По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Model-View-Controller - популярный шаблон программирования, где логика приложения делится на три различных компонента. В этой статье расскажем о роли компонентов архитектуры MVC, начнем с короткой истории, а далее покажем, как её можно использовать в приложении. История паттерна Model View Controller Модель MVC была впервые представлена в 1979 году учёным Трюгве Миккьелем Хейердалом Реенскаугом. Он хотел придумать решение, как разбить сложное пользовательское приложение на более мелкие управляемые компоненты. Шаблон MVC был впервые использован в языке программирования Small Talk. Изначально шаблоне хотели назвать «Model-View-Editor», но затем оно было изменено на «Model-View-Controller». В 1980-х и начале 90-х годов шаблон MVC использовался главным образом в настольных приложениях. Но к концу 1990-х годов она стала довольно популярной в разработке веб-приложений. В современных веб-приложениях шаблон MVC является популярным архитектурным дизайном для организации кода. Ниже приведен список нескольких популярных веб-фреймворков, использующих шаблон MVC: Ruby on Rails ASP.NET MVC Laravel Angular Какие три компонента включает в себя MVC? Шаблон программирования MVC состоит их трёх следующих компонентов: Model – отвечает за логику данных, лежащую в основе приложения View – это видимая часть приложения, то с чем взаимодействует пользователь Controller – работает как мозг приложения и обеспечивает связь между моделью и видом Как шаблон MVC работает в веб-приложении? Чтобы лучше понять, как работает шаблон MVC, лучше всего показать его в демонстрационном приложении. Это приложение стека MERN (MongoDB, Express, React, Node) своего рода помощник менеджера офиса и отображает таблицу недавно нанятых тренеров средней школы. Он также показывает, какие тренеры не сдали тесты на туберкулез, не прошли вакцинацию от Covid, не заполнили резюме и не прошли проверку. Менеджер может отправлять напоминания по электронной почте тем тренерам, у которых отсутствуют документы. Компонент Model Модель отвечает за логику данных нашего приложения. Мы используем MongoDB для базы данных тренеров. Для начала определяем свойства, которые будут применены к каждому тренеру в базе данных. У каждого тренера есть свойства name, email, program, application, backgroundCheck, tbTest и covidTest. const coachSchema = new Schema({ name: { type: String, trim: true, maxLength: 32, required: true }, email: { type: String, trim: true, maxLength: 32, required: true, unique: true }, program: { type: String, trim: true, maxLength: 32, required: true }, application: { type: Boolean, required: true }, backgroundCheck: { type: Boolean, required: true }, tbTest: { type: Boolean, required: true }, covidTest: { type: Boolean, required: true } }, { timestamps: true }) type: Boolean представляет значение true или false для свойств приложения, backgroundCheck, tbTest и covidTest. Если у тренера одно из этих четырех свойств, помечены как false, это означает, что они не завершили процесс найма. Создаем семь записей для нашей базы данных тренеров, и эта информация хранится в MongoDB Atlas. Ниже приведен пример одной из записей базы данных. Компонент "контроллер"" будет взаимодействовать с базой данных и получать необходимую информацию для отправки компоненту представление. Компонент View Компонент View (вид, представление или вью) отвечает за все визуальные аспекты приложения. Для отображения данных пользователю мы использовали React. При первой загрузке приложения на экране отображается приветственное сообщение. При нажатии кнопки «View Dashboard» происходит переход к таблице тренеров и списку отсутствующих документов. Компонент Вид не взаимодействует напрямую с базой данных, поскольку это делает наш контроллер. Контроллер предоставляет эту информацию компоненту представление, чтобы ее можно было отобразить на странице. Вот как выглядит код, когда представление выполняет вызов выборки (fetch) для получения данных от контроллера: await fetch('https://mvc-project-backend.herokuapp.com/coaches') Затем мы используем метод map(), чтобы пройтись по списку тренеров и отобразить их имена, адреса электронной почты и программу в виде таблицы. coachData.map(data => ( <tr