список фоновых процессов и ресурсы, которые выделяются каждому приложению (ЦП, память). Фоновые процессы в Windows выполняются как службы. Служба - это программа, которая выполняется в фоновом режиме операционной системы, обеспечивая поддержку приложения и/или операционной системы. Эти службы можно настроить на автоматический запуск при загрузке Windows. Вы можете запускать, останавливать и перезапускать службу вручную. На следующем снимке экрана показано окно панели управления службами в операционной системе Windows 10: На предыдущем рисунке показан список служб в операционной системе хоста. Здесь вы можете настроить свойства службы в Windows. Дважды щелкнув на службу, откроется окно свойств. На следующем рисунке показано окно свойств службы: Как показано на предыдущем рисунке, вы можете настроить тип запуска службы. Каждое приложение создает родительский процесс с одним или несколькими дочерними процессами, иногда называемыми потоком. Каждый дочерний процесс или поток отвечает за функцию, обеспечивающую выполнение приложения. Когда приложение выполняется в операционных системах Microsoft Windows, родительский процесс использует системный вызов fork(), который позволяет родительскому процессу для запущенного приложения создать один или несколько дочерних процессов. Однако имейте в виду, что у дочернего процесса может быть только один родительский процесс, а у родительского процесса может быть несколько дочерних процессов. Когда приложение выполняется операционной системой или пользователем, операционная система задействует физическую память из оперативной памяти и создает виртуальную память для выделения запущенному процессу или дочернему процессу. Таким образом, процессы выполняются в виртуальном адресном пространстве операционной системы. Важное примечание! Операционная система Windows управляет выделением виртуальной памяти процессу. Иногда, когда приложение закрывается, родительский процесс и все дочерние процессы завершаются, тем самым высвобождая ресурсы обратно операционной системе. Однако родительский процесс может завершиться, пока дочерние процессы остаются активными. В этой ситуации виртуальная память и любые другие ресурсы по-прежнему выделяются каждому дочернему процессу. Дочерний процесс, у которого нет родительского процесса, называется сиротским процессом (orphan process). Пользователь может вручную завершить дочерний процесс в диспетчере задач или выполнить перезагрузку системы. Перезагрузка системы завершит все процессы и перезагрузит операционную систему. На следующем рисунке показан список всех запущенных процессов на вкладке «Подробности» в диспетчере задач: Как показано на предыдущем снимке экрана, мы можем видеть все процессы, идентификатор процесса (PID) для каждого процесса, статус, какой пользователь запускает процесс, и распределение ресурсов. Также в Microsoft Windows существует утилита Resource Monitor Монитор ресурсов предоставляет более подробную информацию обо всех процессах и о том, как они используют ЦП, память диск и сеть на устройстве. На следующем рисунке показан интерфейс монитора ресурсов на компьютере с Windows 10: Еще одним инструментом, который поможет вам определить адресное пространство и распределение памяти в Microsoft Windows, является инструмент RAMMap, который входит в набор инструментов Windows Sysinternals от Microsoft. На следующем рисунке показан сводный список и список подкачки на хосте, использующем RAMMap: Как показано на предыдущем снимке экрана, RAMMap показывает сводную информацию о выделении виртуальной памяти и ее использовании. Кроме того, вкладка Процессы содержит полный список всех процессов: Как показано на предыдущем рисункеа, на этой вкладке вы можете увидеть каждый запущенный процесс и распределение виртуальной памяти. Этот инструмент действительно полезен для демонстрации того, как ваша операционная система распределяет физическую память и сколько памяти используется в качестве кэша для данных на устройстве. Файл подкачки Windows= По мере того, как в память загружается больше приложений, операционная система выделяет части физической памяти (ОЗУ) каждому процессу, используя виртуальную память. Каждый родительский процесс и его дочерние процессы выполняются в одном виртуальном адресном пространстве в операционной системе хоста. Как уже упоминалось, за выделение памяти отвечает операционная система, однако есть некоторые приложения, которым для бесперебойной работы требуется намного больше памяти, чем другим, и это может создать нехватку доступной памяти для других приложений. Операционная система Windows использует часть памяти из другой области, с жесткого диска или SSD. Windows берет небольшую часть памяти с локального диска и преобразует ее в виртуальную память. Это называется файлом подкачки. Файл подкачки позволяет операционной системе хоста использовать