По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Стандарт 802.11 поддерживал только один способ защиты данных, передаваемых по WI-FI, от перехвата- это WEP. В прошлых статьях мы узнали, что WEP является устаревшим средством защиты данных и его использование не рекомендовано. Какие же еще существуют способы шифрования и защиты данных при передаче по Wi-Fi? TKIP В свое время WEP применялся на беспроводном оборудовании клиента и точки доступа, но он был сильно уязвим. На смену WEP пришел протокол целостности временного ключа (Temporal Key Integrity Protocol (TKIP). TKIP добавляет следующие функции безопасности на устаревшем оборудовании и при использовании базового шифрования WEP: MIC: этот эффективный алгоритм шифрования добавляет хэш-значение к каждому кадру в качестве проверки целостности сообщения, чтобы предотвратить подделку. Time stamp: метка времени добавляется в MIC, чтобы предотвратить атаки, которые пытаются повторно использовать или заменить кадры, которые уже были отправлены. MAC-адрес отправителя: MIC также включает MAC-адрес отправителя в качестве доказательства источника кадра. Счетчик последовательностей TKIP: эта функция обеспечивает запись кадров, отправленных по уникальному MAC-адресу, чтобы предотвратить использование повторение кадров в качестве атаки. Алгоритм смешивания ключей: этот алгоритм вычисляет уникальный 128-битный WEP-ключ для каждого кадра. Более длинный вектор инициализации (IV): размер IV удваивается с 24 до 48 бит, что делает практически невозможным перебор всех ключей WEP путем использования метода вычисления brute-force. До 2012 года протокол шифрования TKIP был достаточно безопасным методом защиты данных. Он применялся до тех пор, пока не появился стандарт 802.11i. Злоумышленники не оставили в стороне протокол TKIP. Было создано много алгоритмов атак против TKIP, поэтому его тоже следует избегать, если есть более лучший метод защиты данных в беспроводных сетях. CCMP Протокол Counter/CBC-MAC (CCMP) считается более безопасным, чем TKIP. CCMP состоит из двух алгоритмов: AES шифрование в режиме счетчика Cipher Block Chaining Message Authentication Code (CBC-MAC) используется в качестве проверки целостности сообщения (MIC) Расширенный стандарт шифрования (AES)- это текущий алгоритм шифрования, принятый Национальным институтом стандартов и технологий США (NIST) и правительством США и широко используемый во всем мире. Другими словами, AES является открытым, общедоступным и представляет собой самый безопасный метод шифрования на данный момент времени. Для использования протокола защиты CCMP, необходимо убедиться, что устройства и точки доступа поддерживают режим счетчика AES и CBC-MAC на аппаратном уровне. CCMP нельзя использовать на устаревших устройствах, поддерживающих только WEP или TKIP. Как определить, что устройство поддерживает CCMP? Ищите обозначение WPA2. GCMP Протокол Galois/Counter Mode Protocol (GCMP)- это надежный набор шифрования, который является более безопасным и эффективным, чем CCMP. GCMP состоит из двух алгоритмов: AES шифрование в режиме счетчика Galois Message Authentication Code (GMAC) используется в качестве проверки целостности сообщения (MIC) GCMP используется в WPA3. WPA, WPA2 и WPA3 На сегодняшний день существует три метода шифрования WPA: WPA, WPA2 и WPA3. Беспроводные технологии тестируются в официальных испытательных лабораториях в соответствии со строгими критериями. Альянс Wi-Fi представил первое поколение сертифицированную WPA (известную просто как WPA, а не WPA1), в то время как поправка IEEE 802.11i для совершенных методов обеспечения безопасности все еще разрабатывалась. WPA была основана на части стандарта 802.11i и включала аутентификацию 802.1x, TKIP и метод динамического управления ключами шифрования. Как только 802.11i был ратифицирован и опубликован, WiFi Alliance включил его в полном объеме в свою сертификацию WPA Version 2 (WPA2). WPA2 основан на превосходных алгоритмах AES CCMP, а не на устаревшем TKIP от WPA. Очевидно, что WPA2 был разработан взамен WPA. В 2018 году Альянс Wi-Fi представил версию WPA3 в качестве замены WPA2, добавив несколько важных и превосходных механизмов безопасности. WPA3 использует более сильное шифрование AES с помощью протокола Galois/Counter Mode Protocol (GCMP). Он также использует защищенные кадры управления (PMF) для защиты кадров управления 802.11 между точкой доступа и клиентами, чтобы предотвратить несанкционированный доступ и нарушение нормальной работы BSS. Обратите внимание, что все три версии WPA поддерживают два режима проверки подлинности клиента: предварительный общий ключ (PSK) или 802.1x, в зависимости от масштаба развертывания. Они также известны как личный режим и режим предприятия, соответственно.