key={data._id}> <td>{data.name}</td> <td>{data.email}</td> <td>{data.program}</td> </tr> )) Для отображения раздела отсутствующих документов мы отправляем запрос к бэкнэду и получием список тренеров, которые не заполнили анкету, не сдали тесты на туберкулез, не привиты от Covid и не прошли проверки. Для отображения имен для каждой категории снова используется метод map(). Если нажать кнопку «Send reminder email», эта информация будет отправлена React-ом на бэкэнд. Контролер отвечает за отправку сообщения электронной почты и обмен информацией с компонентом представление о том, отправилось ли сообщение. На основе информации, которую он получает от контроллера, во View отображается сообщение об успехе или сообщение об отказе. Компонент Controller Контроллер взаимодействует с компонентами «Модель» и «Представление» и выполняет все логические операции для нашего приложения. Этот раздел кода был построен в Node.JS и Express. Контролер получает полный список тренеров из «Модели» и отправит эту информацию в «Представление». Контролер также отвечает за фильтрацию через «Модель» и предоставление списка тренеров, которые не сдали необходимые документы. Все эти данные отправляются в «Представление», чтобы их можно было отобразить пользователю. Что касается функциональности электронной почты, то «Контролер» перед отправкой проверяет валидность адреса электронной почты. Для отправки электронных писем использована Nodemailer: transporter.sendMail(mailOptions, (err) => { if (err) { console.log(`Applications: There was an error sending the message: ${err}`) res.json({ status: 'Email failure' }) } else { console.log(`Applications Success: Email was sent`) res.json({ status: "Email sent" }); } }) Если сообщение электронной почты успешно отправлено, пользователь получает уведомление, и сообщение электронной почты отображается в почте демонстрационной учетной записи. Если при отправке сообщения возникает ошибка, то «Контроллер» посылает эту информацию в «Вид», чтобы пользователю отобразилось уведомление об ошибке. Заключение А в заключение повторим пройденное: Model-View-Controller - популярный шаблон программирования, используемый для разделения логики приложения на три различных компонента. Хотя шаблон MVC первоначально использовался в настольных приложениях, в конце 1990-х он стал популярным в разработке веб-приложений. Модель отвечает за логику данных, лежащую в основе приложения. Представление - это то, что пользователь видит в приложении и взаимодействует с ним. Контроллер действует как мозг приложения и взаимодействует с моделью и представлением. Веб-инфраструктуры, использующие шаблон MVC - это Ruby on Rails, ASP.NET MVC, Laravel и Angular.
img
В этой статье мы расскажем как интегрировать Python c Excel и Word, чтобы без проблем создавать автоматические отчеты. Microsoft Excel и Microsoft Word – это, без доли сомнений, две наиболее широко используемые программы как в мире бизнеса, так и в некорпоративной сфере. Они практически являются синонимами слову «работа». Как правило, не проходит и недели, чтобы мы тем или иным способом не воспользовались их преимуществами. И хотя для обычных повседневных задач автоматизация не требуется, бывают случаи, когда она может стать необходимостью. А именно, когда у вас есть множество диаграмм, рисунков, таблиц и отчетов, которые необходимо сделать, это может стать очень утомительным занятием, если все это выполнять вручную. А это не должно быть так. На самом деле существует способ создать конвейер в Python, где можно будет легко интегрировать эти программы для создания электронных таблиц в Excel, а затем передавать результаты в Word для создания отчета практически мгновенно. Openpyxl Познакомьтесь с Openpyxl, возможно, одной из самых универсальных привязок в Python, которая превращает взаимодействие с Excel буквально в прогулку по парку. Используя этот пакет, вы сможете читать и записывать все новые и старые форматы Excel, то есть .xlsx и .xls. Openpyxl позволяет заполнять строки и столбцы, выполнять формулы, создавать 2D- и 3D-диаграммы, маркировать оси и заголовки, а также имеет множество других возможностей, которые могут пригодиться. Однако здесь наиболее важно то, что этот пакет позволяет вам перебирать бесконечное количество строк и столбцов Excel, тем самым избавляя вас от всех этих утомительных вычислений и построения