По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Rocket.Chat — это бесплатный масштабируемый open source корпоративный чат, разработанный с помощью Meteor. Rocket.Chat можно считать аналогом Slack, который можно развернуть на своем сервере, и подключаться к нему с клиентов на Linux, Windows, macOS, Android и iOS. Функции Rocket.Chat Чат в реальном времени Аудиоконференции Видеоконференции Каналы Гостевой вход Трансляция экрана Передача файлов Полнофункциональный API Для обеспечения безопасности используется: Групповая синхронизация LDAP Двухфакторная аутентификация 2FA Сквозное шифрование Единый вход SSO Несколько поставщиков Oauth аутентификации Рассказываем как установить и настроить сервер и клиент Rocket.Chat в Linux. Шаг 1. Установка Snap в Linux Для простоты мы будем использовать систему управления пакетами Snaps. Первым делом надо установить пакет snapd c помощью диспетчера пакетов. $ sudo apt install snapd #Ubuntu и Debian $ sudo dnf install snapd #Fedora 22+/CentOS/RHEL 8 $ sudo yum install snapd #CentOS/RHEL 7 Далее необходимо включить модуль systemd, который управляет основным сокетом мгновенной связи. Эта команда запустит сокет и позволит ему запускаться при загрузке системы. $ sudo systemctl enable --now snapd.socket Шаг 2: Установка Rocket.Chat в Linux Для установки rocketchat-server выполните: $ sudo snap install rocketchat-server Когда установка через snap будет завершена, rocket.chat сервер начнет работать и прослушивать порт 3000. Далее откройте веб-браузер и введите следующий адрес, чтобы настроить rocket.chat через GUI. http://SERVER_IP:3000 После загрузки мастера настройки укажите следующие параметры: полное имя администратора, имя пользователя, адрес электронной почты организации и пароль. Далее надо указать информацию об организации: тип организации, название, отрасль, размер, страна и сайт. Затем нужно указать информацию о сервере - имя сайта, язык, тип сервера, и включение или отключение двухфакторной аутентификации 2FA. На следующей странице нужно зарегистрировать сервер. Здесь есть две опции. Первая - использовать предварительно настроенные шлюзы и прокси, предоставленные Rocket.Chat Вторая - сохранить автономность и создать учетные записи у поставщиков услуг, обновить предварительно настроенные параметры, а также перекомпилировать мобильные приложения с вашими частными сертификатами. Настройка завершена, и ваше рабочее пространство готово, теперь надо нажать Go to your workspace (Перейти в рабочее пространство) Вот так оно выглядит. Шаг 3: Настройка обратного прокси для Rocket.Chat Обратный прокси-сервер, например nginx или Apache, позволяет настроить приложение Rocket.Chat для доступа через домен или поддомен. Rocket.Chat является сервером приложений среднего уровня, который не поддерживает SSL/TLS. Обратный прокси-сервер позволит настраивать сертификаты SSL/TLS для включения HTTPS. Обратный прокси Nginx для Rocket.Chat Сначала установите Nginx. $ sudo apt apt install nginx #Ubuntu/Debian $ sudo dnf install nginx #Fedora 22+/CentOS/RHEL 8 $ sudo yum install nginx #CentOS/RHEL 7 Далее запустите службу Nginx, включите ее автоматический запуск при загрузке системы и проверьте ее статус $ sudo systemctl enable --now nginx $ sudo systemctl status nginx Затем создайте block файл виртуального сервера для приложения Rocket.Chat, например, в каталоге /etc/nginx/conf.d/. $ sudo vim /etc/nginx/conf.d/chat.merionet.com.conf Далее вставьте конфигурацию в этот файл, заменив домен на свой и сохраните. upstream backend { server 127.0.0.1:3000; } server { listen 80; server_name chat.merionet.com; # You can increase the limit if you need to. client_max_body_size 200M; error_log /var/log/nginx/chat.merionet.com.log; location / { proxy_pass http://backend/; proxy_http_version 1.1; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade"; proxy_set_header