По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сложная терминология в некоторых темах, касающихся IT, иногда заводит в тупик. Простой и понятный процесс может быть описан очень комплексным языком, из-за чего, даже после изучения темы, могут остаться вопросы. Это касается и контейнеризации. В рамках этой темы ответим на вопрос - в чем разница между LXC, LXD и LXCFS. О LXC LXC (Linux Containers) представляет собой интерфейс в пользовательской среде, функция которого - сдерживать ядро Linux. Имея в активе эффективный API и набор простых инструментов, LXC дает пользователю возможность администрировать любые использующиеся контейнеры. Важные характеристики Текущая версия LXC задействует ряд функций ядра, чтобы обеспечить контейнеризацию следующих процессов: namespaces (ipc, uts, mount, pid); профиль AppArmor (та же SELinux); правила Seccomp; Chroots (задействуя pivot _root); потенциал ядра; группы контроля (CGroups). Как правило, контейнеры LXC обычно воспринимаются пользователями как нечто усредненное между Chroot и VM. Эта технология нацелена на то, чтобы создать среду, аналогичную стандартно установленной Linux, но сделать это без необходимости в дополнительном ядре. Компоненты Ниже в списке, несколько актуальных компонентов LXC: liblxc; языковые привязки для AP (Python (2 и 3 ), Lua, Go, Ruby, Haskell); стандартные инструменты администрирования контейнеров; готовые варианты контейнеров; LXD - решение для LXC LXD (Linux Container Daemon) является базирующимся на LXC гипервизором контейнеров. Основные части LXD: системный daemon (lxd); клиент LXC; плагин (nova-compute-lxd); REST API предоставляется демоном в локальном или сетевом режиме. Эффективная утилита управления, клиент командной строки, отличается своей интуитивностью и простотой. Именно с помощью него реализовано управление каждым контейнером. Клиент обрабатывает подключение одновременно к разному количеству контейнеров, отображает уже созданные и создает новые. Есть возможность их перемещения в процессе функционирования. Упомянутый плагин “превращает” все LXD-host в вычислительные узлы, которые работают для поддержки контейнеров, а не VM. Преимущества Основные преимущества LXD: обеспечение безопасности (контейнеры не обладают привилегированностью, ресурсы ограничиваются и так далее.) любой масштаб использования; интуитивность (простое управление через ввод в командной строке); образ-ориентированность (использование надежных образов, вместо шаблонов); возможность активной миграции; Связь с LXC LXD не является новой версией LXC, скорее, он использует ее как базу. Чтобы администрирование контейнеров стало еще проще, LXD задействует LXC, влияя на библиотеку последней. Также во взаимодействии участвует прослойка, написанная на Go. Таким образом, LXD является, по сути, альтернативой LXC с расширенными возможностями (отличный пример - управление через сеть). LXCFS: настройка контейнеризации LXCFS - это небольшая архитектура файлов в среде пользователя, которая способна оптимизировать работу ядра Linux. LXCFS включает в себя: файлы, которые монтируются над оригинальными аналогами и предоставляют CGroup-совместимые значения; дерево cgroupfs, функционирующее в независимости от контейнеров. Архитектура представляет из себя простой код, созданный в C. Задача, которую необходимо было решить - запуск контейнера systemdпод базовым пользователем с параллельным запуском systemd внутри контейнера, с целью взаимодействовать с cgroups. Если говорить простым языком, цель создания этой архитектуры - ощущение активного контейнера, как независимой системы. Так в чем же разница? Сравнивать LXC, LXD, LXCFS не имеет смысла, так как они не представляют из себя 3 разных продукта с одинаковым функционалом. Грубо можно описать их как программу, дополнение к ней и патч, который позволяет среде пользователя адаптироваться под ее нужды.