графиков, которые вам приходилось делать ранее самим. Python-docx А затем появляется Python-docx – пакет для Word – то же, что Openpyxl для Excel. Если вы все еще не изучили их документацию, то вам все же стоит на нее взглянуть. Python-docx – без преувеличения один из самых простых и понятных наборов инструментов, с которыми я работал с тех пор, как начал работать с Python. Он позволяет автоматизировать создание документов, автоматически вставляя текст, заполняя таблицы и отображая изображения в отчете без каких-либо усилий. Без лишних церемоний давайте создадим наш собственный автоматизированный конвейер. Запустите IDE по вашему выбору и установите следующие пакеты: pip install openpyxlpip install python-docx Автоматизация Microsoft Excel Для начала загрузим уже созданную книгу Excel (как показано ниже): workbook = xl.load_workbook('Book1.xlsx') sheet_1 = workbook['Sheet1'] Затем мы пройдемся по всем строкам в нашей электронной таблице для того, чтобы вычислить и вставить значение мощности, которую мы получим, умножив ток на напряжение: for row in range(2, sheet_1.max_row + 1): current = sheet_1.cell(row, 2) voltage = sheet_1.cell(row, 3) power = float(current.value) * float(voltage.value) power_cell = sheet_1.cell(row, 1) power_cell.value = power Как только мы сделаем это, то мы сможем использовать рассчитанные значения мощности для построения линейной диаграммы, которая будет вставлена в указанную ячейку, как показано ниже: values = Reference(sheet_1, min_row = 2, max_row = sheet_1.max_row, min_col = 1, max_col = 1) chart = LineChart() chart.y_axis.title = 'Power' chart.x_axis.title = 'Index' chart.add_data(values) sheet_1.add_chart(chart, 'e2') workbook.save('Book1.xlsx') Извлечение диаграммы Теперь, когда мы построили нашу диаграмму, нам нужно ее извлечь в формате изображения для того, чтобы мы могли использовать ее в нашем отчете Word. Для начала объявим точное местоположения нашего файла Excel, а также место, куда мы хотим сохранить изображение получившейся диаграммы: input_file = "C:/Users/.../Book1.xlsx" output_image = "C:/Users/.../chart.png" Затем необходимо получить доступ к таблице, используя следующий метод: operation = win32com.client.Dispatch("Excel.Application") operation.Visible = 0 operation.DisplayAlerts = 0 workbook_2 = operation.Workbooks.Open(input_file) sheet_2 = operation.Sheets(1) И далее вы можете перебрать все диаграммы в таблице (если их больше одной) и сохранить их в указанном месте: for x, chart in enumerate(sheet_2.Shapes): chart.Copy() image = ImageGrab.grabclipboard() image.save(output_image, 'png') passworkbook_2.Close(True) operation.Quit() Автоматизация Microsoft Word Теперь, когда у нас есть изображение диаграммы, мы должны создать шаблон документа, который представляет собой обычный документ Microsoft Word (.docx), сформированный именно так, как нам необходимо, чтобы наш отчет имел определенный тип и размер шрифта, нужное форматирование и структуру страницы. Далее, все, что нам необходимо сделать, это создать заполнители для нашего автоматизированного содержимого, то есть значений таблиц и изображений, и объявить их с переменными, как показано ниже. Внутри двойных фигурных скобок {{variable_name}} может быть объявлен любое автоматизированное содержимое, включая текст и изображения. Для таблиц вам необходимо создать таблицу с шаблонной строкой, в которую включены все столбцы, а затем вам необходимо добавить еще одну строку выше и одну строку ниже со следующими обозначениями: Первая строка: {%tr for item in variable_name %} Последняя строка: {%tr endfor %} На рисунке выше указаны следующие имена переменных: table_contents для словаря Python, в котором будут храниться наши табличные данные. Index для ключей словаря (первый столбец). Power, Current и Voltage для значений словаря (второй, третий и четвертый столбцы). Затем мы импортируем наш документ-шаблон в Python и создаем словарь, в котором будут храниться значения нашей таблицы: template = DocxTemplate('template.docx') table_contents = []for i in range(2, sheet_1.max_row + 1): table_contents.append({ 'Index': i-1, 'Power': sheet_1.cell(i, 1).value, 'Current': sheet_1.cell(i, 2).value, 'Voltage': sheet_1.cell(i, 3).value }) Далее мы импортируем изображение диаграммы, которое ранее мы создали в Excel, и