Host $http_host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forward-Proto http; proxy_set_header X-Nginx-Proxy true; proxy_redirect off; } } Наконец проверьте синтаксис и перезапустите службу Nginx. $ sudo nginx -t $ sudo systemctl restart nginx Обратный прокси Apache для Rocket.Chat Установите пакет Apache2 $ sudo apt install apache2 #Ubuntu/Debian $ sudo dnf install httpd #Fedora 22+/CentOS/RHEL 8 $ sudo yum install httpd #CentOS/RHEL 7 Далее запустите и включите службу apache и проверьте, запущена ли она и работает. ----- В Ubuntu/Debian ----- $ sudo systemctl enable --now apache2 $ sudo systemctl status apache2 ----- В CentsOS/RHEL 7/8 ----- $ sudo systemctl enable --now httpd $ sudo systemctl status httpd Затем создайте файл виртуального хоста для приложения Rocket.Chat, например, в каталоге /etc/apache2/sites-available/ или /etc/httpd/conf.d/. ----- В Ubuntu/Debian ----- $ sudo vim /etc/apache2/sites-available/chat.merionet.com.conf ----- В CentsOS/RHEL 7/8 ----- $ sudo vim /etc/httpd/conf.d/chat.merionet.com.conf Далее вставьте конфигурацию в этот файл, заменив домен на свой и сохраните. <VirtualHost *:80> ServerAdmin admin@merionet.ru ServerName chat.merionet.com LogLevel info ErrorLog /var/log/chat.merionet.com_error.log TransferLog /var/log/chat.merionet.com_access.log <Location /> Require all granted </Location> RewriteEngine On RewriteCond %{HTTP:Upgrade} =websocket [NC] RewriteRule /(.*) ws://localhost:3000/$1 [P,L] RewriteCond %{HTTP:Upgrade} !=websocket [NC] RewriteRule /(.*) http://localhost:3000/$1 [P,L] ProxyPassReverse / http://localhost:3000/ </VirtualHost> В Ubuntu и Debian включите необходимые модули apache2 и перезапустите службу. $ sudo a2enmod proxy_http $ sudo a2enmod proxy_wstunnel $ sudo a2enmod rewrite $ sudo systemctl restart apache2 В CentOS/RHEL и Fedora перезапустите службу apache. # systemctl restart httpd Теперь откройте браузер и введите ваш настроенный адрес и приложение Rocket.Chat станет доступно через ваш домен, настроенный на прокси-сервере. http://chat.merionet.com Шаг 4: Установка клиентов Rocket.Chat Клиентские приложения можно скачать с официального сайта Rocket.Chat. Чтобы установить десктопное приложение в Linux, вы загрузите пакет deb (x64) или rpm (x64) в зависимости от вашего дистрибутива Linux. $ wget -c https://github.com/RocketChat/Rocket.Chat.Electron/releases/download/2.17.7/rocketchat_2.17.7_amd64.deb Или $ wget -c https://github.com/RocketChat/Rocket.Chat.Electron/releases/download/2.17.7/rocketchat-2.17.7.x86_64.rpm Затем установите пакет с помощью диспетчера пакетов dpkg или rpm $ sudo dpkg -i rocketchat_2.17.7_amd64.deb #Ubuntu/Debian $ sudo rpm -i rocketchat-2.17.7.x86_64.rpm #CentOS/RedHat Ручная установка Rocket.Chat Если вы не хотите устанавливать Rocket.Chat через Snaps, вы можете сделать это вручную. Установка Node.js Сначала обновите список системных пакетов: sudo apt update Установите Node.js, npm и все другие зависимости, необходимые для сборки пакетов npm из исходного кода: sudo apt install nodejs npm build-essential curl software-properties-common graphicsmagick Мы будем использовать n, пакет npm, который позволяет интерактивно управлять версиями Node.js. Выполните команды ниже, чтобы установить n и Node.js: sudo npm install -g inherits n sudo n 8.11.3 Установка MongoDB MongoDB - это документно-ориентированная база данных NoSQL, которая используется Rocket.Chat для хранения данных. Импортируйте открытый ключ MongoDB и включите официальный репозиторий MongoDB: sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 9DA31620334BD75D9DCB49F368818C72E52529D4 sudo add-apt-repository 'deb [arch=amd64] https://repo.mongodb.org/apt/ubuntu bionic/mongodb-org/4.0 multiverse' После включения репозитория apt обновите список пакетов и установите MongoDB, набрав: sudo apt update