эту часть памяти для загрузки приложений и, следовательно, снижает нагрузку на физическую память (ОЗУ) в системе. Чтобы получить доступ к настройкам файлов подкачки, выполните следующие действия: Щелкните значок Windows в нижнем левом углу экрана и выберете Система. Откроется окно «Система». Слева выберите пункт «Дополнительные параметры системы». Откроется окно «Свойства системы». Выберите пункт «Дополнительно» и нажмите «Параметры» в разделе «Быстродействие», как показано ниже: Откроется окно параметров быстродействия. Чтобы изменить размер файла подкачки, нажмите «Изменить…»: Вам будет предоставлена возможность настроить размер файла подкачки для всех дисков в локальной системе. Размер файла подкачки по умолчанию зависит от объема оперативной памяти хост-системы. Операционная система Windows 10 автоматически управляет размером файла подкачки в зависимости от конфигурации хоста и объема оперативной памяти в системе. Windows использует файл подкачки в качестве виртуальной памяти в случае, если в ОЗУ недостаточно физической памяти. Реестр Windows Вся информация о конфигурациях и настройках операционной системы Windows и ее пользователей хранится в базе данных, известной как реестр (registry). Самый высокий уровень реестра известен как куст. В реестре Windows есть пять кустов, и каждое значение данных хранится в разделе или подразделе куста. Древо (куст) реестра — это подмножество разделов, подразделов и параметров реестра, которому сопоставлен набор вспомогательных файлов, содержащих резервные копии этих данных. Часто для обозначения конкретных путей в реестре применяют термин ветка. Например ветка реестра HKEY_LOCAL_MACHINESYSTEM. Ниже перечислены пять кустов и их функции в Windows: HKEY_CLASSES_ROOT (HKCR): этот куст отвечает за правильное выполнение всех текущих приложений в проводнике Windows. Кроме того, этот куст содержит сведения о ярлыках и правилах перетаскивания в операционной системе хоста. HKEY_CURRENT_USER (HKCU): этот куст хранит информацию о текущей учетной записи пользователя в локальной системе. Эта информация будет включать настройки панели управления, настройки папок и настройки персонализации пользователя. HKEY_LOCAL_MACHINE (HKLM): этот куст отвечает за хранение специфичных для оборудования деталей операционной системы, таких как конфигурация системы и подключенные диски. HKEY_USERS (HKU): содержит данные конфигурации профилей пользователей в локальной системе. HKEY_CURRENT_CONFIG (HKCC): содержит подробную информацию о текущих конфигурациях системы. Для доступа к реестру используйте Registry Editor (regedit) в строке поиска Windows. На следующем рисунке показан редактор реестра Windows: Как показано на предыдущем рисунке, вы можете видеть, что каждый куст находится в верху своего уровня. Если вы развернете куст, вы увидите папки, а в каждой папке есть ключи, которые содержат сведения о конкретной функции или конфигурации в операционной системе. Реестр может предоставить ценную информацию во время расследования. В каждом реестре есть значение, известное как LastWrite, которое просто указывает время последнего изменения объекта или файла. Эта информация может использоваться для определения времени инцидента или события, связанного с безопасностью. В реестре также содержатся сведения о приложениях, которые запускаются автоматически со стартом системы - AutoRun. Для закрепления в системе, злоумышленники часто модифицируют ветки реестра, которые отвечают за автоматический запуск процессов и сервисов и добавляют в них ссылки на вредоносные программы, чтобы они каждый раз запускались со стартом системы и могли пережить перезагрузку. Ниже приведены основные ветки, отвечающие за автоматический старт приложений и сервисов: [HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunOnce] [HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRun] [HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServices] [HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrentVersionRunServicesOnce] [HKEY_LOCAL_MACHINESoftwareMicrosoftWindows NTCurrentVersionWinlogonUserinit] [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun] [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunOnce] [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServices] [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRunServicesOnce] [HKEY_CURRENT_USERSoftwareMicrosoftWindows NTCurrentVersionWindows] Например, чтобы при каждом старте Windows запускался блокнот, в ветку [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionRun] можно добавить новое значение и указать в нём ссылку на исполняемый файл на компьютере - "Notepad"="c:windows otepad.exe" Windows Management Instrumentation Управлять несколькими компьютерами с ОС Windows в небольшой сети очень просто. Однако по мере роста сети и подключения все большего числа устройств