По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Функционал модуля CallerID Lookup Sources позволяет устанавливать некие источники для преобразования номерных идентификаторов входящих вызовов CID (caller ID) в имена. После чего, можно привязать входящий маршрут к специальному источнику CID. Таким образом, любой входящий вызов будет сперва проверен на соответствие номера и имени по заданному источнику и, если такое соответствие будет найдено, то вместо длинного номера, на экране Вашего телефона отобразится знакомое имя вызывающего абонента. Можно также создать небольшой список соответствия имен и номеров в модуле Phonebook. /p> Настройка модуля Перейдём к настройке. Для того чтобы попасть в модуль CallerID Lookup Sources, с главной страницы, переходим по следующему пути: Admin -> CallerID Lookup Sources. Обратите внимание на предупреждение, которое открывается при входе в модуль. Процесс поиска имени входящего абонента (name lookup), который запускает данный модуль, может замедлить работу Вашей IP-АТС. По умолчанию, в модуле уже есть один источник – сервис определения CallerID Name - OpenCNAM. Мы не будем подробно рассматривать данный вариант, поскольку, чтобы им воспользоваться, необходимо иметь аккаунт в OpenCNAM. Рассмотрим, какие ещё источники предлагает данный модуль. Для этого нажмите Add CIDLookup Source, откроется окно добавления нового источника В поле Source Description предлагается написать краткое описание нового источника. В поле Source type выбирается тип источника. От того, какой тип будет выбран на данном этапе, будет зависеть то, где система будет искать соответствие CID входящих вызовов. Рассмотрим каждый тип: internal - Для поиска имени используется база astdb, а для её заполнения – модуль Asterisk Phonebook ENUM - Поиск осуществляется по DNS в соответствии с конфигурационным файлом enum.conf HTTP - Выполняет HTTP GET - запрос , передавая номер звонящего в качестве аргумента, чтобы получить правильное имя Рассмотрим каждое из полей, которое необходимо заполнить при выборе данного источника: Host - IP-адрес или доменное имя сервера, куда будет отправлен запрос GET Port - Порт, который прослушивает сервер (по умолчанию - 80) Username - Логин для HTTP аутентификации Password - Пароль для HTTP аутентификации Path - Путь к файлу для запроса GET. Например, /cidlookup.php Query - Строка запроса, специальный токен [NUMBER], в котором будет заменен на номер необходимого абонента. Например, number=[NUMBER]&source=crm. В случае выбора в качестве источника для поиска сервера HTTPS всё остаётся прежним, за исключением порта. По умолчанию используется порт 443. MySQL - Поиск имени звонящего осуществляется по базе MySQL Рассмотрим каждое из полей, которое необходимо заполнить при выборе данного источника: Host - Имя сервера MySQL Database - Имя базы данных MySQL Query - Строка запроса, где специальный токен [NUMBER], будет заменен на номер необходимого абонента. Например, SELECT name FROM phonebook WHERE number LIKE '%[NUMBER]%' Username и Password для авторизации на сервере MySQL Character Set - Набор символов MySQL. Чтобы оставить набор символов по умолчанию, оставьте это поле пустым Пример работы Internal Для демонстрации примера работы данного модуля, создадим тестовый источник - test_internal. Поиск в нем будет осуществляться по базе astdb, которая заполняется при помощи модуля Asterisk Phonebook. Перейдём в данный модуль и создадим тестовую запись. Теперь, необходимо зайти в модуль Inbound Routes и добавить туда правило проверки входящих CID по ранее созданному источнику test_internal. Готово, теперь, если на номер данного входящего маршрута позвонит 456123789, то на экране нашего телефона мы увидим имя John Doe. Если вы хотите подробнее узнать о настройке входящих маршрутов, почитайте соответствующую статью в нашей Базе Знаний.