sudo apt install mongodb-org Затем включите и запустите службу MongoDB: sudo systemctl start mongod sudo systemctl enable mongod Создание нового системного пользователя Теперь необходимо создать нового пользователя и группу с именем rocket, которые будут запускать инстанс Rocket.Chat. sudo useradd -m -U -r -d /opt/rocket rocket Добавьте пользователя www-data в новую группу пользователей и измените права доступа к каталогу /opt/rocket, чтобы Nginx мог получить доступ к установке Rocket.Chat: sudo usermod -a -G rocket www-data sudo chmod 750 /opt/rocket Установка Rocket.Chat Переключитесь на пользователя rocket sudo su - rocket Загрузите последнюю стабильную версию Rocket.Chat с помощью curl: curl -L https://releases.rocket.chat/latest/download -o rocket.chat.tgz После завершения загрузки извлеките архив и переименуйте каталог в Rocket.Chat: tar zxf rocket.chat.tgz mv bundle Rocket.Chat Перейдите в каталог Rocket.Chat/programs/server и установите все необходимые пакеты npm: cd Rocket.Chat/programs/server npm install Чтобы протестировать нашу установку перед созданием модуля systemd и настройкой обратного прокси с Nginx или Apache, мы установим необходимые переменные среды и запустим сервер Rocket.Chat export PORT=3000 export ROOT_URL=http://0.0.0.0:3000/ export MONGO_URL=mongodb://localhost:27017/rocketchat Вернитесь в каталог Rocket.Chat и запустите сервер Rocket.Chat, введя следующие команды: cd ../../ node main.js Если ошибок нет, вы должны увидеть следующий вывод: ? +---------------------------------------------+ ? | SERVER RUNNING | ? +---------------------------------------------+ ? | | ? | Rocket.Chat Version: 0.71.1 | ? | NodeJS Version: 8.11.3 - x64 | ? | Platform: linux | ? | Process Port: 3000 | ? | Site URL: http://0.0.0.0:3000/ | ? | ReplicaSet OpLog: Disabled | ? | Commit Hash: e73dc78ffd | ? | Commit Branch: HEAD | ? | | ? +---------------------------------------------+ Остановите сервер Rocket.Chat с помощью Ctrl+C и вернитесь к своему пользователю sudo, набрав exit. Создание модуль Systemd Чтобы запустить Rocket.Chat как службу, нужно создать файл модуля rocketchat.service в каталоге /etc/systemd/system/. sudo nano /etc/systemd/system/rocketchat.service Вставьте следующий код: [Unit] Description=Rocket.Chat server After=network.target nss-lookup.target mongod.target [Service] StandardOutput=syslog StandardError=syslog SyslogIdentifier=rocketchat User=rocket Environment=MONGO_URL=mongodb://localhost:27017/rocketchat ROOT_URL=https://chat.merionet.com PORT=3000 ExecStart=/usr/local/bin/node /opt/rocket/Rocket.Chat/main.js [Install] WantedBy=multi-user.target Сообщите systemd, что мы создали новый файл модуля, и запустите службу Rocket.Chat, выполнив: sudo systemctl daemon-reload sudo systemctl start rocketchat Проверьте статус сервиса: sudo systemctl status rocketchat Вывод должен быть таким: * rocketchat.service - Rocket.Chat server Loaded: loaded (/etc/systemd/system/rocketchat.service; disabled; vendor preset: enabled) Active: active (running) since Wed 2018-11-07 14:36:24 PST; 5s ago Main PID: 12693 (node) Tasks: 10 (limit: 2319) CGroup: /system.slice/rocketchat.service `-12693 /usr/local/bin/node /opt/rocket/Rocket.Chat/main.js Наконец, включите автоматический запуск службы Rocket.Chat во время загрузки: sudo systemctl enable rocketchat Готово, мы установили Rocket.Chat вручную, теперь можно переходить к настройке обратного прокси и инициализации системы, которые были описаны начиная с шага 3. Итоги В этом руководстве вы узнали, как установить Rocket.Chat в Linux и как настроить Nginx и Apache в качестве обратного прокси. Чтобы узнать больше о Rocket.Chat посетите страницу документации.
img