создаем еще один словарь для создания экземпляров всех переменных-заполнителей, объявленных в документе-шаблоне: image = InlineImage(template,'chart.png',Cm(10))context = { 'title': 'Automated Report', 'day': datetime.datetime.now().strftime('%d'), 'month': datetime.datetime.now().strftime('%b'), 'year': datetime.datetime.now().strftime('%Y'), 'table_contents': table_contents, 'image': image } И, наконец, мы отображаем отчет с нашей таблицей значений и изображением диаграммы: template.render(context) template.save('Automated_report.docx') Заключение И вот, мы получили автоматически созданный отчет Microsoft Word с числами и диаграммами, созданными в Microsoft Excel. При этом у вас есть полностью автоматизированный конвейер, который можно использовать для создания любого количества таблиц, диаграмм и документов. Исходный код программы import openpyxl as xl from openpyxl.chart import LineChart, Reference import win32com.client import PIL from PIL import ImageGrab, Image import os import sys from docx.shared import Cm from docxtpl import DocxTemplate, InlineImage from docx.shared import Cm, Inches, Mm, Emu import random import datetime import matplotlib.pyplot as plt ######## Generate automated excel workbook ######## workbook = xl.load_workbook('Book1.xlsx') sheet_1 = workbook['Sheet1'] for row in range(2, sheet_1.max_row + 1): current = sheet_1.cell(row, 2) voltage = sheet_1.cell(row, 3) power = float(current.value) * float(voltage.value) power_cell = sheet_1.cell(row, 1) power_cell.value = power values = Reference(sheet_1, min_row = 2, max_row = sheet_1.max_row, min_col = 1, max_col = 1) chart = LineChart() chart.y_axis.title = 'Power' chart.x_axis.title = 'Index' chart.add_data(values) sheet_1.add_chart(chart, 'e2') workbook.save('Book1.xlsx') ######## Extract chart image from Excel workbook ######## input_file = "C:/Users/.../Book1.xlsx" output_image = "C:/Users/.../chart.png" operation = win32com.client.Dispatch("Excel.Application") operation.Visible = 0 operation.DisplayAlerts = 0 workbook_2 = operation.Workbooks.Open(input_file) sheet_2 = operation.Sheets(1) for x, chart in enumerate(sheet_2.Shapes): chart.Copy() image = ImageGrab.grabclipboard() image.save(output_image, 'png') pass workbook_2.Close(True) operation.Quit() ######## Generating automated word document ######## template = DocxTemplate('template.docx') #Generate list of random values table_contents = [] for i in range(2, sheet_1.max_row + 1): table_contents.append({ 'Index': i-1, 'Power': sheet_1.cell(i, 1).value, 'Current': sheet_1.cell(i, 2).value, 'Voltage': sheet_1.cell(i, 3).value }) #Import saved figure image = InlineImage(template,'chart.png',Cm(10)) #Declare template variables context = { 'title': 'Automated Report', 'day': datetime.datetime.now().strftime('%d'), 'month': datetime.datetime.now().strftime('%b'), 'year': datetime.datetime.now().strftime('%Y'), 'table_contents': table_contents, 'image': image } #Render automated report template.render(context) template.save('Automated_report.docx')
img
Автоматизация в классическом понимании совокупность технических, методических и программных средств, обеспечивающих процесс измерения без непосредственного участия человека. Задача автоматизации повышение эффективности проводимых измерений и их качество. p> Автоматизация позволяет обеспечить: Диагностику состояния системы в режиме реального времени; Обработку результатов измерений для получения диагностической или прогнозирующей информации; Измерение и вычисление параметров быстропротекающих процессов; Снижение влияния помех на результат измеряемого параметра; Сбор измерительной информации в местах, недоступных для человека; Одновременное измерение большого числа величин; Длительные, многократные измерения; Повышение достоверности конечных результатов. Различают два уровня автоматизации: Частичная автоматизация. Осуществляется в тех случаях, когда стоит задача повышения качества измерений за счет освобождения оператора от рутинной работы, тогда простые автоматические устройства эффективно заменяют его. Это не освобождает человека от участия в производственном процессе, но существенно облегчает его работу. Техническим средством частичной автоматизации служит включение вычислительных средств (обычно микропроцессоров-МП) в средство