img
Сериализация – это процесс, в котором одна служба берет структуру данных, такую как словарь в Python, упаковывает ее и передает другой службе для чтения. Это максимально простое определение. Представьте, что мне нужно отправить кому-то сообщение. Итак, я записываю текст на уже собранный пазл. Далее я разбираю части пазла, добавляю несколько инструкций о том, как его собрать, и отправляю его. Затем получатель сообщения, получив кусочки головоломки, собирает их вместе. И теперь у него есть мое сообщение. Техническое определение этого понятия немного интереснее. А именно, сериализация – это процесс преобразования объекта данных в поток байтов и сохранения состояния объекта для хранения на диске или передачи по сети. Это сокращает необходимый размер хранилища и упрощает передачу информации по сети. Маршалинг и сериализация – в чем разница? Здесь на ум может прийти понятие маршалинга (Marshalling). Маршалинг – это процесс преобразования представления объекта в памяти в форму, подходящую для передачи. Хотя маршалинг и сериализация в общих чертах похожи, между ними все-таки есть принципиальная разница. Например, при создании программы в Golang для считывания JSON данных в структуру данных Golang вы можете использовать маршалинг для преобразования пары «ключ-значение» JSON в пару «ключ-значение» Golang. Разница в том, что маршалинг используется для преобразования данных. А сериализация, напротив, отправляет или сохраняет данные в потоке байтов и повторно собирает их в исходную форму. Оба процесса вроде бы выполняют процесс сериализации, но с разными намерениями. Вы можете увидеть структуру, которую я создал для взаимодействия с данными Twitter, ниже, как пример процесса маршалинга в действии. В Golang вы можете вставлять подсказки, называемые тегами, легко преобразовывая этот объект в данные JSON с помощью встроенной службы маршалинга Golang. Что такое Endianness? Я также хотел бы немного затронуть тему порядка следования байтов. Endianness – это термин, который используется для описания порядка байтов в памяти. Представьте, что память – это блок, в котором хранятся биты данных. Чтобы сериализация работала, поток байтов должен передавать типы данных независимо от изменения порядка следования байтов из одной системы в другую. Здесь вы можете увидеть большие различия и не очень. Очень важно, чтобы порядок следования байтов из одной системы в другую совпадал или каким-либо образом преобразовывался, поскольку не все системы упорядочивают свои биты одинаково. Little endian (от младшего к старшему) и big endian (от старшего к младшему) Варианты использования сериализации Наш вариант использования в полной мере использует все функции сериализации. Мы планируем получить некоторую информацию от сканируемого оборудования, упаковать эту информацию в поток байтов и отправить ее по сети в другую службу, которая восстановит данные. Процесс обратной сериализации и восстановления данных в исходную форму называется десериализацией. Есть и другие варианты использования сериализации. Например, REST API или протоколы обмена сообщениями, такие как AMQP, могут использовать сериализацию для сжатия и отправки данных. AMQP – это протокол обмена сообщениями, в котором вы отправляете сообщение брокеру AMQP, а служба-получатель «прослушивает» этого брокера в поисках сообщения. Серверные специалисты должны быть хорошо с этим знакомы, так как это часто используется для отправки данных туда и обратно в распределенных системах. Многие языки программирования включают возможность легкого развертывания некоторой сериализации. Так что это языково-независимая тема. Пример сериализации Приведем краткий пример. Код, приведенный ниже, использует библиотеку kombu для отправки сообщений через AMQP. Мы используем ее для отправки сообщений из одного программного пакета в другой по сети. Данный код предназначен для службы, отправляющей сообщение брокеру AMQP: Обратите внимание на метод publish. Мы передаем метод сериализации в качестве аргумента, чтобы библиотека понимала, как сериализовать данные, которые мы передаем. Сообщение с данными преобразуется в поток байтов, который, если на него посмотреть, выглядит просто как длинная строка букв и цифр. И мы отправляем сообщение. Соответствующая служба будет использовать тот же метод сериализации для восстановления данных в их исходное состояние. Это важная функция, поскольку мы создаем набор инструментов, которые должны иметь возможность отправлять сообщения друг другу, чтобы все работало. Форматы данных сериализации В основном я использую JSON для сериализации, когда этого требует задача. Но тем не менее, вы можете использовать и другие варианты. У JSON много издержек, но для меня он идеален, потому что он читабелен. Вы также можете использовать Protobuf, YAML или XML. Это лишь некоторые из возможных. Заключение Сериализация становится необходимостью, когда вы строите свои каналы связи. Полезно знать о таком понятии, чтобы чувствовать себя уверенно при подходе к любому инструменту, который вы используете, с соответствующими базовыми знаниями.