В этой статье вы познакомитесь с основами BGP и узнаете о его различных типах сообщений и состояниях. Все статьи из цикла про BGP: Построение маршрута протоколом BGP Формирование соседства в BGP Оповещения NLRI и политики маршрутизации BGP Масштабируемость протокола BGP Работа протокола BGP с IPv6 Полное руководство по BGP в PDF Ох как мы любим PDF 🙃 Для вашего удобства, весь цикл статей по BGP (Border Gateway Protocol) мы "упаковали" в документ формата PDF. Книга по BGP в PDF | 2.07 MB Видео: Основы BGP за 7 минут Обзор BGP Давайте посмотрим правде в глаза - Border Gateway Protocol невероятно уникален, особенно когда мы сравниваем его с другими протоколами маршрутизации. Самое первое, что делает BGP таким уникальным, - это то, что он наш единственный внешний шлюзовой протокол (EGP), широко используемый сегодня. Мы знаем, что у нас есть Interior Gateway Protocols (IGPs), и похожий на OSPF, работающий внутри автономной системы. Но BGP - это EGP, а это означает, что он (как правило) будет принимать префиксы, которые находятся внутри автономной системы, и отправлять их в другие автономные системы. На рисунке 1 показан пример топологии BGP. Именно поэтому протокол BGP является протоколом, который обеспечивает функционирование сети. Интернет-провайдеры (ISP) могут использовать BGP для перемещения префиксной информации между другими Интернет-провайдерами. Однако уникальные характеристики BGP на этом не заканчиваются. Одна из вещей, которая очень уникальна в протоколе, заключается в том, что он формирует пиринги (*равноправный информационный обмен) точка-точка с другими спикерами BGP, и вы должны создавать эти пиринги вручную. С протоколом пограничного шлюза (BGP) нет такой вещи, как автоматическое формирование соседства с целой кучей устройств на одном сегменте. Для каждого из устройств, с которыми BGP должен пиринговать, он делает это с помощью одного однорангового отношения, которое мы предпочитаем называть пирингом BGP. Еще одно очень уникальное свойство заключается в том, что BGP - это протокол прикладного уровня. По общему признанию, большинство сетевых инженеров поспорили бы, что это протокол сетевого уровня – и они проиграли бы этот спор! Как компонент прикладного уровня, BGP делает что-то блестящее. Он использует протокол управления передачей (TCP) для своих операций. Если мы рассмотрим EIGRP в качестве примера, то создателям пришлось приложить большие усилия, чтобы встроить надежность в сам протокол. Например, спикер EIGRP будет передавать многоадресные передачи, и, если это не сработает, он вернется к одноадресным передачам, чтобы попытаться обеспечить надежность. С помощью Border Gateway Protocol разработчики решили не включать в протокол все эти типы контроля надежности. Они просто полагаются на чудесную надежность коммуникаций TCP. В частности, BGP использует TCP- порт 179. Когда мы думаем о наших протоколах маршрутизации, мы знаем, что будет некоторое значение, которое будет служить метрическим значением для измерения расстояния. Например, в случае OSPF мы знаем, что метрикой является стоимость, а стоимость напрямую зависит от пропускной способности. BGP не работает таким образом. Протокол BGP использует атрибуты, а не только одного показателя. Одним из главных атрибутов протокола BGP называется атрибута AS_PATH. Это список всех автономных систем (AS), которые префикс должен был передать на своем пути, скажем, в вашу автономную систему. AS_PATH - это фактически запись всей информации о пути AS. Путь AS настолько важен для функции BGP, что протокол часто называют протоколом маршрутизации вектора пути. Обратите внимание, что это не протокол вектора расстояния (Distance Vector), а вектор пути (Path Vector). AS_PATH используется не только для определения наилучшего пути к месту назначения (т.