img
Сериализация – это процесс, в котором одна служба берет структуру данных, такую как словарь в Python, упаковывает ее и передает другой службе для чтения. Это максимально простое определение. Представьте, что мне нужно отправить кому-то сообщение. Итак, я записываю текст на уже собранный пазл. Далее я разбираю части пазла, добавляю несколько инструкций о том, как его собрать, и отправляю его. Затем получатель сообщения, получив кусочки головоломки, собирает их вместе. И теперь у него есть мое сообщение. Техническое определение этого понятия немного интереснее. А именно, сериализация – это процесс преобразования объекта данных в поток байтов и сохранения состояния объекта для хранения на диске или передачи по сети. Это сокращает необходимый размер хранилища и упрощает передачу информации по сети. Маршалинг и сериализация – в чем разница? Здесь на ум может прийти понятие маршалинга (Marshalling). Маршалинг – это процесс преобразования представления объекта в памяти в форму, подходящую для передачи. Хотя маршалинг и сериализация в общих чертах похожи, между ними все-таки есть принципиальная разница. Например, при создании программы в Golang для считывания JSON данных в структуру данных Golang вы можете использовать маршалинг для преобразования пары «ключ-значение» JSON в пару «ключ-значение» Golang. Разница в том, что маршалинг используется для преобразования данных. А сериализация, напротив, отправляет или сохраняет данные в потоке байтов и повторно собирает их в исходную форму. Оба процесса вроде бы выполняют процесс сериализации, но с разными намерениями. Вы можете увидеть структуру, которую я создал для взаимодействия с данными Twitter, ниже, как пример процесса маршалинга в действии. В Golang вы можете вставлять подсказки, называемые тегами, легко преобразовывая этот объект в данные JSON с помощью встроенной службы маршалинга Golang. Что такое Endianness? Я также хотел бы немного затронуть тему порядка следования байтов. Endianness – это термин, который используется для описания порядка байтов в памяти. Представьте, что память – это блок, в котором хранятся биты данных. Чтобы сериализация работала, поток байтов должен передавать типы данных независимо от изменения порядка следования байтов из одной системы в другую. Здесь вы можете увидеть большие различия и не очень. Очень важно, чтобы порядок следования байтов из одной системы в другую совпадал или каким-либо образом преобразовывался, поскольку не все системы упорядочивают свои биты одинаково. Little endian (от младшего к старшему) и big endian (от старшего к младшему) Варианты использования сериализации Наш вариант использования в полной мере использует все функции сериализации. Мы планируем получить некоторую информацию от сканируемого оборудования, упаковать эту информацию в поток байтов и отправить ее по сети в другую службу, которая восстановит данные. Процесс обратной сериализации и восстановления данных в исходную форму называется десериализацией. Есть и другие варианты использования сериализации. Например, REST API или протоколы обмена сообщениями, такие как AMQP, могут использовать сериализацию для сжатия и отправки данных. AMQP – это протокол обмена сообщениями, в котором вы отправляете сообщение брокеру AMQP, а служба-получатель «прослушивает» этого брокера в поисках сообщения. Серверные специалисты должны быть хорошо с этим знакомы, так как это часто используется для отправки данных туда и обратно в распределенных системах. Многие языки программирования включают возможность легкого развертывания некоторой сериализации. Так что это языково-независимая тема. Пример сериализации Приведем краткий пример. Код, приведенный ниже, использует библиотеку kombu для отправки сообщений через AMQP. Мы используем ее для отправки сообщений из одного программного пакета в другой по сети. Данный код предназначен для службы, отправляющей сообщение брокеру AMQP: Обратите внимание на метод publish. Мы передаем метод сериализации в качестве аргумента, чтобы библиотека понимала, как сериализовать данные, которые мы передаем. Сообщение с данными преобразуется в поток байтов, который, если на него посмотреть, выглядит просто как длинная строка букв и цифр. И мы отправляем сообщение. Соответствующая служба будет использовать тот же метод сериализации для восстановления данных в их исходное состояние. Это важная функция, поскольку мы создаем набор инструментов, которые должны иметь возможность отправлять сообщения друг другу, чтобы все работало. Форматы данных сериализации В основном я использую JSON для сериализации, когда этого требует задача. Но тем не менее, вы можете использовать и другие варианты. У JSON много издержек, но для меня он идеален, потому что он читабелен. Вы также можете использовать Protobuf, YAML или XML. Это лишь некоторые из возможных. Заключение Сериализация становится необходимостью, когда вы строите свои каналы связи. Полезно знать о таком понятии, чтобы чувствовать себя уверенно при подходе к любому инструменту, который вы используете, с соответствующими базовыми знаниями.