измерения (СИ). Полная автоматизация. Высшая ступень автоматизации, которая повышает качество измерений за счет исключения человека-оператора из процесса измерений. Так как в силу физиологических возможностей человек не способен с необходимой скоростью обрабатывать информацию. Техническим средством полной автоматизации является информационно-измерительная система (ИИС). Функции микропроцессоров при частичной автоматизации Микропроцессоры позволяют автоматизировать процесс управления цифровыми измерительными приборами. С помощью средств измерения (СИ), в которые включены микропроцессорные системы достигается: Многофункциональность приборов возможность одним СИ измерить несколько параметров; Увеличение точности и надежности приборов; Расширение измерительных возможностей данных приборов за счет проведения различных измерений; Простота в управлении прибором; Возможность получения математических функций из изме­ренных значений; Экономичность аппаратуры; Возможность объединения набора приборов в из­мерительно-вычислительный комплекс; Уменьшение погрешностей за счет выявления и исключения грубых и систематических погрешностей; Прощенное включение СИ в ИИС. Информационно-измерительная система Основной причиной создания информационно-измерительных систем является необходимость контролировать/измерять одновременно большое количество физических величин, многие из которых должны измеряться одновременно. С помощью ИИС можно решать задачи, которые нельзя решить с помощью других средств измерения, такие как: Возможность обеспечивать наиболее высокий уровня автоматизации процесса измерений Возможность обеспечивать высокую достоверность получаемых результатов Возможность получения высокоинформативной и удобной индикацию Возможность хранения результатов измерения. На рисунке 2.1 в общем виде структура ИИС. В данной структуре все СИ цифровые и управление этими приборами осуществляется командами в цифровом виде, передаваемыми по линиям интерфейса. Автоматизация аналоговых систем сложнее, для аналоговых СИ схема ИИС должна дополняться АЦП и ЦАП. На рисунке 2.1. обозначено: Сплошными линиями изображены функциональные связи, пунктирными интерфейсные; - приборы воздействия на объект измерения (измерительные сигналы, вид которых и их параметры задаются контроллером (ВУ) и управляющие команды передаются по линиям интерфейса (показаны пунктиром); - коммутаторы, управляемые контроллером; - измерительные приборы, измеряющие результат прохождения измерительных сигналов от приборов воздействия через объект измерения; УР устройства регистрации (принтер и т.п.). ИИС могут быть достаточно сложными устройствам, которые должны в зависимости от решаемой задачи иметь возможность переконфигурироваться. Как показывает практика, такие системы могут эффективно и надежно функционировать только если они строятся поблочно - модульному принципу. Для реализации этого принципа необходимо использовать стандартный интерфейс. Стандартные интерфейсы для измерительных систем Для каждой ИИС необходимо создавать свои уникальные аппаратные и программные средства. Для их разработки требуется много времени, квалифицированные специалисты и высокая надежность, которая не может быть обеспечена в неспециализированных условиях производства. Альтернативой индивидуальному способу построения ИИС является блочно-модульный способ, который можно осуществить только при использовании стандартного интерфейса. В данном случае стандартный интерфейс это система сопряжения, включающая аппаратные и программные средства, для которых регламентированы три группы условий: информационные (логические), электрические и конструктивные. Такой интерфейс позволяет агрегатировать устройства, входящие в ИИС, без изменений и доделок. Информационная совместимость Согласование входных и выходных сигналов, исходя из их спектра изменения, порядка обмена сигналами. ИС определяется унификацией измерительных сигналов и способов их передачи. Унификация измерительных сигналов означает, что их параметры не могут быть отобраны произвольно, но должны отвечать требованиям стандарта для таких сигналов, которые принятые для этой системы. Условия совместимости информации влияют на объем и сложность схемотехники и ПО. Электрическая совместимость Согласованность статических и динамических параметров