е. более короткого пути AS), но и в качестве механизма предотвращения петель. Когда автономная система видит свой собственный номер AS в AS_PATH, она очень обеспокоена тем, что в коммуникациях может быть петля. Что- то еще, что делает BGP невероятно уникальным, - это тот факт, что, когда мы формируем пиринги внутри автономной системы, они называются внутренними пирингами BGP, а правила, которым следуют, являются внутренними правилами BGP (IBGP). Когда мы формируем пиринг между автономными системами, это называется протоколом внешнего пограничного шлюза (EBGP). (Примечание: в некоторых литературных источниках EBGP пишется как eBGP.) Помните, что причина, по которой BGP различает пиринг IBGP и пиринг EBGP, заключается в том, что эксплуатационные характеристики должны изменяться в зависимости от того, как выполняется пиринг. Например, мы заявили, что существует путь AS, который записывает автономные системы, которые передаются. Очевидно, что при пиринге EBGP, когда префикс передается от одного AS к другому AS, отправляющий AS должен поместить свою автономную систему в путь. Но с IBGP, префикс остается в AS, поэтому протокол BGP не обновляет значение AS. Вы можете вернуться к рисунку 1, чтобы увидеть эти различные типы пиринга в действии. Таким образом, правила меняются, когда мы говорим о IBGP против EBGP, чтобы быть последовательным и безошибочными. И уникальные свойства BGP просто не заканчиваются на этом. Типы сообщений BGP, форматы и соседние типы сообщений состояния соседства BGP Многие люди описывают протокол пограничного шлюза (BGP) как чрезвычайно сложный протокол, но я не согласна с этим. Видите ли, установка политик BGP и контроль распространения префиксов внутри BGP-это может быть довольно сложно. Но сам протокол, хотя и уникален, в основном прост в своей работе. В этом части статьи мы рассмотрим типы сообщений BGP. На рисунке 2 показаны различные типы сообщений BGP. Запомните первый шаг. Когда два спикера BGP хотят сформировать пиринг, они будут полагаться на протокол управления передачей (TCP). И, конечно, мы знаем, что будет three-way handshake (трехстороннее рукопожатие) с TCP, чтобы начать этот надежный сеанс связи. Что же происходит дальше? Так это то, что эти устройства будут обмениваться открытыми сообщениями. Открытое сообщение содержит очень важную информацию, основным компонентом которой является номер автономной системы однорангового узла. Это будет определять, является ли это пиринг IBGP или пиринг EBGP. Когда происходит обмен открытыми сообщениями, то спикеры BGP далее начинают обмениваться сообщениями Keepalive. Это, простой механизм, чтобы убедиться, что другой прибор жив, счастлив и здоров, и что пиринг в состоянии up. После этого спикеры BGP получают обновления для совместного использования, называемое сообщением Update. Если в какой-то момент времени что-то пойдет не так, спикеры BGP могут использовать простое сообщение Notification. Данное сообщение прерывает пиринг в результате ошибки, которая может произойти с BGP. Одним из очень интересных типов сообщений BGP является тип сообщения Route Refresh (обновления маршрута). Хотя этот тип сообщений не был включен в исходный стандарт BGP, большинство наших основных сетевых вендоров поддерживают Route Refresh. Route Refresh позволяют соседям обновлять, скажем, информацию о маршруте BGP или даже обновлять вещи после довольно серьезной реконфигурации политики, не разрушая пиринг и не влияя на пиринг каким- либо большим негативным образом. Рисунок 3 показывает эти типы сообщений в действии благодаря захвату Wireshark’ом обмена сообщениями BGP в нашем примере топологии из рисунка 1. Форматы сообщений BGP В этом части статьи мы еще больше узнаем об эксплуатационных характеристиках Border Gateway Protocol, более подробно рассмотрев типы сообщений BGP. Каждый тип сообщения имеет заголовок BGP. Этот заголовок показан на рисунке 4. Вы видите, что заголовок BGP имеет большое поле маркера. Можно подумать, что это чрезвычайно важно. Он имеет размер 16 октетов. Как оказалось, это поле будет заполнено