img
Ну просто очень частый кейс: создается виртуальная машина на Linux ОС (Hyper-V или VMware, не важно), которая работает длительное время. Но в один прекрасный момент, память сервера переполняется и приходится расширять диск. В виртуализации (гипервизоре) это сделать очень просто - нарастить виртуальный диск с физического. А что делать внутри виртуалки, где живет Linux/CentOS? В статье мы расскажем, как расширить пространство памяти (диск) на сервера под управлением Linux/CentOS, последовательно управляя PV (Physical Volume, физические тома), VG (Volume Group, группа томов) и LV (Logical Volume, логические разделы). А вообще мы можем расширить диск или нужно создать новый? Это очень важный пункт. Обязательно проверьте вот что: дело в том, что диск разделенный на 4 раздела более не сможет быть расширен. Проверить это легко. Подключаемся к серверу CentOS и вводим команду fdisk -l: # fdisk -l Disk /dev/sda: 187.9 GB, 187904819200 bytes 255 heads, 63 sectors/track, 22844 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 25 200781 83 Linux /dev/sda2 26 2636 20972857+ 8e Linux LVM Если вывод команды у вас выглядит так, как показано выше - все хорошо. У вас пока только два раздела - /dev/sda1 и /dev/sda2. Можно создать еще два. Однако, если вывод команды будет выглядеть вот так: # fdisk -l Disk /dev/sda: 187.9 GB, 187904819200 bytes 255 heads, 63 sectors/track, 22844 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 25 200781 83 Linux /dev/sda2 26 2636 20972857+ 8e Linux LVM /dev/sda3 2637 19581 136110712+ 8e Linux LVM /dev/sda4 19582 22844 26210047+ 8e Linux LVM Это означает, что для решения задачи расширения памяти на сервере вам нужно создавать новый диск, а не расширять предыдущий. Мы рассматриваем первый вариант, когда у вас еще есть возможность создавать разделы. Погнали! Создаем новую партицию Проверяем что у нас на физических дисках командой fdisk -l # fdisk -l Disk /dev/sda: 10.7 GB, 10737418240 bytes 255 heads, 63 sectors/track, 1305 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 13 104391 83 Linux /dev/sda2 14 391 3036285 8e Linux LVM Сервер видит 10.7 ГБ места на диске. Начинаем создавать новую партицию (раздел) командой fdisk /dev/sda. После запроса ввода команды, указываем n, чтобы создать новую партицию: # fdisk /dev/sda The number of cylinders for this disk is set to 1305. There is nothing wrong with that, but this is larger than 1024, and could in certain setups cause problems with: 1) software that runs at boot time (e.g., old versions of LILO) 2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2 FDISK) Command (m for help): n В следующем разделе конфигурации, указываем ключ p чтобы создать раздел. Тут будьте внимательны - самый первый пункт нашей статьи - у вас должно быть на этот момент строго меньше 4 партиций на диске! Command action e extended p primary partition (1-4) p На следующем экране задаем номер для партиции. Так как у нас уже есть партиции /dev/sda1 и /dev/sda2, то следуя порядковому номеру, мы указываем цифру 3: Partition number (1-4): 3 В следующем пункте, мы рекомендуем нажать Enter дважды, то есть принять предложенные по умолчанию значения: First cylinder (392-1305, default 392): Using default value 392 Last cylinder or +size or +sizeM or +sizeK (392-1305, default 1305): Using default value 1305 Отлично. Теперь мы меняем типа нашего раздела. Для этого, в следующем меню нажимаем ключ t, указываем номер партиции, который только что создали (напомним, это был номер 3), 3, а в качестве Hex code укажем 8e, а дальше просто Enter: Command (m for help): t Partition number (1-4): 3 Hex code (type L to list codes): 8e Changed system type of partition 3 to 8e (Linux LVM) Готово. Мы вернулись