img
Всем привет! Сегодня в статье мы расскажем про настройку Point-to-Point GRE VPN туннелей на оборудовании Cisco и о том, как сделать их защищенными при помощи IPsec. Generic Routing Encapsulation (GRE) - это протокол туннелирования, разработанный компанией Cisco, который позволяет инкапсулировать широкий спектр протоколов сетевого уровня в point-to-point каналах. Туннель GRE используется, когда пакеты должны быть отправлены из одной сети в другую через Интернет или незащищенную сеть. В GRE виртуальный туннель создается между двумя конечными точками (маршрутизаторами Cisco), а пакеты отправляются через туннель GRE. Важно отметить, что пакеты, проходящие внутри туннеля GRE, не шифруются, поскольку GRE не шифрует туннель, а инкапсулирует его с заголовком GRE. Если требуется защита данных, IPSec должен быть настроен для обеспечения конфиденциальности данных - тогда GRE-туннель преобразуется в безопасный VPN-туннель GRE. На приведенной ниже схеме показана процедура инкапсуляции простого незащищенного пакета GRE, проходящего через маршрутизатор и входящего в туннельный интерфейс: Хотя многие могут подумать, что туннель GRE IPSec между двумя маршрутизаторами похож на VPN-соединение IPSec между сайтами, это не так. Основное отличие состоит в том, что туннели GRE позволяют multicast пакетам проходить через туннель, тогда как IPSec VPN не поддерживает multicast пакеты. В больших сетях, где необходимы протоколы маршрутизации, такие как OSPF, EIGRP, туннели GRE - ваш лучший выбор. По этой причине, а также из-за того, что туннели GRE гораздо проще в настройке, инженеры предпочитают использовать GRE, а не IPSec VPN. В этой статье объясняется, как создавать простые незащищенные (unprotected) и безопасные (IPSec encrypted) туннели GRE между конечными точками. Мы объясним все необходимые шаги для создания и проверки туннеля GRE (незащищенного и защищенного) и настройки маршрутизации между двумя сетями. Создание Cisco GRE туннеля Туннель GRE использует интерфейс «туннель» - логический интерфейс, настроенный на маршрутизаторе с IP-адресом, где пакеты инкапсулируются и декапсулируются при входе или выходе из туннеля GRE. Первым шагом является создание нашего туннельного интерфейса на R1: R1(config)# interface Tunnel0 R1(config-if)# ip address 172.16.0.1 255.255.255.0 R1(config-if)# ip mtu 1400 R1(config-if)# ip tcp adjust-mss 1360 R1(config-if)# tunnel source 1.1.1.10 R1(config-if)# tunnel destination 2.2.2.10 Все туннельные интерфейсы участвующих маршрутизаторов всегда должны быть настроены с IP-адресом, который не используется где-либо еще в сети. Каждому туннельному интерфейсу назначается IP-адрес в той же сети, что и другим туннельным интерфейсам. В нашем примере оба туннельных интерфейса являются частью сети 172.16.0.0/24. Поскольку GRE является протоколом инкапсуляции, мы устанавливаем максимальную единицу передачи (MTU - Maximum Transfer Unit) до 1400 байт, а максимальный размер сегмента (MSS - Maximum Segment Size) - до 1360 байт. Поскольку большинство транспортных MTU имеют размер 1500 байт и у нас есть дополнительные издержки из-за GRE, мы должны уменьшить MTU для учета дополнительных служебных данных. Установка 1400 является обычной практикой и гарантирует, что ненужная фрагментация пакетов будет сведена к минимуму. В заключение мы определяем туннельный источник, который является публичным IP-адресом R1, и пункт назначения - публичный IP-адрес R2. Как только мы завершим настройку R1, маршрутизатор подтвердит создание туннеля и сообщит о его состоянии: R1# *May 21 16:33:27.321: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up Поскольку интерфейс Tunnel 0 является логическим интерфейсом, он останется включенным, даже если туннель GRE не настроен или не подключен на другом конце. Далее мы должны создать интерфейс Tunnel 0 на R2: R2(config)# interface Tunnel0 R2(config-if)# ip address 172.16.0.2 255.255.255.0 R2(config-if)# ip mtu 1400 R2(config-if)# ip tcp adjust-mss 1360 R2(config-if)# tunnel source 2.2.2.10 R2(config-if)# tunnel destination 1.1.1.10 Интерфейс туннеля R2 настроен с соответствующим IP-адресом источника и назначения туннеля. Как и в случае с R1, маршрутизатор R2 сообщит нам, что интерфейс Tunnel0 работает: R2# *May 21 16:45:30.442: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up Маршрутизация сетей через туннель GRE На этом этапе обе конечные точки туннеля готовы и могут «видеть» друг друга. Echo icmp от одного конца подтвердит это: R1# ping 172.16.0.2 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.16.0.2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms R1# Опять же, этот результат означает, что две конечные точки туннеля могут видеть друг друга. Рабочие станции в любой сети по-прежнему не смогут достичь другой стороны, если на каждой конечной точке не установлен статический маршрут: R1(config)# ip route 192.168.2.0 255.255.255.0 