на базе Windows управление политиками и службами на уровне приложений может стать сложной задачей. Windows Management Instrumentation (WMI) - это инструмент, встроенный в операционную систему Windows, который позволяет системному администратору или специалисту по безопасности управлять многими системами на базе Windows в корпоративной сети. WMI - это функция администрирования Windows, которая обеспечивает единую среду для локального и удаленного доступа к системным компонентам Windows, а также позволяет собирать статистическую информацию об удаленных компьютерах в вашей сети. Вы сможете собирать статистику как по оборудованию, так и по программному обеспечению и даже отслеживать состояние каждого устройства. Чтобы открыть WMI на компьютере с Windows, выполните следующие действия: Откройте приложение Computer Management (управление компьютером) в Windows 10/Server 2019. Слева разверните «Службы и приложения». Щелкните правой кнопкой мыши элемент управления WMI и выберите «Свойства». На следующем рисунке показан интерфейс свойств элемента управления WMI: Злоумышленники могут использовать инструментарий управления Windows (WMI) для удаленного управления. WMI работает через протоколы SMB и службу удаленного вызова процедур (RPCS) для удаленного доступа. RPCS работает через порт 135. WMI управляется через утилиту командной строки WMI command-line (WMIC). Пример команды - wmic process call create. Использование WMI должно быть ограничено и ограничиваться только авторизованными пользователями, внимательно следя за его использованием. Инструменты мониторинга В операционной системе Windows существует множество инструментов мониторинга, которые специалист по безопасности может использовать для мониторинга различных ресурсов и действий на устройстве. Одним из таких инструментов является Performance Monitor, который позволяет пользователю собирать более подробные данные, чем ранее упомянутый Resource Monitor. Монитор производительности (системный монитор) - это основной инструмент, используемый как в Windows 10, так и в Windows Server. Специалист по безопасности может использовать этот инструмент для сбора статистики о системе за различные периоды времени, например, часы или дни. Затем собранные данные можно проанализировать на предмет любых аномалий. На следующем рисунке показан монитор производительности в системе Windows 10/Server 2019: Еще одним отличным инструментом, встроенным в Windows, является Монитор стабильности системы. Монитор стабильности системы позволяет специалисту по безопасности просматривать историю проблем, возникших в основной системе в течение нескольких дней или недель. Пользователь может нажать на событие в инструменте, чтобы получить подробную информацию о проблеме, и существует система оценок от 1 до 10, отражающая серьезность проблемы. На следующем рисунке показан Монитор стабильности системы на компьютере с Windows 10: Как показано на предыдущем рисунке, в системе произошел ряд критических событий за определенный период времени. Выбрав событие, монитор покажет подробную информацию о службе или приложении, вызвавшем событие, сводку и время его возникновения. Специалист по безопасности может использовать статистику и информацию, найденные здесь, чтобы лучше понять, вызвало ли вредоносное ПО или неавторизованные приложения нарушение безопасности в хост-системе. Инструменты мониторинга Когда в системе Windows происходит какое-либо событие, создается сообщение журнала о данном событии. Инструмент, позволяющий анализировать данные события - Event Viewer. Event Viewet содержит журналы безопасности, приложений и системных событий. Представьте, что злоумышленник пытается войти в учетную запись пользователя с неверными учетными данными. Для каждой попытки создастся событие сообщения журнала, и по этим данным можно будет обнаружить атаку. Существует 4 основных журнала событий: Security Безопасность - хранит события безопасности Application Приложение - хранит журналы приложений в ситстеме и установленного ПО Setup Установка - хранит сведения об установке ОС System Система - хранит сведения о работе самой системы На следующем рисунке показан инструмент просмотра событий в Windows (Event Viewer): Если вы развернете категорию, такую как Безопасность, вы увидите список всех журналов, связанных с безопасностью. На следующем снимке экрана показаны сведения в окне просмотра событий входа в систему безопасности: Информация, содержащаяся в сообщениях журнала, помогает специалисту по безопасности определить, что, когда и как произошел инцидент в системе. Обратите внимание на код события - 4624. Этот код соответствует успешному входу в системе Windows. В случае неуспешного входа сгенерируется событие с кодом 4625. Данные события также будут содержать другую полезную информацию, такую как: имя пользователя, осуществляющего вход, информацию о системе с которой осуществляется вход, тип входа (интерактивный, удаленный, сетевой, вход сервиса), процесс входа, ID входа и другое. Другие важные коды событий в системах Windows, хранящиеся в журнале Безопасности/Security (начиная с версии 7): 4725 - Отключение Учетной записи 4723 - Изменение пароля учетной записи 4724 - Сброс пароля для учетной записи 47204726 - Созданиеудаление пользователя 4648 - вход с явным указанием учетных данных 4698 - Создание задачи через планировщик задач 4697 - Создание службы в системе 46884689 - Созданиезавершение процесса