электрических сигналов, учитывающих ограничения на пространственное устройство интерфейсов и техническое внедрение приемки и передачи элементов. Электрические условия совместимости влияют на основные параметры интерфейса - скорость обмена данными, максимальное количество подключенных устройств, их конфигурацию и расстояние. Конструктивная совместимость Согласованность конструктивных параметров интерфейса, обеспечивающая механический контакт электрических соединений и механической замены съемных элементов, блоков и узлов. Условия совместимости по конструкции определяют типы соединителей, конструкцию кабельного соединения, печатной платы, рамы и стойки. Объём конструктивных особенностей для разных интерфейсов может сильно отличаться. Так для интерфейса МЭК это конструкция только разъёмов, а для интерфейса КАМАК конструкция шкафов, разъёмов, ячеек, каркасов, положения ячеек в каркасах. Обычно в стандарт на интерфейс входит и структура (топология) соединения приборов ИИС. Существует три основных структуры: цепочечная; магистральная; радиальная; в некоторых ИИС (обычно в иерархических системах) используется комбинация из некоторых структур. На рис.2.2 приведены эти структуры. На рисунке 2.2 комбинированная структура показана для трех уровней иерархии. На самом высоком уровне используется радиальная структура, во втором магистральная и в самом низком цепочечная. Здесь обозначено: блоки радиальной структуры и в качестве пятого блока радиальной структуры входит контроллер магистральной структуры; блоки магистральной структуры, в которую и входит контроллер нижнего уровня; блоки цепочечной структуры вместе с контроллером, который одновременно является блоком структуры второго (магистральной) второго уровня. Выполнение всех трех условий интерфейса необходимо, но этого недостаточно для обмена данными между устройствами и их взаимного сопряжения. Для работы системы должны быть определены интерфейсные функции, которые позволяют устройствам выполнять операции связанные с обменом информации такие как : прием и передача сообщений, распознавание адреса и подключение к линиям интерфейса, в определенной последовательности. Интерфейсная функция заключается в обеспечении передачи данных, в том числе информации о состоянии прибора. Эта функция обязательна для любого прибора источника. Функции интерфейса обеспечивают совместимость различных устройств без ограничения возможности работы других устройств в системе. Так называются функции, которые устройства чаще всего выполняют фундаментальные. Обсудите их: Подготовка и получение информации (осуществляется источниками и получателями информации); Данные передают контроль (функцию контроллера) Согласование источника информации (осуществляется с помощью исходного устройства или контроллера); Согласование информационного приемника (выполняется устройством приемника или контроллером). Функции контроллера могут выполняться несколькими устройствами в системе, основные из которых необходимо выполнять для обеспечения совместимости информации, определяются организацией пользовательского интерфейса. Канал управления - это назначенные функции выбора информационного канала, синхронизации обмена обучением информации, координации взаимных действий, а канал информации - функции буферного хранения информации и т.д. При выборе информационного канала задается значение производительности процесса взаимных действий элементов системы. Существует несколько процедур отбора: Инициация вопроса, выбор вопроса приоритета и выявление вопроса. Синхронизация обмена информацией обеспечивает временную координацию процессов между функциональными устройствами системы. Координация определяет набор процедур для организации и контроля за процессом взаимных действий системных устройств. Оперативные координационные операции - адаптация для взаимной поддержки, контроль взаимных действий, передача надзорных функций. Интерфейсный информационный канал предназначен для выполнения обмена информацией и функции преобразования. Основными процедурами функции обмена является подготовка и получение информации из регистров системных компонентов. Основные процедуры функции преобразования должны преобразовывать серьезный код, чтобы уравнять код, и наоборот; кодирование преобразования информации; декодирование команд, адресов; логические