172.16.0.2 На R1 мы добавляем статический маршрут к удаленной сети 192.168.2.0/24 через 172.16.0.2, который является другим концом нашего туннеля GRE. Когда R1 получает пакет для сети 192.168.2.0, он теперь знает, что следующим переходом является 172.16.0.2, и поэтому отправит его через туннель. Та же конфигурация должна быть повторена для R2: R2(config)# ip route 192.168.1.0 255.255.255.0 172.16.0.1 Теперь обе сети могут свободно общаться друг с другом через туннель GRE. Защита туннеля GRE с помощью IPSec Как упоминалось ранее, GRE является протоколом инкапсуляции и не выполняет шифрование. Создание туннеля GRE точка-точка без какого-либо шифрования чрезвычайно рискованно, поскольку конфиденциальные данные могут быть легко извлечены из туннеля и просмотрены другими. Для этого мы используем IPSec для добавления уровня шифрования и защиты туннеля GRE. Это обеспечивает нам необходимое шифрование военного уровня и спокойствие. Наш пример ниже охватывает режим туннеля GRE IPSec. Настройка шифрования IPSec для туннеля GRE (GRE over IPSec) Шифрование IPSec включает в себя два этапа для каждого маршрутизатора. Эти шаги: Настройка ISAKMP (ISAKMP Phase 1) Настройка IPSec (ISAKMP Phase 2) Настройка ISAKMP (ISAKMP Phase 1) IKE существует только для установления SA (Security Association) для IPsec. Прежде чем он сможет это сделать, IKE должен согласовать отношения SA (ISAKMP SA) с партнером. Для начала, мы начнем работать над R1. Первым шагом является настройка политики ISAKMP Phase 1: R1(config)# crypto isakmp policy 1 R1(config-isakmp)# encr 3des R1(config-isakmp)# hash md5 R1(config-isakmp)# authentication pre-share R1(config-isakmp)# group 2 R1(config-isakmp)# lifetime 86400 Приведенные выше команды определяют следующее (в указанном порядке): 3DES - метод шифрования, который будет использоваться на этапе 1 Phase 1 MD5 - алгоритм хеширования Authentication pre-share - использование предварительного общего ключа в качестве метода проверки подлинности Group 2 - группа Диффи-Хеллмана, которая будет использоваться 86400 - время жизни ключа сеанса. Выражается в килобайтах или в секундах. Значение установлено по умолчанию. Далее мы собираемся определить Pre Shared Key (PSK) для аутентификации с партнером R1, 2.2.2.10: R1(config)# crypto isakmp key merionet address 2.2.2.10 PSK ключ партнера установлен на merionet. Этот ключ будет использоваться для всех переговоров ISAKMP с партнером 2.2.2.10 (R2). Создание IPSec Transform (ISAKMP Phase 2 policy) Теперь нам нужно создать набор преобразований, используемый для защиты наших данных. Мы назвали это TS: R1(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac R1(cfg-crypto-trans)# mode transport Вышеуказанные команды определяют следующее: SP-3DES - метод шифрования MD5 - алгоритм хеширования Установите IPSec в транспортный режим. Наконец, мы создаем профиль IPSec для соединения ранее определенной конфигурации ISAKMP и IPSec. Мы назвали наш профиль IPSec protect-gre: R1(config)# crypto ipsec profile protect-gre R1(ipsec-profile)# set security-association lifetime seconds 86400 R1(ipsec-profile)# set transform-set TS Теперь мы готовы применить шифрование IPSec к интерфейсу туннеля: R1(config)# interface Tunnel 0 R1(config-if)# tunnel protection ipsec profile protect-gre Ну и наконец пришло время применить ту же конфигурацию на R2: R2(config)# crypto isakmp policy 1 R2(config-isakmp)# encr 3des R2(config-isakmp)# hash md5 R2(config-isakmp)# authentication pre-share R2(config-isakmp)# group 2 R2(config-isakmp)# lifetime 86400 R2(config)# crypto isakmp key merionet address 1.1.1.10 R2(config)# crypto ipsec transform-set TS esp-3des esp-md5-hmac R2(cfg-crypto-trans)# mode transport R2(config)# crypto ipsec profile protect-gre R2(ipsec-profile)# set security-association lifetime seconds 86400 R2(ipsec-profile)# set transform-set TS R2(config)# interface Tunnel 0 R2(config-if)# tunnel protection ipsec profile protect-gre Проверка GRE over IPSec туннеля Наконец, наш туннель был зашифрован с помощью IPSec, предоставляя нам столь необходимый уровень безопасности. Чтобы проверить и проверить это, все, что требуется, это попинговать другой конец и заставить туннель VPN IPSec подойти и начать шифрование/дешифрование наших данных: R1# ping 192.168.2.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.2.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms Используя команду show crypto session, мы можем быстро убедиться, что шифрование установлено и выполняет свою работу: R1# show crypto session Crypto session current status Interface: Tunnel0 Session status: UP-ACTIVE Peer: 2.2.2.10 port 500 IKE SA: local 1.1.1.10/500 remote 2.2.2.10/500 Active IPSEC FLOW: permit 47 host 1.1.1.10 host 2.2.2.10 Active SAs: 2, origin: crypto map Поздравляю! Мы только что успешно создали Point-to-point GRE over IPSec VPN туннель между двумя маршрутизаторами Cisco.