в основное меню утилиты fidsk. Сейчас ваша задача указать ключ w и нажать Etner, чтобы сохранить опции партиций на диске: Command (m for help): w После, что самое важное этого метода - перезагружать ничего не нужно! Нам просто нужно заново сканировать партиции утилитой partprobe: # partprobe -s Если команда выше не работает, то попробует сделать с помощью partx: # partx -v -a /dev/sda И если уже после этого у вас не появляется новая партиция - увы, вам придется согласовать время перезагрузки сервера и перезагрузить его. Успешным результатом этого шага будет вот такой вывод команды fdisk, где мы видим новую партицию: # fdisk -l Disk /dev/sda: 10.7 GB, 10737418240 bytes 255 heads, 63 sectors/track, 1305 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sda1 * 1 13 104391 83 Linux /dev/sda2 14 391 3036285 8e Linux LVM /dev/sda3 392 1305 7341705 8e Linux LVM Расширяем логический раздел LV с новой партиции Теперь наша задача следующая: создаем физический том (PV) из новой партиции, расширяем группу томов (VG) из под нового объема PV, а затем уже расширяем логический раздел LV. Звучит сложно, но поверьте, это легко! Итак, по шагам: создаем новый физический том (PV). Важно: у вас может быть не /dev/sda3, а другая, 4, например, или вообще /dev/sdb3! Не забудьте заменять в командах разделы, согласно вашей инсталляции. # pvcreate /dev/sda3 Physical volume "/dev/sda3" successfully created Отлично. Теперь находим группу томов (VG, Volume Group). А точнее, ее название. Делается это командой vgdisplay: # vgdisplay --- Volume group --- VG Name MerionVGroup00 ... Найдено. Наша VG называется MerionVGroup00. Теперь мы ее расширим из пространства ранее созданного PV командой vgextend: # vgextend MerionVGroup00 /dev/sda3 Volume group "MerionVGroup00" successfully extended Теперь расширяем LV из VG. Найдем название нашей LV, введя команду lvs: # lvs LV VG Attr LSize MerionLVol00 MerionVGroup00 MerionLVol00 - найдено.Расширяем эту LV, указывая до нее путь командой lvextend /dev/MerionVGroup00/MerionLVol00 /dev/sda3: # lvextend /dev/MerionVGroup00/MerionLVol00 /dev/sda3 Extending logical volume MerionLVol00 to 9.38 GB Logical volume MerionLVol00 successfully resized Почти у финиша. Единственное, что осталось, это изменить размер файловой системы в VG, чтобы мы могли использовать новое пространство. Используем команду resize2fs: # resize2fs /dev/MerionVGroup00/MerionLVol00 resize2fs 1.39 (29-May-2006) Filesystem at /dev/MerionVGroup00/MerionLVol00 is mounted on /; on-line resizing required Performing an on-line resize of /dev/MerionVGroup00/MerionLVol00 to 2457600 (4k) blocks. The filesystem on /dev/MerionVGroup00/MerionLVol00 is now 2457600 blocks long. Готово. Проверяет доступное место командой df -h. Enjoy! Получаете ошибку в resize2fs: Couldn't find valid filesystem superblock Если вы получили ошибку вида: $ resize2fs /dev/MerionVGroup00/MerionLVol00 resize2fs 1.42.9 (28-Dec-2013) resize2fs: Bad magic number in super-block while trying to open /dev/MerionVGroup00/MerionLVol00 Couldn't find valid filesystem superblock. Это значит, что у вас используется файловая система формата XFS, вместо ext2/ext3. Чтобы решить эту ошибку, дайте команду xfs_growfs: $ xfs_growfs /dev/MerionVGroup00/MerionLVol00 meta-data=/dev/MerionVGroup00/MerionLVol00 isize=256 agcount=4, agsize=1210880 blks = sectsz=512 attr=2, projid32bit=1 = crc=0 data = bsize=4096 blocks=4843520, imaxpct=25 = sunit=0 swidth=0 blks naming =version 2 bsize=4096 ascii-ci=0 ftype=0 log =internal bsize=4096 blocks=2560, version=2 = sectsz=512 sunit=0 blks, lazy-count=1 realtime =none extsz=4096 blocks=0, rtextents=0 Как тебе такое, Илон Маск?
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59