у всех. Это связано с тем, что использование этого поля маркера было прописано в устаревшем стандарте. Первоначальная идея этого поля состояла в том, что его можно было бы использовать для обнаружения таких событий, как потеря синхронизации между двумя одноранговыми узлами, и также считалось, что это будет область, в которой может храниться аутентификационная информация. Почему это поле вообще имеется в BGP? Иногда, в очень редком случае, когда необходимо иметь обратную поддержку с каким-то действительно старым устройством BGP, которое ожидает эту информацию из поля маркера. Важными полями в заголовке, будут длина (Length) (то есть длина всего сообщения) и поля типа (Type). Поле Тип указывает, с каким типом сообщения BGP мы имеем дело. Если, например, в этом поле 1, вы имеете дело с открытым (Open) сообщением BGP. Значение 2 указывает на сообщение об обновлении (Update). А 3 означает уведомление (Notification). Значение 4 будет иметь сообщение Keepalive. 5 указывает на необязательное Route Refresh. То, что следует за информацией заголовка, конечно же, является данными, за одним важным исключением- это сообщение Keepalive. По определению, в сообщении Keepalive нет никаких данных. Теперь я надеюсь вы понимаете, что, когда ваша система хочет сформировать BGP-пиринг с другим устройством, она собирается отправить открытое сообщение. На рисунке 5 показан формат этих сообщений. Когда мы смотрим на формат открытого (Open) сообщения, мы замечаем, что там есть номер версии. Именно так BGP указывает на версию BGP, которую вы используете. Ваша система также отправит свой номер AS в открытом сообщении. Это очень важно для такого поведения IBGP по сравнению с EBGP. Существует значение Hold Time. Что же такое Hold Time? Когда маршрутизатор, с которым вы хотите свериться, получает Open сообщение, он смотрит время удержания (Hold Time), смотрит на свое собственное настроенное Hold Time, а затем использует меньшее из двух значений. Hold Time должно быть либо нулевым, либо не менее трех секунд. Есть поле BGP Identifier. Это Ваш BGP Router ID, и это уникальное значение, которое будет однозначно отличать вашу систему в пирингах BGP. Наконец, у нас есть дополнительные параметры (Optional Parameter), которые можно задать с помощью открытого сообщения. Там есть необязательная длина параметра (Optional Parameter Length), а затем сами параметры, дающие дополнительную гибкость работы с протоколом. Еще одно действительно важное сообщение, которое у нас есть, - это сообщение об обновлении (Update) BGP. На рисунке 6 показана эта структура сообщения. Сообщение об обновлении BGP содержит индикатор длины отозванных маршрутов (Withdrawn Routes Length). Это гарантирует, что сообщение обновления является средством для маршрутов, которые будут удалены из таблицы BGP соседа. Примечание: затем в сообщение об обновлении вставляется список изъятых маршрутов. Сообщение об обновлении содержит поля, которые используются для обмена информацией о префиксах сети с соседями и включают в себя очень важную атрибутивную информацию, связанную с префиксами. Помните, что эти атрибуты позволяют Вам принимать важные решения о том, как BGP будет фактически маршрутизировать информацию в сети. Хорошо известный атрибут, о котором мы уже упоминали, - это путь. Вы помните, что это список автономных систем, которые префикс передал на своем пути по всей инфраструктуре BGP. AS Path будет примером атрибута, который должен быть в сообщении об обновлении, когда он используется для отправки префиксов. Там может быть много атрибутов, которые мы используем, и это является причиной для Total Path Attribute Length в сообщении об обновлении. Сама информация о префиксе сети находится в поле NLRI. Это означает информацию о достижимости сетевого уровня (Network Layer Reachability Information). Вы можете вернуться к рисунку 3 и