действия над статусом сохраняют содержимое. Рассмотрим пример стандартного интерфейса МЭК. Стандартный интерфейс МЭК Разработчиком интерфейса прибора является Hewlett-Packard (США), он был представлен под торговой маркой HP-IB (Hewlett-Packard Interface Bus) и использовался для сопряжения устройств (рис. 2.3). Позже он был стандартизирован во многих странах мира. Данная структура состоит из трёх групп модулей - измерения оборудования (СИ); Информационное оборудование; вспомогательные аппараты. К шине KOП подключаются следующие единицы измерения: коммутатор (K); Метр частоты электронного счета (Ч); осциллограф (ОС); Цифровой вольтметр (В); Генератор сигнала (Г) и ПК. Они соединяются с основной линией интерфейсными приставками (интерфейсными модулями, интерфейсными картами), которые обеспечивают "перевод" информации с языка модуля на язык ствола и наоборот. Ствол интерфейса состоит из 16 информационных линий, которые сгруппированы в 3 шины. Синхронизационная шина предназначена для координации операции источника и приема во время обмена информацией и состоит из трёх линий: Обслуживание данных - SD (NAV); Готовность к приему - PU (NRED); Принятые данные - НДАК. При синхронизации источник информации, если убедится, что приёмник готов к приёму сигнала GP, будет передавать байт данных, при этом сопровождая сигналом (SD). убедившись, что приёмник готов к приёму (сигнал GP), передает байт данных, сопровождая его сигналом SD. Приемник их по очереди первых постановок GP делает сигналы, а затем сигнал ДП. - Управляющая шина имеет пять линий: "Управление" (ATN) - сигнал производится контроллером и является признаком передачи данных со-связи интерфейса (команды или адреса) на шине; "Конец передачи" (EOI) - на этой линии передаётся сигнал об окончании обмена; "Запрос на обслуживание" ("3О") - указывает контроллеру, что в системе есть запрос на обслуживание; "Ясный интерфейс" (IFC) - сигнал производится контроллером и обеспечивает интерфейс в первоначальном положении; Пульт управления (РЕН) - сигнал производится контроллером, блокируется ручное управление устройством и монтируется управление устройством и управление основной линией. В DPC находятся восемь ЛД0...... Также передаются линии ЛД7, по которым поступает информация - Через информационные линии, сообщения интерфейса, с-в-д адреса модулей и команд. Адрес модуля или код команды не отображаются в строках, а код - это ЛД0-ЛД4 для команды ЛД5-6. Характеристика интерфейса Максимальное количество модулей в интерфейсе без использования до полноценных вспомогательных устройств - 15. Передача команд и информации через информационный шину "асинхронная" и "двусторонняя" - 1MB/s. Интерфейс обеспечивает отрицательную логику, а уровни сигналов соответствуют уровням транзисторной логики транзистора (TTL). Характер направления централизован (1 уровень центрации). Система раздельной шины - управление и информационные сигналы. Порядок обмена: бит - параллельный, байт - последовательный. Организация системы шины - магистральное. Нерегламентированная конструкция, позволяющий использовать любой инструмент. Компьютер выполняет одну из трех функций: чтение измерений происходит из модулей приборов, передача команд для обмена параметрами работы модулей приборов, организовывая обмен между модулями. Главным режимом работы таких модулей является непрерывное освидетельствование основной магистрали. Если модуль обнаруживает необходимую информацию (по нужному адресу), он вступает в операцию и получает или передает информацию. Заключение Необходимость решения практических задач диагностики и измерения в сложных системах привели к необходимости автоматизации измерений. Накоплен большой опыт разработки и эксплуатации информационно-измерительных систем. Современная телекоммуникационная система является сложной системой, включающей разнообразные приборы и среду передачи информации. Для диагностики таких систем разработаны и широко используются системы автоматического мониторинга (САМ), которые по назначению и принципам построения являются частным случаем ИИС. Практический интерес представляет анализ существующих САМ с точки зрения использования в них опыта разработки ИИС, которые были разработаны и используются намного раньше.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59