img
Что такое логи Linux? Все системы Linux создают и хранят файлы логов информации для процессов загрузки, приложений и других событий. Эти файлы могут быть полезным ресурсом для устранения неполадок системы. Большинство файлов логов Linux хранятся в простом текстовом файле ASCII и находятся в каталоге и подкаталоге /var/log. Логи создаются системным демоном логов Linux, syslogd или rsyslogd. В этом руководстве вы узнаете, как находить и читать файлы логов Linux, а также настраивать демон ведения системных логов. Как просматривать логи Linux 1. Сначала откройте терминал Linux как пользователь root. Это позволит получить root-права. 2. Используйте следующую команду для просмотра папки где находятся файлов логов: cd /var/log 3. Чтобы просмотреть логи, введите следующую команду: ls Команда отображает все файлы логов Linux, такие как kern.log и boot.log. Эти файлы содержат необходимую информацию для правильного функционирования операционной системы. Доступ к файлам логов осуществляется с использованием привилегий root. По определению, root - это учетная запись по умолчанию, которая имеет доступ ко всем файлам Linux. Используйте следующий пример строковой команды для доступа к соответствующему файлу: sudo less [log name here].log Эта команда отображает временную шкалу всей информации, относящейся к этой операции. Обратите внимание, что файлы логов хранятся в виде обычного текста, поэтому их можно просматривать с помощью следующих стандартных команд: zcat - Отображает все содержимое logfile.gz zmore - Просмотр файла по страницам, не распаковывая файлы zgrep - Поиск внутри сжатого файла grep - Найти все вхождения поискового запроса в файле или отфильтровать файл логов tail - Выводит последние несколько строк файлов head - Просмотр самого начала текстовых файлов vim - Просмотр при помощи текстового редактора vim nano - Просмотр при помощи текстового редактора nano Важные системные логи Linux Логи могут многое рассказать о работе системы. Хорошее понимание каждого типа файла поможет различать соответствующие логи. Большинство каталогов можно сгруппировать в одну из четырех категорий: Системные логи (System Logs) Логи событий (Event Logs) Логи приложений (Application Logs) Логи обслуживания (Service Logs) Многие из этих логов могут быть расположены в подкаталоге var/log. Системные логи Файлы логов необходимы для работы Linux. Они содержат значительный объем информации о функциональности системы. Наиболее распространенные файлы логов: /var/log/syslog: глобальный системный журнал (может быть в /var/log/messages) /var/log/boot.log: лог загрузки системы, где хранится вся информация, относящаяся к операциям загрузки /var/log/auth.log: логи аутентификации, который хранит все логи аутентификации, включая успешные и неудачные попытки (может быть в /var/log/secure) /var/log/httpd/: логи доступа и ошибок Apache /var/log/mysqld.log: файл логов сервера базы данных MySQL /var/log/debug: логи отладки, который хранит подробные сообщения, связанные с отладкой, и полезен для устранения неполадок определенных системных операций /var/log/daemon.log: логи демона, который содержит информацию о событиях, связанных с запуском операции Linux /var/log/maillog: логи почтового сервера, где хранится информация, относящаяся к почтовым серверам и архивированию писем /var/log/kern.log: логи ядра, где хранится информация из ядра Linux /var/log/yum.log: логи команд Yum /var/log/dmesg: логи драйверов /var/log/boot.log: логи загрузки /var/log/cron: логи службы crond Демон системных логов Логирование осуществляется при помощи демона syslogd Программы отправляют свои записи журнала в syslogd, который обращается к конфигурационному файлу /etc/syslogd.conf или /etc/syslog и при обнаружении совпадения записывает сообщение журнала в нужный файл журнала. Каждый файл состоит из селектора и поля ввода действия. Демон syslogd также может пересылать сообщения журнала. Это может быть полезно для отладки. Этот файл выглядит приерно так: Dec 19 15:12:42 backup.main.merionet.ru sbatchd[495]: sbatchd/main: ls_info() failed: LIM is down; try later; trying ... Dec 19 15:14:28 system.main.merionet.ru pop-proxy[27283]: Connection from 186.115.198.84 Dec 19 15:14:30 control.main.merionet.ru pingem[271] : office.main.merionet.ru has not answered 42 times Dec 19 15:15:05 service.main.merionet.ru vmunix: Multiple softerrors: Seen 100Corrected Softerrors from SIMM J0201 Dec 19 15:15:16 backup.main.merionet.ru PAM_unix[17405]: (sshd) session closed 'for user trent Логи приложений Логи приложений хранят информацию, относящуюся к любому запускаемому приложению. Это может включать сообщения об ошибках, признаки взлома системы и строку идентификации браузера. Файлы логов, которые попадают в эту категорию, включают логи системы печати CUPS, лог Rootkit Hunter, логи HTTP-сервера Apache, логи SMB-сервера Samba и лог сервера X11. Логи не в удобочитаемом формате Не все логи созданы в удобочитаемом формате. Некоторые предназначены только для чтения системными приложениями. Такие файлы часто связаны с информацией для входа. Они включают логи сбоев входа в систему, логи последних входов в систему и записи входа в систему. Существуют инструменты и программное обеспечение для чтения файлов логов Linux. Они не нужны для чтения файлов, так как большинство из них можно прочитать непосредственно с терминала Linux. Графические интерфейсы для просмотра файлов логов Linux System Log Viewer - это графический интерфейс, который можно использовать для отслеживания системных логов. Интерфейс предоставляет несколько функций для управления логами, включая отображение статистики лога. Это удобный графический интерфейс для мониторинга логов. В качестве альтернативы можно использовать Xlogmaster, который может отслеживать значительное количество файлов логов. Xlogmaster полезен для повышения безопасности. Он переводит все данные для выделения и скрытия строк и отображает эту информацию для выполнения действий, запрошенных пользователем. Как настроить файлы логов в Ubuntu и CentOS Начнем с примера CentOS. Чтобы просмотреть пользователей, которые в настоящее время вошли на сервер Linux, введите команду who от имени пользователя root: Здесь также отображается история входа в систему пользователей. Для просмотра истории входа системного администратора введите следующую команду: last reboot Чтобы просмотреть информацию о последнем входе в систему, введите: lastlog Выполнить ротацию лога Файлы логов, в конце которых добавлены нули, являются повернутыми файлами. Это означает, что имена файлов логов были автоматически изменены в системе. Целью ротации логов является сжатие устаревших логов, занимающих место. Ротацию лога можно выполнить с помощью команды logrotate. Эта команда вращает, сжимает и отправляет системные логи по почте. logrotate обрабатывает системы, которые создают значительные объемы файлов логов. Эта команда используется планировщиком cron и считывает файл конфигурации logrotate /etc/logrotate.conf. Он также используется для чтения файлов в каталоге конфигурации logrotate. Чтобы включить дополнительные функции для logrotate, начните с ввода следующей команды: var/log/log name here].log { Missingok Notifempty Compress Size 20k Daily Create 0600 root root } Он сжимает и изменяет размер желаемого файла логов. Команды выполняют следующие действия: missingok - сообщает logrotate не выводить ошибку, если файл логов отсутствует. notifempty - не выполняет ротацию файла логов, если он пуст. Уменьшает размер файла лога с помощью gzip size - гарантирует, что файл логов не превышает указанный размер, и поворачивает его в противном случае daily - меняет файлы журналов по ежедневному расписанию. Это также можно делать по недельному или ежемесячному расписанию. create - создает файл логов, в котором владелец и группа являются пользователем root Итоги Тщательное понимание того, как просматривать и читать логи Linux, необходимо для устранения неполадок в системе Linux. Использование правильных команд и инструментов может упростить этот процесс.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59