img
За последний десяток лет Wi-fi-сети получили огромное распространение. Роутер сейчас нельзя найти редко в какой квартире. А подключая мобильник к своему домашнему вай-фаю, в списке можно увидеть с десяток точек доступа ближайших соседей. Вай-фай есть практически везде. Но покрытие сети не всегда бывает эффективным. В этой статье мы разберем инструмент для разработки и оптимизации Wi-fi-сетей от компании Ekahau. Ekahau Connect- это набор физических и программных инструментов для работы с сетями Wi-Fi. Назначение этого набора инструментов это планирование и разработка, анализ и оптимизация, выявление и устранение неполадок сети.Также данный инструментарий позволяет работать командой например, бригаде обслуживания сетей на выезде поддерживать связь, с инженером-проектировщиком, который работает в офисе. Решения Ekahau позволяют быстро и беспрепятственно обмениваться информацией и оперативно принимать решения по обслуживанию сетей Wi-fi. Набор Ekahau Connect включает в себя следующие инструменты: Ekahau Pro Site Survey Tooll - базовый инструмент, предназначенный для планирования, обработки данных, оптимизации и оперативного устранения проблем в сетях Wi-Fi.Имеет широчайший функционал, который позволяет использовать это решение профессионально. Несмотря на это, достаточно прост в использовании и изучении, а также достаточно быстро работает с данными. Имеется поддержка Windows и MAC OS. Производитель также заявляет поддержку всех существующих на текущий момент стандартов Wi-fi, до 6 версии включительно. Ekahau Sidekick - многофункциональный высокоточный измерительно-диагностический прибор. Имеет два радиомодуля Wi-Fi, а также встроенное оборудование и ПО для анализа спектра. Прибор используется для сбора данных покрытия сетей Wi-Fi и устранения неполадок в них. По заявкам производителя, инструмент снимает данные вдвое быстрее аналогов, а анализирует в 4-10 раз быстрее. Семь встроенных антенн позволяют оптимально проводить высокоточное исследование поведения и покрытия сети Wi-Fi. Инструмент работает с iPad, MacOS и Windows, причем имеет функцию Plug and Play. Заявлена поддержка всех актуальных стандартов Wi-Fi, в том числе Wi-Fi 6. Ekahau Survey- это первое на рынке профессиональное решение для диагностики сети Wi-Fi для iPad.Благодаря мобильной платформе, оно позволяет не таскать с собой габаритные ноутбуки, а держать весь необходимый инструментарий в планшете компании Apple.Интуитивно доступный интерфейс и простота использования дают возможность снимать данные на местах даже начинающему специалисту. Этот инструмент определяет все доступные сети и составляет их карту покрытия, с учетом силы сигнала. Ekahau Capture - технология, которая позволяет быстро и без потерь захватывает пакеты данных. Ekahau Capture позволяет сэкономить на сложном и дорогом оборудовании, а также использует простые и надежные решения для полноценного сбора данных. Инструмент легок в обращении, что дает возможность быстро провести сбор и обработку данных для определения и устранения неполадок сети Wi-Fi, даже начинающему специалисту.Для достижения оптимальной скорости и надежности работы данную программу рекомендуется использовать совместно с Ekahau Sidekick. Ekahau Cloud - как очевидно из названия, это облачная технология. Благодаря ей, сбор данных может осуществляться как в память устройства, так и в облачное хранилище. В последнем случае можно подключить для работы с данными общий доступ. Это позволит трудиться над одним проектом целой группе людей например, полевая бригада с анализаторами будет собирать данные о сети и передавать их в облако. А далее с этими данными, видя и оценивая полную картину, будут работать специалисты-аналитики. Эту опцию можно отключить, поэтому если время не критично, сбор данных можно осуществлять и в память устройства. Опять же, важно понимать, что наибольшую ценность Ekahau будет иметь на масштабных внедрениях Wi-Fi и особенно если там есть сложные условия - толстые перекрытия, помехи и так далее. Используя вышеупомянутые инструменты вы сможете избежать долгих и тяжких процедур с попыткой понимания где же точка доступа была повешена неправильно и определения правильности модели и количества этих точек.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59