img
Перед тем как начать, почитайте материал про топологию сетей. Обнаружение соседей позволяет плоскости управления узнать о топологии сети, но как узнать информацию о достижимых пунктах назначения? На рисунке 8 показано, как маршрутизатор D узнает о хостах A, B и C? Существует два широких класса решений этой проблемы - реактивные и упреждающие, которые обсуждаются в следующих статьях. Реактивное изучение На рисунке 8 предположим, что хост A только что был включен, а сеть использует только динамическое обучение на основе передаваемого трафика данных. Как маршрутизатор D может узнать об этом недавно подключенном хосте? Одна из возможностей для A - просто начать отправлять пакеты. Например, если A вручную настроен на отправку всех пакетов по назначению, он не знает, как достичь к D, A должен отправить в хотя бы один пакет, чтобы D обнаружил его существование. Узнав A, D может кэшировать любую релевантную информацию на некоторое время - обычно до тех пор, пока A, кажется, отправляет трафик. Если A не отправляет трафик в течение некоторого времени, D может рассчитать запись для A в своем локальном кэше. Этот процесс обнаружения достижимости, основанный на фактическом потоке трафика, является реактивным открытием. С точки зрения сложности, реактивное обнаружение торгует оптимальным потоком трафика против информации, известной и потенциально переносимой в плоскости управления. Потребуется некоторое время, чтобы сработали механизмы реактивного обнаружения, то есть чтобы D узнал о существовании A, как только хост начнет посылать пакеты. Например, если хост F начинает посылать трафик в сторону а в тот момент, когда A включен, трафик может быть перенаправлен через сеть на D, но D не будет иметь информации, необходимой для пересылки трафика на канал, а следовательно, и на A. В течение времени между включением хоста A и обнаружением его существования пакеты будут отброшены-ситуация, которая будет казаться F в худшем случае сбоем сети и некоторым дополнительным джиттером (или, возможно, непредсказуемой реакцией по всей сети) в лучшем случае. Кэшированные записи со временем должны быть отключены. Обычно для этого требуется сбалансировать ряд факторов, включая размер кэша, объем кэшируемой информации об устройстве и частоту использования записи кэша в течение некоторого прошедшего периода времени. Время ожидания этой кэшированной информации и любой риск безопасности какого-либо другого устройства, использующего устаревшую информацию, являются основой для атаки. Например, если A перемещает свое соединение с D на E, информация, которую D узнал об A, останется в кэше D в течение некоторого времени. В течение этого времени, если другое устройство подключается к сети к D, оно может выдавать себя за A. Чем дольше действительна кэшированная информация, тем больше вероятность для выполнения этого типа атаки. Упреждающее изучение Некоторая информация о доступности может быть изучена заранее, что означает, что маршрутизатору не нужно ждать, пока подключенный хост начнет отправлять трафик, чтобы узнать об этом. Эта возможность имеет тенденцию быть важной в средах, где хосты могут быть очень мобильными; например, в структуре центра обработки данных, где виртуальные машины могут перемещаться между физическими устройствами, сохраняя свой адрес или другую идентифицирующую информацию, или в сетях, которые поддерживают беспроводные устройства, такие как мобильные телефоны. Здесь описаны четыре широко используемых способа упреждающего изучения информации о доступности: Протокол обнаружения соседей может выполняться между граничными сетевыми узлами (или устройствами) и подключенными хостами. Информация, полученная из такого протокола обнаружения соседей, может затем использоваться для введения информации о доступности в плоскость управления. Хотя протоколы обнаружения соседей широко используются, информация, полученная через эти протоколы, не используется широко для внедрения информации о доступности в плоскость управления. Информацию о доступности можно получить через конфигурацию устройства. Почти все сетевые устройства (например, маршрутизаторы) будут иметь доступные адреса, настроенные или обнаруженные на всех интерфейсах, обращенных к хосту. Затем сетевые устройства могут объявлять эти подключенные интерфейсы как достижимые места назначения. В этой ситуации доступным местом назначения является канал (или провод), сеть или подсеть, а не отдельные узлы. Это наиболее распространенный способ получения маршрутизаторами информации о доступности сетевого уровня. Хосты могут зарегистрироваться в службе идентификации. В некоторых системах служба (централизованная или распределенная) отслеживает, где подключены хосты, включая такую информацию, как маршрутизатор первого прыжка, через который должен быть отправлен трафик, чтобы достичь их, сопоставление имени с адресом, услуги, которые каждый хост способен предоставить, услуги, которые каждый хост ищет и/или использует, и другую информацию. Службы идентификации распространены, хотя они не всегда хорошо видны сетевым инженерам. Такие системы очень распространены в высокомобильных средах, таких как беспроводные сети, ориентированные на потребителя. Плоскость управления может извлекать информацию из системы управления адресами, если она развернута по всей сети. Однако это очень необычное решение. Большая часть взаимодействия между плоскостью управления и системами управления адресами будет осуществляться через локальную конфигурацию устройства; система управления адресами назначает адрес интерфейсу, а плоскость управления выбирает эту конфигурацию интерфейса для объявления в качестве достижимого назначения. Объявление достижимости и топология После изучения