увидеть эти поля в реальном пакете, а также их содержимое. Создатели BGP сделали гениальную вещь. Они создали протокол для передачи NLRI таким образом, чтобы он был гибким по мере изменения сетей и необходимости передачи новой информации. BGP создан для того, чтобы сразу же запускать для нас такие вещи, как IPv6. Он также может легко переносить префиксы VPN IPv4 внутри чего-то вроде MPLS VPN. На рисунке 7 показаны поля сообщения уведомления (Notification). Самое первое поле - это код ошибки (Error Code). Затем поле Подкод ошибки (Error Subcode). Эти поля дают нам общий тип ошибки, а затем еще больше информации. Например, если в Error Code у нас есть значение 3, а затем в Error Subcode у нас есть значение 3, это указывает на то, что существует сообщение об ошибке обновления. Соседство BGP Точно так же, как мы можем многое узнать о работе BGP, изучая сообщения BGP и их форматы, мы также можем многое узнать о BGP, изучая различные состояния, через которые проходит пиринг BGP. На самом деле, они имеют решающее значение при устранении неполадок. Когда вы проанализируете протокол BGP, вы не удивитесь, узнав, что существует множество встроенных механизмов для обеспечения стабильности. Многие IGP спроектированы так, чтобы быть максимально быстро сходящимися. Это происходит потому, что в момент, когда происходит изменение внутри сети вашей организации, мы хотим sub-second сходимости других устройств, чтобы мы знали об этом изменении. BGP спроектирован по-другому. Таймеры имеют гораздо большую продолжительность, чем мы привыкли бы с нашим IGP, потому что мы хотим стабильности, жертвуя скоростью сходимости. В конце концов, BGP имеет дело с общедоступными таблицами маршрутизации интернета в развертываниях поставщиков услуг. Эти таблицы маршрутизации очень массивны. Нестабильность в этой среде приведет к катастрофе всего публичного Интернета. Когда вы изучите состояние соседства BGP, вы поймете для чего это. Относительно большое число состояний соседства BGP, показанных на рисунке 8, свидетельствует о тщательных усилиях по обеспечению стабильности протокола маршрутизации. Обратите внимание, что есть состояние простоя, когда устройство не инициирует ни одно из других состояний, и есть установленное состояние, когда оно полностью установлено со своим узлом. Что несколько удивительно, так это то, что есть все эти “промежуточные” состояния подключения, активного, открытого подтверждения (OpenConfirm) и активного. Состояние — подключения-это состояние, в котором устройство BGP ожидает завершения TCP- соединения с соседним устройством. В активном состоянии он пытается инициировать TCP - соединение со своим соседом. В состоянии OpenSent, как вы можете догадаться, он отправляет свое открытое сообщение и ждет ответа от своего соседа с его открытым сообщением. В режиме OpenConfirm, спикер BGP на самом деле ждет, Keepalive на основе успешного обмена открытыми сообщениями. Будем надеяться, что устройство BGP получит Keepalive. Если будет ошибка, он получит уведомление. Используя в Cisco CLI специальные команды, можно узнать все о состоянии BGP. Пример 1 показывает использование команды show ip bgp summary для проверки соседнего состояния. TPA1#show ip bgp summary BGP router identifier 10.10.10.1, local AS number 100 BGP table version is 3, main routing table version 3 Neighbor V AS MsgRcvd MsgSent TblVer InQ QutQ Up/down State/PfxRcd 10.10.10.2 4 200 0 0 1 0 0 00:00:00 Idle Обратите внимание на пример 1. Этот пиринг BGP находится в состоянии ожидания (параметр State/PfxRcd в состоянии Idle). Как только произойдет соединение значение IDLE заменится на 1 (Если ATL использует только один префикс с TPA 1).
img