информации о топологии и доступности плоскость управления должна распространить эту информацию по сети. Хотя метод, используемый для объявления этой информации, в некоторой степени зависит от механизма, используемого для расчета путей без петель (поскольку какая информация требуется, где рассчитывать пути без петель, будет варьироваться в зависимости от того, как эти пути вычисляются), существуют некоторые общие проблемы и решения, которые будут применяться ко всем возможным системам. Основные проблемы заключаются в том, чтобы решить, когда объявлять о доступности и надежной передаче информации по сети. Решение, когда объявлять достижимость и топологию Когда плоскость управления должна объявлять информацию о топологии и доступности? Очевидным ответом может быть "когда это будет изучено", но очевидный ответ часто оказывается неправильным. Определение того, когда объявлять информацию, на самом деле включает в себя тщательный баланс между оптимальной производительностью сети и управлением объемом состояния плоскости управления. Рисунок 9 будет использован для иллюстрации. Предположим, хосты A и F отправляют данные друг другу почти постоянно, но B, G и H вообще не отправляют трафик в течение некоторого длительного периода. В этой ситуации возникают два очевидных вопроса: Хотя для маршрутизатора C может иметь смысл поддерживать информацию о доступности для B, почему D и E должны поддерживать эту информацию? Почему маршрутизатор E должен поддерживать информацию о доступности хоста A? С точки зрения сложности существует прямой компромисс между объемом информации, передаваемой и удерживаемой в плоскости управления, и способностью сети быстро принимать и пересылать трафик. Рассматривая первый вопрос, например, компромисс выглядит как способность C отправлять трафик из B в G при его получении по сравнению с C, поддерживающим меньше информации в своих таблицах пересылки, но требующимся для получения информации, необходимой для пересылки трафика через некоторый механизм при получении пакетов, которые должны быть переадресованы. Существует три общих решения этой проблемы. Проактивная плоскость управления: плоскость управления может проактивно обнаруживать топологию, вычислять набор путей без петель через сеть и объявлять информацию о достижимости. Упреждающее обнаружение топологии с реактивной достижимостью: плоскость управления может проактивно обнаруживать топологию и рассчитывать набор путей без петель. Однако плоскость управления может ждать, пока информация о доступности не потребуется для пересылки пакетов, прежде чем обнаруживать и / или объявлять о доступности. Реактивная плоскость управления: плоскость управления может реактивно обнаруживать топологию, вычислять набор путей без петель через сеть (обычно для каждого пункта назначения) и объявлять информацию о доступности. Если C изучает, сохраняет и распределяет информацию о доступности проактивно или в этой сети работает проактивная плоскость управления, то новые потоки трафика могут перенаправляться через сеть без каких-либо задержек. Если показанные устройства работают с реактивной плоскостью управления, C будет: Подождите, пока первый пакет в потоке не направится к G (к примеру) Откройте путь к G с помощью некоторого механизма Установите путь локально Начать пересылку трафика в сторону G Тот же процесс должен быть выполнен в D для трафика, перенаправляемого к A от G и F (помните, что потоки почти всегда двунаправленные). Пока плоскость управления изучает путь к месту назначения, трафик (почти всегда) отбрасывается, потому что сетевые устройства не имеют никакой информации о пересылке для этого достижимого места назначения (с точки зрения сетевого устройства достижимый пункт назначения не существует). Время, необходимое для обнаружения и создания правильной информации о пересылке, может составлять от нескольких сотен миллисекунд до нескольких секунд. В это время хост и приложения не будут знать, будет ли соединение в конечном итоге установлено, или если место назначения просто недоступно. Плоскости управления можно в целом разделить на: Проактивные системы объявляют информацию о доступности по всей сети до того, как она понадобится. Другими словами, проактивные плоскости управления хранят информацию о доступности для каждого пункта назначения, установленного на каждом сетевом устройстве, независимо от того, используется эта информация или нет. Проактивные системы увеличивают количество состояний, которые передаются и хранятся на уровне управления, чтобы сделать сеть более прозрачной для хостов или, скорее, более оптимальной для краткосрочных и чувствительных ко времени потоков. Реактивные системы ждут, пока информация о пересылке не потребуется для ее получения, или, скорее, они реагируют на события в плоскости данных для создания информации плоскости управления. Реактивные системы уменьшают количество состояний, передаваемых на уровне управления, делая сеть менее отзывчивой к приложениям и менее оптимальной для кратковременных или чувствительных ко времени потоков. Как и все компромиссы в сетевой инженерии, описанные здесь два варианта, не являются исключительными. Можно реализовать плоскость управления, содержащую некоторые проактивные и некоторые реактивные элементы. Например, можно построить плоскость управления, которая имеет минимальные объемы информации о доступности, описывающей довольно неоптимальные пути через сеть, но которая может обнаруживать более оптимальные пути, если обнаруживается более длительный или чувствительный к качеству обслуживания поток. Что почитать дальше? Советуем материал про реактивное и упреждающее распределение достижимости в сетях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59