IP-АТС Yeastar поддерживают автоматическую настройку различных моделей конечного IP-оборудования от различных производителей. После недавнего обновления в приложение auto-provisioning была добавлена поддержка Gigaset DECT IP PRO. Поддерживаемое оборудование Gigaset: DECT базы Gigaset: Gigaset N870 IP PRO Gigaset N670 IP PRO Телефоны Gigaset: Gigaset Maxwell C Gigaset S650H Pro Gigaset SL750H Pro Gigaset R650H Pro $dbName_ecom = "to-www_ecom"; $GoodID = "5019000350"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName_ecom) or die(mysql_error()); $query_ecom = "SELECT `model`, `itemimage1`, `price`, `discount`, `url`, `preview115`, `vendor`, `vendorCode` FROM `items` WHERE itemid = '$GoodID';"; $res_ecom=mysql_query($query_ecom) or die(mysql_error()); $row_ecom = mysql_fetch_array($res_ecom); echo 'Кстати, купить '.$row_ecom['vendor'].' '.$row_ecom['vendorCode'].' можно в нашем магазине Merion Shop по ссылке ниже. С настройкой поможем 🔧 Купить '.$row_ecom['model'].''.number_format(intval($row_ecom['price']) * (1 - (intval($row_ecom['discount'])) / 100), 0, ',', ' ').' ₽'; $dbName = "to-www_02"; mysql_connect($hostname,$username,$password) OR DIE("Не могу создать соединение "); mysql_select_db($dbName) or die(mysql_error()); Для автоматической настройки Gigaset DECT IP PRO необходимо убедиться, что оборудование соответствует минимальным требованиям: прошивка не ниже 30.12.0.9 для IP АТС Yeastar серии S версия приложения auto-provisioning не ниже 1.8.22 версия DECT баз Nx70 серии не ниже 2.29.0 Шаг 1. Сбросить DECT базу Gigaset до заводских настроек Шаг 2. Дождаться появления базы Gigaset в панели приложения auto-provisioning Во время загрузки DECT база Gigaset рассылает мультикаст SIP сообщение. Это сообщение подхватывает IP АТС Yeastar серии S и база появляется в окне приложения. Шаг 3. Откройте параметры базы и настройте так, как это Вам необходимо Шаг 4. Перезагрузите DECT базу Gigaset После настройки нажмите Сохранить. Появится запрос на перезагрузку DECT базы Gigaset. Необходимо вручную или через web-интерфейс DECT базы Gigaset перезагрузить её. Сделать это необходимо только в первый раз. В дальнейшем, не смотря на запросы на перезагрузку со стороны IP АТС Yeastar, DECT базу Gigaset IP PRO перезагружать нет необходимости. Все настройки будут успешно применяться без перезагрузки. Поддерживаемый функционал, который можно настроить с помощью автоматической настройки: N670 до 20 телефонов N870 до 50 телефонов Телефонная книга LDAP Ожидание вызова Голосовая почта Язык Пароль администратора Тональная схема Часовой пояс Сервер NTP Кодеки Настройка трубок/аккаунтов: Вы можете настроить свои телефоны, выбрав трубку, номер и указав LDAP. Чтобы зарегистрировать трубку, Вам необходимо открыть веб-интерфейс DECT базы Gigaset и начать регистрацию. Характеристики На данной вкладке можно включить/выключить ожидание вызова, голосовую почту и настроить удаленную телефонную книгу. Настройки На вкладке Предпочтения Вы можете настроить язык, указать пароль администратора, выбрать схему тонов, указать временную зону и сервер NTP. Пароль администратора: в этом поле настройте свой пароль администратора. Если поле пустое, то Ваш пароль, введенный во время установки Nx70, не будет перезаписан. Настройка кодеков На вкладке Кодек Вы можете настроить используемые кодеки. Примечание: Если отключить кодек G.729, то DECT база Gigaset сможет работать с 10 одновременными вызовами, вместо 8. Настройка профилей LDAP На вкладке LDAP Вы можете настроить до 10 профилей LDAP сервера. Доступные для настройки параметры: Directory name: название телефонной книги, которое будет отображаться на телефонных трубках Server Address: IP адрес сервера LDAP (например, IP АТС Yeastar серии S) Server Port: порт сервера LDAP (например, 389) LDAP Search base (Base DN): dc=pbx, dc=com Username: cn=admin, dc=pbx, dc=com Password: пароль Для включения указанной настройки LDAP, необходимо установить галочку Enable directory.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59